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a b s t r a c t

In the present work, a new Kirchhoff plate model is developed using a modified couple-stress theory to
study the bending behavior of nano-sized plates, including surface energy and microstructure effects.
The surface elasticity theory of Gurtin and Murdoch is used to model the surface energy effects, into the
framework of the modified couple-stress theory of elasticity. Newtonian continuum mechanics approach
is used to derive the differential form of the equilibrium equations for the modified Kirchhoff plate
theory.

The modified plate rigidity is derived to express the size effects in nanoplates. Presence of a length
scale parameter, in the context of the modified couple-stress theory, enables us to express the size effect
in nano-scale structures. In addition, an intrinsic length scale parameter is determined as a result of
taking surface energy effects into account.

In order to illustrate the model, an analytical solution of the static bending of a simply supported
nano-plate has been derived. For ultra-thin plates it is noticed that the microstructure effects on bending
rigidity and deflection, through the application of the modified-couple stress theory, is highly significant
than that caused by the surface energy effect.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Every physical theory possesses a certain domain of applic-
ability outside which it fails to predict the physical phenomena
with reasonable accuracy, Eringen [1]. For each theory, the domain
of application defines the level of the considered constituents and
the appropriate processes of interactions between these constitu-
ents. The components below this level would not be accounted for
and consequently, the interaction process between these compo-
nents and the other ones would be avoided also. As an obvious
example, for a macro-scale body the surface component of the
body is very small relative to the volume of the solid. Thus, we can
neglect the surface as component of the continuum and focus our
attention only on the bulk solid. For a tiny body the surface is very
comparable to the bulk volume. Therefore, it should be taken into
consideration and deserves to pay a considerable attention to its
characteristics and the processes of interactions with the bulk of
the continuum.

The same issue can be observed when we study the mechanical
deformation of a macro-scale elastic continuum. In this case, it will

be sufficient to investigate the behavior on the level of particles as
already happened in the classical continuum mechanics theories,
Truesdell and Noll [2]. On the contrary, for nano-scale systems
we have to deal with the atomic discrete nature of the system.
Thus, we have to concern primarily with the level of microstruc-
ture elements and investigate different interaction processes
between those elements, Chen et al. [3]. Unfortunately, classical
continuum mechanics is explicitly designed to be size-indepen-
dent, which may call the applicability of classical continuum
models on nanostructures into question. Several physical reasons
may be ascribed to the breakdown of classical continuum
mechanics at nano-scale size, Maraganti and Sharma [4].

The surface of a solid is considered as a region with a negligible
thickness which has its own atom arrangement and properties
differing from the bulk. Atoms at a free surface experience a
different local environment than do atoms in the bulk of a solid
material. As a result, the energy associated with these atoms will
be different from that of the atoms in the bulk. The excess energy
associated with surface atoms is surface free energy. For a solid
with large size, such surface free energy is typically neglected
because it is associated with only a few layers of atoms near the
surface and the ratio of the volume occupied by the surface atoms
and the total volume of material of interest is extremely small.
However, for small solids with a comparable ratio of surface to
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bulk, the surface free energy effect is most likely significant. This is
extremely true for nano-scale materials and structures.

Nevertheless, the presence of surface stress gives rise to a non-
classical boundary condition which in combination with the
constitutive relation of surface and the equations of classical
elasticity forms a coupled system of field equations. This makes
the solutions of the corresponding boundary value problem
relatively difficult.

A generic mathematical model for the analysis of surface elasticity
has been developed by Gurtin and Murdoch [5–8], where the surface
stresses depend on deformations. The equilibrium and constitutive
relations of the bulk solid are the same as those in classical elasticity,
but the boundary conditions must ensure the force balance of the
surface object. In Gurtin and Murdoch model, the surface is repre-
sented as a single layer combining of an infinite number of material
particles as in classical elasticity, neglecting the microstructure of the
surface. However, Guo and Zhao [9,10] considered the microstructure
of the surface of nanofilms, where the surface consists of multi-layers
of relaxed crystals. A lattice model is proposed where the possible
bond relaxation of the atom is considered which alter the mechanical
properties of the nano film.

Miller and Shenoy [11], developed a simple model based on the
surface elasticity theory of Gurtin and Murdoch to determine the
size effects on the elastic rigidities of nano-sized structural
elements such as bars, beams and plates. Thus as the dimensions
of the structure become smaller the presence of surfaces have to
be accounted for in the modeling strategy. Most of surface effects,
such as surface energy, surface tension and surface relaxation are
studied by many investigators [9–16]. The effect of the residual
stress-due to-surface tension on the bending behavior of nano-
plates is studied by Wang and Zhao [12]. Moreover, the effect of
surface relaxation in combining with surface tension on the
bending behavior of nanobeams and plates is studied by Guo
and Zhao [9,10].

The interactions at microscopic scale are the physical origin of
many macroscopic phenomena. The fundamental departure of
micro-continuum theories from the classical continuum theories
is that the former is either a continuum model embedded with
microstructures or a nonlocal model to describe the long-range
material interaction, Chen et al. [3].

Any attempt to drop the continuity assumption in a modified
theory is bounded to make the analysis extremely difficult and
computationally intensive. Therefore there is a need for modified
continuum theories that include new measures of deformation,
which are length related, such as the curvature tensor. As a
consequence, such a theory may also require the introduction of
couple stresses, Hadjesfandiari and Dargush [17]. Cosserat and
Cosserat [18] were the first to develop a mathematical model to
analyze materials with couple stresses. In the original Cosserat
theory, the kinematical quantities were the displacement and a
material microrotation, which assumed to being independent of
the continuum macrorotation.

Couple-stress theory is an extended continuum theory that
includes the effects of a couple per unit area on a material volume,
in addition to the classical direct and shear forces per unit area.
This immediately admits the possibility of asymmetric stress
tensor, since shear stress no longer have to be conjugate in order
to ensure rotational equilibrium. Recently, Yang et al. [19] modified
the classical couple stress theory and proposed a modified couple-
stress model, in which the couple stress tensor is symmetrical and
only one material length parameter is needed to capture the size
effect which is caused by micro-structure.

Jomehzadeh et al. [20] developed a variational model for the
vibration analysis of ultra-thin plates using the modified couple-
stress theory and on the basis of Hamilton's principle. Tsiatas [21]
studied the static bending analysis of isotropic micro-Kirchhoff

plates using the modified couple-stress theory and on the basis of
the principle of minimum potential energy. Ma et al. [22] devel-
oped a non-classical Mindlin plate model using the modified
couple-stress theory and on the basis of Hamilton's principle.

On the other side, a general classical thin plate theory including
surface effects, which can be used for static and dynamic analysis
of plate-like thin film structures, was developed by Lu et al. [23].
The modeling of surface effects is based on the surface elasticity
theory developed by Gurtin and Murdoch [5,7] and an additional
material length scale parameter is determined. Moreover, Shaat
et al. [13–15] developed a size-dependent model to study the
static bending of Mindlin functionally graded plates incorporating
surface energy effects based on Gurtin and Murdoch theory
considering effects of surface tension.

The present study is focused on the presentation of a new
Kirchhoff nanoplate model, based on the modified couple-stress
theory of Yang et al. [19], and taking into account the surface
energy and surface tension effects by using the surface elasticity
theory of Gurtin and Murdoch. Classical Newtonian approach is
used to derive the differential form of the equilibrium equations of
the generalized Kirchhoff nanoplate.

The rest of the paper is organized as follows. In Section 2, the
formulation of the equilibrium equations for the non-classical
Kirchhoff plate model is developed using the modified couple
stress theory (Yang et al. [19], Park and Gao [24]) and the surface
elasticity theory of Gurtin and Murdoch [5,7]. Constitutive equa-
tions of the bulk and surface layer materials in addition to the
kinematic equations of the Kirchhoff plate are presented in
Section 3. Moreover, a length scale parameter, in the context of
the modified couple stress theory, is presented to capture the size
effect in nano-plates. Based on the equilibrium equations, consti-
tutive relations and the kinematic equations; the equilibrium
equations in terms of deflection are derived in the end of
Section 3. To demonstrate the new proposed model, a simply
supported plate problem is solved in Section 4, by applying the
equilibrium equations derived in Section 3. Some numerical
results are presented in Section 5 to show both the microstructure
and surface energy effects on the bending rigidity of the plate.
In addition, a parametric study is given to present the effect of
surface parameters and the effect of the length scale parameter,
mentioned in Section 3, on the bending behavior of simply
supported Kirchhoff plates.

2. Equilibrium equations of the modified couple-stress plate
theory including surface effects

The formulation of the equilibrium model for Kirchhoff plate
including surface effects, in the framework of the modified couple
stress theory, will be presented throughout this section. Surface
energy and surface tension effects are handled through Gurtin
and Murdoch model neglecting the microstructure of the surface.
This formulation is developed on the basis of the classical New-
tonian continuum mechanics, Reddy [25].

Consider an ultra-thin rectangle plate with uniform thickness h.
A Cartesian coordinate system xiði¼ 1; 2; 3Þ is introduced so that
the axes x1 and x2 are lying in the mid-plane of the plate, and the
upper and lower surfaces Sþ and S� of the plate are defined by
x3 ¼ 7h=2, respectively (see Fig. 1).

The differential form of the equilibrium equations for a size-
dependent continuum, based on the modified couple-stress the-
ory, is given by

sji;jþ f i ¼ 0 ð1Þ

μji;j þeijksjkþCi ¼ 0 ð2Þ
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where sji ;μji; f i ; Ci and eijk denote force-stress, couple-stress,
body force and body couple stress per unit volume, and the
permutation tensor, respectively. In classical continuum mechanics,
μji ¼ 0 and Ci ¼ 0. Therefore, angular equilibrium Eq. (2) shows that
the force-stress tensor is symmetric.

The surface stresses on the two surfaces Sþ and S� of the plate
are denoted by τþ

iα and τ�
iα , respectively, and satisfying the balance

relations given by Gurtin and Murdoch [5,7]

τþ
βi;β�sþ

3i ¼ 0 at x3 ¼
h
2

ð3:aÞ

τ�
βi;βþs�

3i ¼ 0 at x3 ¼ �h
2

ð3:bÞ

where sþ
3i ¼ s3iðxβ ; h=2Þ and s�

3i ¼ s3iðxβ ; �h=2Þ are the bulk
stresses at x3 ¼ 7h=2, respectively. In Eqs. (1)–(3.a) and (3.b)
and throughout the paper, Latin subscripts range from the values
1 to 3, while Greek subscripts range over 1 and 2.

Since the thickness of the plate is very small relative to the
other two dimensions, the governing equations can be integrated
through the thickness to obtain the global plate equations.
The resultant forces Nij, the resultant moments Mij, and the
resultant couples Yij are defined as

Nij ¼
Z h

2

� h
2

sij dx3 ð4:aÞ

Mij ¼
Z h

2

� h
2

sij x3dx3 ð4:bÞ

Yij ¼
Z h

2

� h
2

μijdx3 ð4:cÞ

Multiplying Eq. (1) by dx3, and integrating through the thick-
ness, we have

Nαi;α þsþ
3i �s�

3i þPi ¼ 0 ð5Þ

where Pi ¼
R h=2
�h=2 f idx3.

Furthermore, multiplying Eq. (1) by x3dx3 and integrating
through the thickness for i ¼ 1 and 2 and notice that the integra-
tion for the case of index i¼ 3 has no physical application, thus, it
is omitted in the rest of derivation.

Mαβ;α þh
2
ðsþ

3βþs�
3β Þ�Nβ3þrβ ¼ 0 ð6Þ

where rβ ¼
R h=2
�h=2 f βx3dx3.

Here in this paper, only, the contribution of the transverse
applied load on the plate deflection is considered. Consequently,
f β ¼ 0 and, only, P3 ¼

R h=2
�h=2 f 3 dx3a0 and rβ ¼ 0.

Substituting the surface balance relations (3.a) and (3.b) into
(4.a)–(4.c)–(6), the governing equations of the plate including the

surface effects are defined as

Nαi;αþτþ
αi;αþ τ�

αi;αþPi ¼ 0 ð7:aÞ

Mαβ;αþ
h
2
ðτþ

αβ;α� τ�
αβ;αÞ�Nβ3 ¼ 0 ð7:bÞ

Consequently, the generalized resultant forces and resultant
moments for plate incorporating surface energy effects are

Nn

αi ¼Nαiþτþ
αi þ τ�

αi ð8:aÞ

Mn

αβ ¼Mαβþ
h
2
ðτþ

αβ� τ�
αβÞ ð8:bÞ

The equilibrium Eq. (7) can be further written as

Nn

αi;αþPi ¼ 0 ð9:aÞ

Mn

αβ;α�Nβ3 ¼ 0 ð9:bÞ

Using Eq. (7.a) and by simple manipulations, Eq. (9.b) can be
reformulated as

Mn

αβ;αβþτþ
β3;βþτ�

β3;βþP3 ¼ 0 ð9:cÞ

Equations (9.a)–(9.c) are the general equilibrium equations of
the classical plate theory including surface effects.

Assuming zero in-plane displacements of the mid-plane of the
plate and also, assume the body couple stress per unit volume
Ci ¼ 0 in addition to μi3 ¼ μ3i ¼ 0, therefore, the couple-stress
equilibrium equation, Eq. (2), can be expressed as

μαi;α þeijksjk ¼ 0 ð10Þ

Integrate Eq. (10) through the thickness we obtain

Y11;1 þY21;2þN23 �N32 ¼ 0 ð11:aÞ

Y12;1 þY22;2 �N13þN31 ¼ 0 ð11:bÞ
Differentiate Eq. (11.a) w.r.t. x2, and Eq. (11.b) w.r.t. x1, and

subtract we obtain the following

∂2Y11

∂x1∂x2
þ∂2Y21

∂x22
�∂2Y12

∂x21
� ∂2Y22

∂x1∂x2
þ∂N23

∂x2
�∂N32

∂x2
þ∂N13

∂x1
�∂N31

∂x1
¼ 0:

ð12Þ
Differentiate Eq. (9.b) w.r.t. xβ and add to Eq. (7.a) with index

i¼ 3 we obtain

∂2Mn

11

∂x21
þ2

∂2Mn

12

∂x1∂x2
þ∂2Mn

22

∂x22
�∂N31

∂x1
�∂N32

∂x2
þ∂N13

∂x1
þ∂N23

∂x2
þ∂τþ

13
∂x1

þ∂τþ
23

∂x2
þ∂τ�

13
∂x1

þ∂τ�
23

∂x2
þP3 ¼ 0 ð13Þ

Subtract Eq. (12) from Eq. (13)

∂2Mn

11

∂x21
þ2

∂2Mn

12

∂x1∂x2
þ ∂2Mn

22

∂x22
� ∂2Y11

∂x1∂x2
�∂2Y21

∂x22
þ∂2Y12

∂x21
þ ∂2Y22

∂x1∂x2

þ∂τþ
13

∂x1
þ∂τþ

23
∂x2

þ∂τ�
13

∂x1
þ∂τ�

23
∂x2

þP3 ¼ 0 ð14Þ

Eq. (14) represents the equilibrium equation of the modified
Kirchhoff plate, including surface effects, based on the modified
couple-stress theory in terms of the resultant moments, resultant
couples and surface stresses. Further, we have to notice that Mn

ij
represent not only the resultant moments of the bulk material
stresses but taking into account the contribution of surface
stresses as given by Eq. (8.b). Therefore, it is obviously clear that
the surface stresses contribute to the equilibrium of the plate by an
additional normal force and part of the resultant moment
components.

Fig. 1. Geometry of the plate.
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3. Equilibrium equations in terms of deflection

The force-stress sij and the deviatoric part of the couple-stress
μij are defined in terms of the strain εij and the symmetric
curvature tensor χ ij, respectively, as

sij ¼ λεkkδij þ2μεij ð15:aÞ

μij ¼ 2μl2 χij ð15:bÞ

where λ and μ are Lame's coefficients and ℓ is the material length
scale parameter which is regarded as a material property measur-
ing the effect of couple stress (Mindlin [26]). This parameter can
be determined from torsion tests of slim cylinders (Chong et al.
[27]) or bending tests of thin beams (Lam et al. [28]).

The strain tensor εij and the curvature tensor χ ij are expressed
in terms of displacement vector ui and rotation vector θi as

εij ¼
1
2
ðui;jþuj;iÞ ð16:aÞ

χ ij ¼
1
2
ðθi;jþθj;iÞ ð16:bÞ

where the rotation vector can be expressed in terms of displace-
ment vector as

θi ¼
1
2
eijk uk;j ð16:cÞ

The constitutive relations of the surface layers Sþ and S� are
expressed by Gurtin and Murdoch [5,7] as

τ7
αβ ¼ τ7

0 δαβþðμ7
0 �τ7

0 Þðu7
α;βþu7

β;αÞþðλ7
0 þτ7

0 Þu7
γ;γδαβþτ7

0 u7
α;β

ð17:aÞ

τ7
α3 ¼ τ7

0 u7
3;α ð17:bÞ

where τ7
0 are the residual surface tensions under unconstrained

conditions, λ7
0 and μ7

0 are the surface Lame's constants on the
surface Sþ and S� , respectively. If the top and bottom layers have
same material properties, the stress strain relations reduce to

τ7
αβ ¼ τ0 δαβþðμ0�τ0 Þðu7

α;βþu7
β;αÞþðλ0þτ0 Þu7

γ;γδαβþτ0u7
α;β

ð18:aÞ

τ7
α3 ¼ τ0 u7

3;α ð18:bÞ

In Eqs. (18.a) and (18.b), the terms (τ0u7
α;β and τ0u7

3;α) are
introduced as a consequence of exploiting the Lagrangian surface
description and considering the pre-strain developed at the plate
surface (Ru [29], Shaat et al. [16]). In most previous works (Wang
et al. [30], Zang and Zhao [31], Mogilevskaya et al. [32]), theore-
tical analyses were based on the Eulerian surface elasticity, in
which the out-plane terms of surface stress were neglected and
the effect of residual stress in the bulk was not taken into account.
As an illustration, in this paper, we will consider the effects of
these factors on the size-dependent behavior of nano-plates,
which are not considered by some previous authors.

According to the basic hypothesis of Kirchhoff plate theory and
ignoring the in-plane displacements of the mid-plane of the plate,
the displacements field of the plate may be expressed as

u1ðx1; x2; x3Þ ¼ �x3
∂wðx1; x2Þ

dx1
; u2ðx1; x2; x3Þ

¼ �x3
∂wðx1; x2Þ

dx2
; u3ðx1; x2;0Þ ¼ wðx1; x2Þ ð19Þ

where w is the deflection of the mid-plane of the plate.
Under the assumption of small deformation and linear strain-

displacement relations, from Eq. (16.a) the strain components of

the Kirchhoff plate can be expressed as

εαβ ¼ �x3 w;αβ ð20Þ
From Eqs. (16.b) and (16.c), the components of the rotation

vector θi and the curvature tensor χ ij can also be expressed in
terms of the displacement field as

θ1 ¼ ∂w
∂x2

; θ2 ¼ � ∂w
∂x1

; θ3 ¼ 0 ð21Þ

χ11 ¼
∂2w

∂x1∂x2
; χ12 ¼ χ21 ¼

1
2

∂2w
∂x22

�∂2w
∂x21

 !
; χ22 ¼ � ∂2w

∂x1∂x2
ð22Þ

χ13 ¼ χ31 ¼ χ23 ¼ χ32 ¼ χ33 ¼ 0 ð23Þ
We can easily noticed, from Eq. (15.b), that

μ13 ¼ μ23 ¼ μ31 ¼ μ32 ¼ μ33 ¼ 0 ð24Þ
By using Eqs. (4.b), (4.c), (15.a), (15.b), (16.a)–(16.c), (18.a), and (18.b),

the resultant moments Mn

αβ and resultant couples Yαβ are given as

Mn

11 ¼ �Db� s ∂2w
∂x21

þν
∂2w
∂x22

 !
ð25:aÞ

Mn

22 ¼ �Db� s ν
∂2w
∂x21

þ∂2w
∂x22

 !
ð25:bÞ

Mn

12 ¼ �ð1�νÞ
2

Db� s ∂2w
∂x1∂x2

ð25:cÞ

Y11 ¼ 2μhl2
∂2w

∂x1∂x2
ð25:dÞ

Y22 ¼ �2μhl2
∂2w

∂x1∂x2
ð25:eÞ

Y12 ¼ μhl2 �∂2w
∂x21

þ∂2w
∂x22

 !
ð25:fÞ

where Db� s ¼ D ð1þη=hÞ is the bending rigidity of the classical
Kirchhoff nanoplate including only surface effects,
D¼ Eh3=12ð1�ν2Þ is the bending rigidity of the classical Kirchhoff
plate. The scale factor parameter η is the ratio between the surface
properties and the bulk properties to determine the significance of
surface energy effects and is explicitly given by (Lu et al. [23])

η¼ 1
E
½6ð1�ν2Þðμ0þλ0 þτ0Þ�2νð1þνÞτ0� ð25:gÞ

Substitute the terms given by Eqs. (25.a)–(25.g) into equili-
brium Eq. (14) we obtain the equilibrium equation of the plate in
terms of the deflection as

2τ0
∂2w
∂x21

þ∂2w
∂x22

 !
�Db� s� c ∇4 w þP3 ¼ 0 ð26Þ

where the bending rigidity of the Kirchhoff nanoplate, including
surface energy and microstructure effects, is expressed as

Db� s� c ¼ ðDb� sþμhl2Þ ð27:aÞ
Neglecting surface energy effects, the bending rigidity includ-

ing only microstructure effects will be

Db� c ¼ ðD þμhl2Þ ð27:bÞ
It is obviously noticed that the surface energy and the micro-

structure effects have a significant contribution on the bending
rigidity of the plate. Furthermore, the surface effects add a new
normal force on the equilibrium system of the plate as a conse-
quence of considering the effects of the residual stress (τ0), as
shown in Eq. (26).
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4. Analytical solution for simply supported rectangular plate

To illustrate the modified Kirchhoff plate model, given in the
preceding sections, the problem of a simply supported nanoplate
is solved. We assume the nanoplate is a square of side length a and
nano-thickness h (see Fig. 1).

Let us assume that the plate is subjected to double Fourier
sinusoidal loading

P3ðx; yÞ ¼ q0 sin
πx
a

sin
πy
a

ð28Þ

where q0 is the intensity of the mechanical load. Since the plate is
simply supported, the boundary conditions along edges can be
written as

w ¼ 0; �Mn

11�Y12 ¼ 0 along the edges x1 ¼ 0 and x1 ¼ a; ð29:aÞ

w ¼ 0; �Mn

22 þ Y12 ¼ 0 along the edges x2 ¼ 0 and x2 ¼ a

ð29:bÞ
Substitute Eqs. (25.a, 25.b and 25.f) into the boundary condi-

tions given by Eqs. (29.a) and (29.b), they can be expressed in
terms of deflection as

w¼ 0; A
∂2w
∂x21

þB
∂2w
∂x22

¼ 0; along the edges x1 ¼ 0 and x1 ¼ a;

ð30:aÞ

w¼ 0; B
∂2w
∂x21

þA
∂2w
∂x22

¼ 0; along the edges x2 ¼ 0 and x2 ¼ a: ð30:bÞ

where A¼ ðDb� sþμhl2Þ and B¼ ðνDb� s�μhl2Þ.
Suppose the deflection is distributed over the mid-plane

according to a function satisfying the boundary conditions given
by Eqs. (30.a) and (30.b) such as the following function

wðx; yÞ ¼ C sin
πx
a

sin
πy
a

ð31Þ

It is obviously clear that this proposed solution satisfying all
boundary conditions given by Eqs. (30.a) and (30.b). Thus, the
amplitude C of the deflection function can be easily obtained by
substituting the deflection function into the equilibrium Eq. (26) as

C ¼ q0a
2

4π2½τ0þDb� s� c ðπ=aÞ2 �
ð32Þ

5. Numerical results

Here in this section, some numerical examples are presented
for simply supported square nano-plate to illustrate the surface
energy and the microstructure effects on the plate rigidity and
deflection. Consider the square plate solved in Section 4. The plate
is expected to be made of aluminum and the material parameters
of the plate are, as given by Gao and Mahmoud [33]

E ¼ 90� 109N=m2; ν ¼ 0:23; λ0 ¼ 3:4939N=m;

μ0 ¼ �5:4251N=m; τ0 ¼ 0:5689N=m; l¼ 6:58� 10�6m:

For the given material constants and thickness h ¼ 0:2 nm; the
size-dependent scale parameter η has the value (�8:96� 10�11).
Consequently, the classical plate rigidity including only surface
effects Db−s) will be changed to (0:552 D), which obviously means
that the rigidity of the plate is reduced as a result of the surface
energy effects. We have to mention that surface energy effects
may increase or reduce the plate rigidity depending on the elastic
constants of the surface material.

As the result of applying the modified couple-stress theory and
taking into account the surface energy effects, the overall bending
rigidity of the plate Db� s� c will be changed to 1010D. Obviously,
for ultra-thin plates the microstructure effect is highly dominant
than that caused by the surface energy effect. Using Eq. (32),
the amplitude C of the simply supported plate deflection, sub-
jected to harmonic load given by Eq. (28), is
C=ðq0 a4=4π4DÞ ¼ 9:9985� 10�11.

To represent the surface energy and the microstructure effects
on the plate rigidity, the non-dimensional difference between the
plate bending stiffnesses predicted by the modified Kirchhoff
model and the classical Kirchhoff model (ðDb� s� c�DÞ=D) is shown
in Fig. 2. The figure shows that the contribution of the surface
energy is to reduce the plate stiffness, while the contribution of
the microstructure deformation is to provide an additional sig-
nificant stiffness for ultra-thin plates. Moreover, the figure shows
the effect of the residual stress τ0 on the plate rigidity.

Fig. 3 shows the non-dimensional difference between the plate
deflections predicted by the modified Kirchhoff model and the
classical Kirchhoff model. The effect of microstructure couple
stress is set on at micro scale thicknesses, while surface energy
effects are launched at nano-scale thicknesses. The plate provides
a negative non-dimensional difference in deflection when con-
sidering the effect of couple stress for microscale thicknesses

Fig. 2. Non-dimensional difference between the plate bending stiffnesses predicted by the modified Kirchhoff and the classical Kirchhoff (a) couple stress effect (Db�c�D)/D)
and (b) surface energy effect ((Db�s�D)/D).
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where surface energy effects cannot be observed. Moreover, it is
noticed that the plate provides a reversed behavior when con-
sidering or neglecting the residual stress effects. Based on Fig. 2
the plate must provide a positive non-dimensional deflection.
However, the added normal force in Eq. (26), due to the residual
stress τ0, has a great contribution on the plate deflection higher
than that of the plate rigidity itself.

From Figs. 2 and 3, surface energy and microstructure effects
may increase or reduce the plate rigidity depending on the elastic
constants of the surface and the material scale parameter (l).

The effect of surface energy and microstructure on the plate
behavior is well shown in Fig. 4. The figure shows the non-
dimensional deflection distribution ½ω¼ ð100Eh3=q0a4Þ �
ωðx; a=2Þ� along the plate length for different l=h ratios for plate
thickness of h¼ 1� 10�9m. The figure shows that by increasing
the ratio l=h, the couple stress contribution increases and conse-
quently the plate deflection decreases. Moreover, considering the
effect of surface residual stress τ0 stiffens the plate and reduces its
deflection, as a consequence.

6. Conclusion

In the present work a new model for bending of Kirchhoff
nanoplates incorporating surface energy effects is developed in the

framework of the modified couple stress theory. Unlike the
classical plate theories, the proposed model captures the size
effects of ultra-thin plates by introducing a new length scale
parameter to account for the microstructural effect of the bulk
material. In addition, an intrinsic length scale parameter is
introduced as a result of taking surface energy effect into account.
Direct Newtonian approach has been used to derive the equili-
brium equations of the modified Kirchhoff plate. The modified
couple-stress theory is used to express for the microstructure
effect and surface energy effect is taking into account by using the
surface elasticity theory developed by Gurtin and Murdoch.

One example of bending analysis for a simply supported ultra-
thin plate is solved to illustrate the model. The effect of size length
scale parameters (η and l) is significant as the thickness becomes
very small. The length scale introduced by the modified couple-
stress theory leads to a dominant increasing of the bending
rigidity of the plate. The intrinsic length scale parameter resulting
from taking surface energy into account has a less significant effect
comparing to that given by the microstructure. Meanwhile, surface
energy effects may increase or reduce bending rigidity of the plate
depending on the surface material constants. Moreover, for ultra-
thin plates the surface tension has a greater effect than the plate
rigidity on the plate behavior.
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