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In this paper, on the basis of gradient elasticity theory with one gradient parameter,
wave propagation in rectangular nanoplates is studied. In the governing equation, the
influences of initial stresses and elastic foundation are also considered. An analytical
approach is used to solve the governing equation. The effects of different parameters such
as gradient parameter on the circular and cut-off frequencies are presented. One can see
that the initial stress and gradient parameter play an important role in investigating the
wave propagation in nanoplates.
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1. Introduction

Wave propagation seems to have different application in macro- and nanostructures

such as vibration control, damage detection, computation of elastic constants, avia-

tion and transportation. In recent years, a number of studies of wave propagation in

nanostructures have been carried out through theoretical modeling and computer

simulation.1 Narendar and Gopalakrishnan2 investigated the thermal effects on the

ultrasonic wave propagation characteristics of a nanoplate based on the nonlocal

continuum theory. The axial stress caused by the thermal effects was considered.

The wave propagation analysis was carried out using spectral analysis. Wang et al.3

studied the small-scale effects on the flexural wave in the nanoplate. Based on

the nonlocal continuum theory, the equation of wave motion was derived and the
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dispersion relation was presented with considering the initial stresses and elastic

matrix. Arash et al.4 developed a nonlocal elastic plate model that accounts for the

scale effects for wave propagations in graphene sheets. Moreover, a finite element

model developed from the weak-form of the elastic plate model was reported to

fulfill a comprehensive wave study in the sheets. Based on the Bernoulli–Euler and

Timoshenko beam theories, a single-elastic beammodel using nonlocal elasticity was

developed for the wave propagation in carbon nanotubes (CNTs) by Heireche et al.5

Frequency equations and modal shape functions of Timoshenko beams structures

with some typical boundary conditions were also derived from nonlocal elasticity.

Wang et al.6 proposed the propagation characteristics of the longitudinal wave in

nanoplates with small scale effects. The equation of the longitudinal wave was ob-

tained using the nonlocal elastic theory. The phase velocity and the group velocity

were also derived, respectively. Liu and Yang7 presented the propagation of elas-

tic waves in a single-layered graphene sheet supported by an elastic medium via

the nonlocal continuum model. The elastic medium was treated as a two-parameter

elastic foundation. The governing equations accounting for coupled longitudinal and

vertically polarized shear waves were obtained and dispersion relations were given.

Besseghier et al.8 studied the thermal effect on wave propagation in double-walled

carbon nanotubes (DWNTs) embedded in a polymer matrix via nonlocal elasticity.

The small-scale effects on vibration characteristics of CNTs were explicitly derived

through a complete continuum beam model. Narendar and Gopalakrishnan9 inves-

tigated the effect of nonlocal scale parameter on the wave propagation in multi-

walled carbon nanotubes (MWCNTs). Each wall of the MWCNT was modeled as

first order shear deformation beams and the van der Waals interactions between the

walls were modeled as distributed springs. The nonlocal elasticity theory had been

incorporated into classical Euler–Bernoulli rod model to capture unique features

of the nanorods under the umbrella of continuum mechanics theory by Narendar

and Gopalakrishnan.10 The analysis showed that the wave characteristics are highly

over estimated by the classical rod model, which ignores the effect of small-length

scale. Narendar and Gopalakrishnan11 also studied the strong nonlocal scale effect

on the flexural wave propagation in a monolayer graphene sheet. The graphene

was modeled as an isotropic plate of one atom thick. Nonlocal governing equation

of motion was derived and wave propagation analysis was performed using spec-

tral analysis. Assadi and Farshi12 proposed the size-dependent free vibration of

nanotubes with surface effects. An efficient shell-core-shell model was introduced

to simulate the structure which includes the effect of additional surface elasticity.

Love’s continuum model for longitudinal wave propagation was employed, which

accounts for the effects of lateral contractions.

In this work, the wave propagation in rectangular nanoplates based on Kirch-

hoff plate theory using gradient elasticity theory with one gradient parameter is

presented. The effects of initial stress and elastic matrix on the circular and cut-off

frequencies are also proposed. In this study, the Winkler foundation and the shear-

ing layer are considered to model the elastic matrix. Our numerical results are also
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verified with the results of wave propagation in macro plates. To the best of the

authors’ knowledge, it is for the first time that strain gradient elasticity theory is

used to investigate the wave propagation in rectangular nanoplates.

2. Strain Gradient Theory

The strain/stress greatly enhances the electronic, structural, magnetic, and optical

properties of the systems.13–18 For a linear isotropic elastic material, stresses are

explained by the kinematic parameters effective on the strain density which are

given in the following constitutive relations,19

σij = λδijεmm + 2μεij ,

Pi = 2μl20γi ,

τ
(1)
ijk = 2μl21η

(1)
ijk ,

ms
ij = 2μl22X

s
ij ,

(1)

where εij , γi, η
(1)
ijk , Xs

ij , and li are the strain, dilatation gradient, deviatoric stretch

gradient, symmetric rotation gradient tensors and material length scale parameters.

Pi, τ
(1)
ijk , m

s
ij are the higher-order stresses, The simplest form of above relations can

be expressed as follows:20

(σij) = Cijkl(εij − lεij,mm) , (2)

where Cijkl and l are the elastic constants and gradient parameter, respectively. The

values of gradient constant can be found in Papargyri–Beskou and Beskos.20 Above

equation will be used to consider the size effects in studying wave propagation in

rectangular nanoplates.

3. Governing Equations

In this section, in order to study the wave propagation in rectangular nanoplates,

the gradient elasticity theory with one gradient parameter and Kirchhoff plate

theory are used to derive the governing equation of motion. The above constitutive

relations (2) can be expressed in long form as below.

Equation (2):

σx =
E

1− v2
(εx + vεy)− E

1− v2
l∇2(εx + vεy) . (3)

Equation (2):

σy =
E

1− v2
(εy + vεx)− E

1− v2
l∇2(εy + vεx) . (4)

Equation (2):

τxy =
E

2(1 + v)
(γxy)− E

2(1 + v)
l∇2(γxy) , (5)
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where E is the Young modulus and v is the Poisson’s ratio. To have the stresses in

terms of displacements, following relations between strain and displacements should

be used:

εx = −z
∂2w

∂x2
, εy = −z

∂2w

∂y2
, γxy = −2z

∂2w

∂x∂y
. (6)

Now by substituting the above equation in Eqs. (3)–(5), the stress–displacement

relations with considering gradient parameter can be written as follows:

Equation (3):

σx =
E

1− v2

(
−z

∂2w

∂x2
− vz

∂2w

∂y2

)

− E

1− v2
l

(
−z

∂4w

∂x4
− z

∂4w

∂x2∂y2
− vz

∂4w

∂y4
− vz

∂4w

∂x2∂y2

)
. (7)

Equation (4):

σy =
E

1− v2

(
−z

∂2w

∂y2
− vz

∂2w

∂x2

)

− E

1− v2
l

(
−z

∂4w

∂x4
− z

∂4w

∂x2∂y2
− vz

∂4w

∂x4
− vz

∂4w

∂x2∂y2

)
. (8)

Equation (5):

τxy =
E

2(1 + v)

(
−2z

∂2w

∂x∂y

)
− E

2(1 + v)
l

(
−2z

∂4w

∂x3∂y
− 2z

∂4w

∂y3∂x

)
. (9)

The next step is to construct the gradient resultant moments in term of displace-

ments by using Eqs. (7)–(9) as follows:

Equation (7):

Mx = D

(
−∂2w

∂x2
− v

∂2w

∂y2

)
− lD

(
−∂4w

∂x4
− ∂4w

∂x2∂y2
− v

∂4w

∂y4
− v

∂4w

∂x2∂y2

)
. (10)

Equation (8):

My = D

(
−∂2w

∂y2
− v

∂2w

∂x2

)
− lD

(
−∂4w

∂y4
− ∂4w

∂y2∂x2
− v

∂4w

∂x4
− v

∂4w

∂y2∂x2

)
. (11)

Equation (9):

Mxy = D(1 − v)

(
2
∂2w

∂x∂y

)
− lD(1− v)

(
2

∂4w

∂y3∂x
+ 2

∂4w

∂y∂x3

)
, (12)

where (Mx,My,Mxy) =
∫ h/2

−h/2 (σx, σy,−τxy)zdz and D = Eh3

12(1−v2) . The dynamic

equilibrium equation of a nanoplate in terms of the moment resultants is given as

∂2Mx

∂x2
−2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+N0

(
∂2w

∂x2
+

∂2w

∂y2

)
= ρh

∂2w

∂t2
+Kww−Gb∇2w . (13)
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To clearly show the effects of gradient parameter, elastic matrix and initial stress

on the propagation characteristics of elastic waves in a single-layered graphene

sheet, following governing equation can be achieved from Eqs. (10)–(13)

ρh
∂2w

∂t2
−N0

(
∂2w

∂x2
+

∂2w

∂y2

)
+Kww −Gb

(
∂2w

∂x2
+

∂2w

∂y2

)

= D

(
−∂4w

∂x4
− ∂4w

∂y4
− 2

∂4w

∂x2∂y2

)

− lD

(
−∂6w

∂x6
− ∂6w

∂y6
− 3

(
∂6w

∂x4∂y2
+

∂6w

∂x2∂y4

))
. (14)

The harmonic analytical solution for the wave propagation in the rectangular

nanoplates can be obtained as3,21

w = Wei(xKx+yKy−ωt) . (15)

where Kx and Ky are the half wave numbers in the x- and y-direction, respec-

tively and ω is the circular frequency. It is noted that the wave number in the

following investigations is defined as K =
√
K2

x +K2
y . Now by inserting Eq. (15) in

Eq. (14), the circular frequency in terms of wave numbers in the x and y directions

is expressed as, K4
x

ω =

√
D(K4

x+K4
y+2K2

xK
2
y)+lD(K6

x+K6
y+3(K4

xK
2
y+K2

xK
4
y))+Kw+Gb(K2

x+K2
y)+N

0
(K2

x+K2
y)

ρh

(16)

where ρ is the density and h is the thickness. The above closed form solution

for circular frequency of rectangular nanoplates can show the effects of different

parameters such as gradient parameter, elastic matrix and initial stress on the

wave propagation. In the next section, some numerical results are extracted from

the above equation for gradient nanoplates.

4. Numerical Results

In this section, the numerical results for the wave propagation in rectangular

nanoplates are presented on the basis of strain gradient elasticity theory with

one gradient constant. In the present study, the material properties are defined as

follows:3

E = 1.06 TPa, h = 0.34 nm, v = 0.25, ρ = 2250 kg/m3 ,

Kw = 1.13× 1018, Gb = 2 N/m .

As the first example, the effects of gradient parameter and half wave number in

y-direction on the cut-off frequencies are studied in Table 1. It is noted that cut-off

frequencies are defined in two different ways. Some researchers introduce cut-off

frequencies by assuming the wave number to be zero3 but other researchers define
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Table 1. The effects of half wave number and gradient parameter on the
cut-off frequencies.

l
Ky (109) 0.0[3] 0.0 0.5 1.0 1.5 2.0 2.5

0.00 1.2154 1.2154 1.2154 1.2154 1.2154 1.2154 1.2154

0.05 1.2205 1.2205 1.2205 1.2205 1.2205 1.2205 1.2205
0.10 1.2358 1.2358 1.2358 1.2358 1.2358 1.2358 1.2358
0.15 1.2615 1.2615 1.2615 1.2615 1.2615 1.2616 1.2616
0.20 1.2976 1.2976 1.2976 1.2977 1.2977 1.2978 1.2979
0.25 1.3441 1.3441 1.3443 1.3446 1.3448 1.3450 1.3452
0.30 1.4013 1.4013 1.4019 1.4026 1.4032 1.4038 1.4044
0.35 1.4692 1.4692 1.4707 1.4722 1.4737 1.4753 1.4768
0.40 1.5480 1.5480 1.5512 1.5544 1.5576 1.5607 1.5639
0.45 1.6377 1.6377 1.6438 1.6499 1.6560 1.6621 1.6681
0.50 1.7384 1.7384 1.7493 1.7601 1.7708 1.7814 1.7920

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Wave number (1/nm)

C
irc

ul
ar

 fr
eq

ue
nc

y 
(T

H
z)

l=0.0[3]
l=0.0
l=0.5
l=1.0
l=1.5
l=2.0
l=2.5

Fig. 1. (Color online) The effects of wave number and gradient parameter on the circular
frequencies.

them by ignoring the wave number in x-direction.2 In this table, the second type

of cut-off frequencies is tabulated and the first type will be discussed in Table 2.

From this table, it can be seen that with the increase of gradient parameter, the

cut-off frequencies will increase. It is also found that increasing the wave number

in y-direction will result in increase of the cut-off frequencies. From this table, it

can be easily seen that the effects of wave number in y-direction are more than

gradient parameter. In this table, our results are also verified with the results of

Wang et al.3 From our comparison, it is shown that the results of our methodology

can be accurate for rectangular nanoplates. In Fig. 1, the influences of gradient
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Table 2. The effects of halt wave number and elastic foundation on the cut-off frequencies.

ωc (II) ωc (I)

Kw (1018) Kw (1018)

Ky 0.0 1.0 2.0 3.0 4.0 0.0 1.00 2.0 3.0 4.0

0.1 0.224 1.165 1.632 1.993 2.298 0.0 1.143 1.617 1.980 2.287
0.2 0.455 1.231 1.680 2.032 2.331 0.0 1.143 1.617 1.980 2.287
0.3 0.700 1.341 1.762 2.100 2.391 0.0 1.143 1.617 1.980 2.287

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Wave number (1/nm)

C
irc

ul
ar

 fr
eq

ue
nc

y 
(T

H
z)

=0.000E[3]
=0.000E
=0.005E
=0.010E
=0.015E

Fig. 2. (Color online) The effects of wave number and initial stress on the circular frequencies
(l = 0).

parameter and wave number on the circular frequencies are presented. Our results

are also compared with the circular frequencies available in the literature. From this

figure, it is shown that with the increase of gradient parameter and wave number,

the circular frequencies will increase. It is figured that it is also shown that the

gradient parameter has significant effect on the wave propagation in rectangular

nanoplates. It is mentioned that in this figure the effects of both initial stress and

elastic matrix are also considered. In Figs. 2 and 3, the influences of initial stress

and wave number on the circular frequencies are shown. In Fig. 2, the gradient

parameter is neglected but in Fig. 3, the gradient parameter is assumed to be 1 nm2.

From these figures, one can easily find that the initial stress plays an important

role in wave propagation in rectangular nanoplates. It is obtained that with the

increase of initial stress, the circular frequencies will increase for both figures. It is

also shown that the wave number has more effect for higher initial stresses. Table 2

illustrates the influences of elastic matrix on the cut-off frequencies. In this table

the effects of Winkler foundation are investigated and the stiffness of shearing layer

is assumed to be constant.
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1
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4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Wave number (1/nm)

C
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(T

H
z)

=0.005E
=0.010E
=0.015E
=0.020E

Fig. 3. (Color online) The effects of wave number and initial stress on the circular frequencies
(l = 1 nm2).

From this table, it is found that increasing the stiffness of Winkler foundation

will result in increase of the cut-off frequencies. It is also shown that the second

type of cut-off frequency is a bit more than first type. As it is expected, the first

type of cut-off frequency is independent of half wave number in y-direction but

second type increase with the increase of half wave numbers.

5. Conclusion

In this paper, in order to consider the small scale effects, strain gradient elasticity

theory with one constant was used to investigate the wave propagation in rectangu-

lar nanoplates. The governing equation of motion with considering initial stresses

and elastic matrix was derived on the basis of Kirchhoff plate theory. The Winkler

foundation and the shearing layer were considered to model the elastic matrix. It

was shown that with the increase of gradient parameter and wave number, the

circular frequencies will increase. It was also obtained that with the increase of

gradient parameter, the cut-off frequencies will increase. It could be seen that first

type of cut-off frequency is independent of half wave number in y-direction but

second type increase with the increase of half wave numbers.
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