
2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

1

REACT to Cyber Attacks on Power Grids
Saleh Soltan, Member, IEEE, Mihalis Yannakakis, and Gil Zussman, Senior Member, IEEE

Abstract—Motivated by the recent cyber attack on the Ukrainian power grid, we study cyber attacks on power grids that affect both the
physical infrastructure and the data at the control center–which therefore are cyber-physical in nature. In particular, we assume that an
adversary attacks an area by: (i) remotely disconnecting some lines within the attacked area, and (ii) modifying the information
received from the attacked area to mask the line failures and hide the attacked area from the control center. For the latter, we consider
two types of attacks: (i) data distortion: which distorts the data by adding powerful noise to the actual data, and (ii) data replay: which
replays a locally consistent old data instead of the actual data. We use the DC power flow model and prove that the problem of finding
the set of line failures given the phase angles of the nodes outside of the attacked area is strongly NP-hard, even when the attacked
area is known. However, we introduce the polynomial time REcurrent Attack Containment and deTection (REACT) Algorithm to
approximately detect the attacked area and line failures after a cyber-physical attack. We numerically show that it performs well in
detecting the attacked area, and detecting single, double, and triple line failures in small and large attacked areas.

Index Terms—Power Grids; Cyber-Physical attacks; False Data Injection; Line Failures Detection; Graph Theory; Algorithms

F

1 INTRODUCTION

DUE to their complexity and magnitude, modern infras-
tructure networks need to be monitored and controlled

using computer systems. These computer systems are vul-
nerable to cyber attacks [1]. One of the most important
infrastructure networks that is vulnerable to cyber attacks
is the power grid which is monitored and controlled by
the Supervisory Control And Data Acquisition (SCADA)
system.

In a recent cyber attack on the Ukrainian power grid [2],
the attackers stole credentials for accessing the SCADA
system and used them to cause a large scale blackout
affecting hundred thousands of people. In particular, they
simultaneously operated several of the circuit breakers in
the grid and jammed the phone lines to keep the system
operators unaware [2].

Motivated by the Ukraine event, in this paper, we deploy
the DC power flow model and study a model of a cyber-
physical attack on the power grid that affects both the
physical infrastructure and the data at the control center.
We assume that an adversary attacks an area by: (i) discon-
necting some lines within the attacked area (by remotely
activating the circuit breakers), and (ii) modifying the infor-
mation (phase angles of the nodes and status of the lines)
received from the attacked area to mask the line failures
and hide the attacked area from the control center. For the
latter, we consider two types of attacks: (i) data distortion:
which distorts the data by adding powerful noise to the data
received from the attacked area, and (ii) data replay: which
replays a locally consistent old data instead of the actual
data. We assume that the system reaches a steady-state after
the attack. Fig. 1 shows an example of such an attack.

We prove that the problem of finding the set of line
failures given the phase angles of the nodes outside of the

S. Soltan is with the Elec. Eng. Dept. at Princeton University, Prince-
ton, NJ (e-mail: ssoltan@princeton.edu). This work was done while Saleh
Soltan was with Columbia University. G. Zussman is with the Elec. Eng.
Dept. at Columbia University, New York, NY (e-mail: gil@ee.columbia.edu)
and Mihalis Yannakakis is with the Comp. Sci. Dept. (email: mi-
halis@cs.columbia.edu) at Columbia University, New York, NY.

𝐻

IEEE 118-Bus

Fig. 1: The attack model. An adversary attacks an area H
which is unknown to the control center (represented by red
nodes) by disconnecting some lines within the attacked area
(shown by red dashed lines) and modifying the information
received from the attacked area to mask the line failures and
hide the attacked area from the control center.

attacked area is strongly NP-hard, even when the attacked area
is known. Hence, one cannot expect to develop a polynomial
time algorithm that can exactly detect the attacked area
and recover the information for all possible attack scenar-
ios. However, we introduce the polynomial time REcurrent
Attack Containment and deTection (REACT) Algorithm and
numerically show that it performs very well in reasonable
scenarios.

In particular, we first introduce the ATtacked Area
Containment (ATAC) Module for approximately detecting
the attacked area using graph theory and the algebraic
properties of the DC power flow equations. We show that
the ATAC Module can always provide an area containing
the attacked area after a data distortion or a data replay
attack. We further provide tools to improve the accuracy
of the approximated attacked areas obtained by the ATAC
Module.

Then, we introduce the randomized LIne Failures De-

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

tection (LIFD) Module to detect the line failures and recover
the phase angles inside the detected attacked area. The LIFD
Module builds upon the methods first introduced in [3], to
detect line failures using Linear Programming (LP) in more
general cases. In particular, we prove that in some cases
that the methods in [3] fail to detect line failures, the LIFD
Module can successfully detect line failures in expected
polynomial running time.

Finally, the REACT Algorithm combines the ATAC and
LIFD Modules to provide a comprehensive algorithm for
attacked area detection and information recovery following
a cyber-physical attack. We evaluate the performance of the
REACT Algorithm by considering two attacked areas, one
with 15 nodes and the other one with 31 nodes within the
IEEE 300-bus system [4]. We show that when the attacked
area is small, the REACT Algorithm performs equally well
after the data distortion and the data replay attacks. In
particular, it can exactly detect the attacked area in all the
cases, and accurately detect single, double, and triple line
failures within the attacked area in more than 80% of the
cases.

When the attacked area is large, however, the REACT
Algorithm’s performance is different after the data distor-
tion and the data replay attacks. It still performs very well
in detecting the attacked area after a data distortion attack
and accurately detects line failures after single, double, and
triple line failures in more than 60% of the cases. However,
it may face difficulties providing an accurate approximation
of the attacked area after a replay attack. Despite these
difficulties in approximating the attacked area, it accurately
detects single and double line failures in around 98% and
60% of the cases, respectively.

The main contributions of this paper are: (i) analyzing
the computational complexity of the attacked area detection
and information recovery problem after a cyber-physical
attack on the grid, (ii) introducing a module to detect the
attacked area after such an attack, and (iii) introducing a ran-
domized weight linear program for detecting line failures in
the large attacked areas in expected polynomial time.

2 RELATED WORK

Attacks on general networks was thoroughly studied in
the past (e.g., [5]–[9] and references therein). In particular,
[10], [11] studied a problem similar to the one studied
in this paper (failure detection from partial observations)
in the context of communication networks. However, due
to fundamental differences between power flows and data
flows, these works are not extendable to power systems.

Power systems’ vulnerability to failures and uncertain-
ties was also widely studied in the past few years [12]–[20].
In particular false data injection attacks on power grids and
anomaly detection were studied using the DC power flows
in [21]–[27]. These studies focused on the observability of
the failures and attacks in the grid. In the related problem
of Bad Data Detection (BDD) in the SCADA system [28], the
objective is to detect the bad data injected by the attacker
when the attack has no physical components. Hence, the
existing methods for BDD cannot be used in the scenarios
studied in this paper for detecting line failures.

The problem of line failures detection using phase angle
measurements during the normal operation of the grid were
studied in [29]–[31]. The problem of line failures detection in
an area based on the information from external nodes was
first studied in [32] using sparse recovery methods. In [3],
attack scenarios similar to the one in this paper was studied.
However, [3] only focused on the attacks that blocked the
information from the attacked area, and therefore, the at-
tacked area was detectable simply by checking the missing
data. Moreover, the line failures method provided in [3]
was limited to certain topologies for the attacked area. In
recent works [33], [34], the methods in [3] were extended
to function under the AC power flow model. Similar to [3],
problems in [33], [34] are focused on the attacks that block
the information from the attacked area. Hence, in these
works, detecting the attacked area is straight forward. More-
over, the techniques in [3], [33], [34] fail to detect all the
line failures as the attacked area becomes larger, but the
LIFD Module presented in this paper, uses randomization
to detect all the line failures in large attacked areas as well.

Finally, in a recent series of works, the vulnerability
of power grids to undetectable cyber-physical attacks is
studied [35]–[37] using the DC power flows. These studies
consider different scenarios in terms of available informa-
tion and are mainly focused on designing attacks that affect
the entire grid and therefore may be impossible to detect.

3 MODEL AND DEFINITIONS

3.1 DC Power Flow Model

In this work, we focus on the power systems’ transmission
network. Hence, the term “power grid” mainly denotes
the transmission network. We use the linearized DC power
flow model, which is widely used as an approximation for
the non-linear AC power flow model in studying vulner-
abilities of power grids [3], [18], [35]–[37]. The notation
is summarized in Table 1. In particular, we represent the
power grid by a connected undirected graph G = (V,E)
where V = {1, 2, . . . , n} and E = {e1, . . . , em} are the
set of nodes and edges corresponding to the buses and
transmission lines, respectively. Each edge ei is a set of two
nodes ei = {u, v}. pv is the active power supply (pv > 0)
or demand (pv < 0) at node v ∈ V (for a neutral node
pv = 0). We assume pure reactive lines, implying that each
edge {u, v} ∈ E is characterized by its reactance ruv = rvu.

Given the power supply/demand vector ~p ∈ R|V |×1 and
the reactance values, a power flow is a solution P ∈ R|V |×|V |

and ~θ ∈ R|V |×1 of:∑
v∈N(u)

puv = pu, ∀ u ∈ V (1)

θu − θv − ruvpuv = 0, ∀ {u, v} ∈ E (2)

where N(u) is the set of neighbors of node u, puv is the
power flow from node u to node v, and θu is the phase
angle of node u. Eq. (1) guarantees (classical) flow conser-
vation and (2) captures the dependency of the flow on the
reactance values and phase angles. Additionally, (2) implies
that puv = −pvu. When the total supply equals the total
demand in each connected component of G, (1)-(2) has a
unique solution P and ~θ up to a shift (since shifting all

2

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

TABLE 1: Summary of notation.
Notation Description
G = (V,E) The graph representing the power grid

A Admittance matrix of G
~θ Vector of the phase angles of the nodes in G
~p Vector of power supply/demand values
H A subgraph of G representing the attacked area
F Set of failed edges due to an attack
D Incidence matrix of G
N(i) Set of neighbors of node i
N(S) Set of neighbors of subgraph S
int(S) Interior of the subgraph S
∂(S) Boundary of the subgraph S
cl(S) Closure of the subgraph S
©′ The actual value of © after an attack
©? The observed value of © after an attack
© The complement of ©

θus by equal amounts does not violate (2)). Eqs.(1)-(2) are
equivalent to the following matrix equation:

A~θ = ~p (3)

where A ∈ R|V |×|V | is the admittance matrix of G,1 defined
as:

auv =

0 if u 6= v and {u, v} /∈ E,
−1/ruv if u 6= v and {u, v} ∈ E,
−
∑
w∈N(u) auw if u = v.

Note that in power grids nodes can be connected by mul-
tiple edges, and therefore, if there are k multiple lines
between nodes u and v, auv = −

∑k
i=1 1/ruvi . Once ~θ is

computed, the flows, puv , can be obtained from (2).
Notation. Throughout this paper we use bold uppercase
characters to denote matrices (e.g., A), italic uppercase char-
acters to denote sets (e.g., V), and italic lowercase characters
and overline arrow to denote column vectors (e.g., ~θ). For a
matrix Q, Qi denotes its ith row, and qij denotes its (i, j)th

entry. For a column vector ~y, ~y T denote its transpose, yi
denotes its ith entry, ‖~y‖1 :=

∑n
i=1 |yi| is its l1-norm, and

supp(~y) := {i|yi 6= 0} is its support.

3.2 Attack Model
We study cyber attacks on the power grid that affect both
grid’s physical infrastructure and the data at its control
center–which therefore are cyber-physical in nature. We as-
sume that an adversary attacks an area by: (i) disconnecting
some lines within the attacked area (by remotely activating
the circuit breakers), and (ii) modifying the information
(phase angle of the nodes and status of the lines) received
from the attacked area to mask the line failures and hide
the attacked area from the control center. We assume that
the system reaches a steady-state after the attack. Hence,
supply/demand values do not change after the attack and
disconnecting lines within the attacked area does not make
G disconnected. However, the developed methods in this
paper can also be used when these conditions do not hold,
if the control center is aware of the changes in the sup-
ply/demand values after the attack and in the case of the
grid separation. We also assume that system operator has

1. The matrix A can also be considered as the weighted Laplacian matrix
of the graph.

a complete knowledge of the state of the system before the
attack, namely A, ~θ, and ~p .

An attacked area is an induced subgraph of G like
H = (VH , EH). Fig. 1 depicts an example of such an
attack on the attacked area represented by H . Due to the
attack, some lines within the attacked area (i.e., in EH) are
disconnected (we refer to these edges as failed lines), and
the reported phase angles and the status of the lines from
within the attacked area are modified. We denote the set
of failed lines in area H by F ⊆ EH . Upon failure, the
failed lines are removed from the graph and the flows are
redistributed according to (1)-(2). The objective is to detect
the attacked area H and the failed lines F after the attack
using the observed modified phase angles. Notice that the
attacked area represents the induced subgraph by a set of
nodes for which the measurements are manipulated by the
attacker. Hence, the scenario that the attacker manipulates
the measurements in larger area than the area for which he
can disconnect the lines, is a special case of the scenarios
studied here.

The vectors of phase angle of the nodes in H and in
its complement H̄ = G\H are denoted by ~θH and ~θH̄ ,
respectively. We use the prime symbol (′) to denote the
actual values after an attack. For instance, G′, A′, and ~θ′ are
used to represent the graph, the admittance matrix of the
graph, and the actual phase angles after the attack. Based
on our assumptions ~p = A~θ = A′~θ′ = ~p ′.

We also use ~θ? to denote the observed phase angles after
the attack. According to the attack model ~θ?H is modified and
is not necessarily equal to ~θ′H . We assume that the attacker
performs any of the following two types of data attacks:

1) Data distortion: We assume ~θ?H = ~θ′H + ~z for a
random vector ~z with an arbitrary distribution with
no positive probability mass in any proper linear
subspace (e.g., multivariate Gaussian distribution).

2) Data replay: We assume ~θ?H = ~θ′′H such that ~θ′′

satisfies A~θ′′ = ~p ′′ for an arbitrary power sup-
ply/demand vector ~p ′′ such that ~p ′′H = ~pH . We
assume that ~p ′′

H̄
is selected generally enough and is

only known to the attacker. ~p ′′ can be considered as
the vector of supply/demand values from previous
hours or days.

Notice that adversarial modification of the reported phase
angles in H is not in the scope of this paper and is an
interesting problem on its own. For example, see the recent
work by Bienstock and Escobar [38].

Notation. Without loss of generality we assume that the
indices are such that VH = {1, 2, . . . , |VH |} and EH =
{e1, e2, . . . , e|EH |}. If X,Y are two subgraphs of G, AX|Y
and AVX |VY

both denote the submatrix of the admittance
matrix of G with rows from VX and columns from VY . For
instance, A can be written in any of the following forms,

A =

[
AH|H AH|H̄
AH̄|H AH̄|H̄

]
,A =

[
AG|H AG|H̄

]
,A =

[
AH|G
AH̄|G

]
.

3.3 Graph Theoretical Terms

In this paper, we use some graph theoretical terms most of
which are borrowed from [39].

3

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

Subgraphs: Let X be a subset of the nodes of a graph G.
G[X] denotes the subgraph of G induced by X . We denote
the complement of a set X by X̄ = V \X .

The neighbors, interior, boundary, and closure of a sub-
graph S are defined and denoted by N(S) := {i ∈
V \VS |∃j ∈ VS : i ∈ N(j)}, int(S) := {i ∈ VS |N(i) ⊆ VS},
∂(S) := {i ∈ VS |N(i) ∩ VS̄ 6= ∅}, and cl(S) := VS ∪N(S),
respectively.
Incidence Matrix: Assign arbitrary directions to the edges
of G. The (node-edge) incidence matrix of G is denoted by
D ∈ {−1, 0, 1}|V |×|E| and is defined as follows,

dij =

0 if ej is not incident to node i,
1 if ej is coming out of node i,
−1 if ej is going into node i.

When we use the incidence matrix, we assume an arbitrary
orientation for the edges unless we mention an specific
orientation. DH ∈ {−1, 0, 1}|VH |×|EH | is the submatrix of
D with rows from VH and columns from EH .

4 HARDNESS

Using the notation provided in the previous section, the
problem considered in this paper can be stated as follows:
Given A, ~θ, and ~θ?, detect the attacked area H and the set of
line failures F . In this section, we study the computational
complexity of this and related problems. To study the com-
putational complexity of this problem, we consider a more
general case of ~θ?H without any assumptions on the type of
the data attack.

First, we prove that the problem of finding the set of line
failures (F) solely based on the given the phase angles of
the nodes before (~θ) and after the attack (~θ′) is NP-hard. We
prove this by reduction from the 3-partition problem.

Definition 1. Given a set S = {s1, s2, . . . , s3k} of 3k ele-
ments and a bound B, such that

∑3k
i=1 si = kB and

for 1 ≤ i ≤ 3k, B/4 < si < B/2, the 3-partition
problem is the problem of whether S can be partitioned
into k disjoint sets S1, . . . , Sk such that for 1 ≤ i ≤ k,∑
sj∈Si

sj = B (note that each Si must therefore contain
exactly 3 elements from S).

Lemma 1 (Garey and Johnson [40]). The 3-partition problem
is strongly NP-complete.

Lemma 2. Given A, ~θ, and ~θ′, it is strongly NP-hard to
determine if there exists a set of line failures F such that
A′~θ′ = A~θ.

Proof: We reduce the 3-partition problem to this prob-
lem. Assume S is a given set as described in Def. 1, we
form a bipartite graph G = (V,E) such that V = X ∪ Y ,
E = {{x, y}|x ∈ X, y ∈ Y }, X = {1, . . . , k}, and
Y = {k+1, . . . , 4k}. For all edges in G, we set the reactance
values equal to 1. For each i ∈ X , we set pi = B and for
each j ∈ Y we set pj = −sj−k. Define the vector of phase
angles ~θ as follows:

θi =

{
0 i ≤ k
−si−k/k i > k.

If A is the admittance matrix of G, it is easy to check that
A~θ = ~p. Now define ~θ′ as follows:

θ′i =

{
0 i ≤ k
−si−k i > k.

We prove that there exist a set of line failures F such that
A′~θ′ = ~p if, and only if, there exists a solution to the 3-
partition problem.

First, lets assume that there exist a solution to
the 3-partition problem such as S1, . . . , Sk. Set ES =
{{i, j}|sj−k ∈ Si}. We show that F = E\ES implies
A′~θ′ = ~p. Notice that F = E\ES means that G′ = (V,ES).
Given the pi and the reactance values, it is easy to check that
the defined ~θ′ satisfies the DC power flow equations (1)-(2)
in G′. Hence, A′~θ′ = ~p.

Now, lets assume there exist a set of line failures F such
that A′~θ′ = ~p. Set ES = E\F and G′ = (V,ES). Given
the phase angles ~θ′, it is easy to see that for any {i, j} ∈
ES , pij = sj−k. This implies that for j ∈ Y , at most one
edge in ES is incident to j. On the other hand, using (1),
for any i ∈ X ,

∑
j∈N(i)′ sj−k = B in which by N(i)′ we

mean the set of neighbors of node i in G′. Given that each
node j ∈ Y is incident to at most one edge in ES , defining
Si = {sj−k|j ∈ N(i)′} for 1 ≤ i ≤ k gives a good solution
to the 3-partition problem.

Hence, determining if there exist a set of line failures F
is at least as hard as determining if the 3-partition problem
has a solution, and therefore, it is an NP-hard problem in
the strong sense.

Corollary 1. Given A, ~θ, and ~θ′, it is strongly NP-hard to
find the set of line failures F , even if such a set exists.

In Corollary 1, we proved that given the phase angle of the
nodes before and after the attack, it is NP-hard to detect the
set of line failures F . In the following lemma, we show that
even if the attack area H is known (since ~θ′H is not given)
the problem remains NP-hard.

Lemma 3. Given A, ~θ,H, and ~θ′
H̄

, it is strongly NP-hard to
determine if there exist a set of line failures F in H and
a vector ~θ′H , such that A′~θ′ = A~θ.

Proof: See Section 10.

Corollary 2. Given A, ~θ,H, and ~θ′
H̄

, it is strongly NP-hard
to find the set of line failures F in H , even if such a set
exists.

Finally, we prove that when the phase angles are mod-
ified (~θ?) and therefore H is not known in advance, it is
NP-hard to detect H and F . We assume that the attacked
area cannot contain more than half of the nodes, otherwise
this problem might have many solutions.

Lemma 4. Given A, ~θ, and ~θ?, it is strongly NP-hard to deter-
mine if there exists a subgraph H0 with |VH0

| ≤ |V |/2,
a set of line failures F in H0, and a vector ~θ′H0

such that

A~θ = A′
[
~θ′H0

~θ?H̄0

]
.

Proof: See Section 10.

Corollary 3. Given A, ~θ, and ~θ?, it is strongly NP-hard to
find a subgraph H , a set of line failures F in H , and a

4

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

vector ~θ′H such that A~θ = A′
[
~θ′H
~θ?H̄

]
, even if such H,F

exist.

Corollary 3 indicates that it is NP-hard to detect the line fail-
ures after an attack as described in Section 3 in general cases.
However, in the next sections, we provide a polynomial-
time algorithm to detect the attacked area H and the set
of line failures F , and show based on simulations that it
performs well in reasonable scenarios.

5 ATTACKED AREA APPROXIMATION

In this section, we provide methods to approximate the
attacked area after a cyber-physical attack as described in
Subsection 3.2. By approximating the attacked area, we
mean finding a subset of the nodes VS ⊆ V such that
VH ⊆ VS (i.e., VS contains the attacked area). In the case of
the perfect approximation, VS = VH . Once a set like VS is
found, we will detect the line failures is subgraph S = G[VS]
in the next section.

In subsections 5.1 and 5.2, we first provide methods to
contain the attacked area after the data distortion and replay
attacks, respectively. We then combine these methods in the
ATtacked Area Containment (ATAC) Module for containing
the attacked area after both types of data attacks. Finally,
given an area containing the attacked area, in subsection 5.4,
we provide methods to improve the approximation of the
attacked area.

5.1 Data Distortion

We first consider data distortion attacks. In particular, recall
that we assume that ~θ?H = ~θ′H+~z for a random vector ~z with
an arbitrary distribution with no positive probability mass
in any proper linear subspace. Since ~θ?H is the vector of the
modified phase angles and there are also some line failures
in H , it can be seen that A~θ? 6= ~p. In Lemmas 5 and 6, we
provide middle steps to prove that int(H̄)=V \supp(A~θ?−~p)
in Corollary 4. This demonstrates that nodes in int(H̄) can
be detected after a data distortion attack. For example, in
Fig. 2, the green nodes that represent int(H̄) can be detected
by computing V \supp(A~θ?−~p).

Lemma 5. For any i ∈ int(H̄), Ai
~θ? = pi.

Proof: Since i ∈ int(H̄), therefore aij = 0 for all j ∈
VH . Hence, Ai

~θ? = Ai|H̄
~θ?
H̄

. On the other hand, since the
attack is inside H , we know Ai|H̄ = A′i|H̄ , and also ~θ?

H̄
=

~θ′
H̄

. Hence, Ai
~θ? = Ai|H̄

~θ?
H̄

= A′i|H̄~θ
′
H̄

= A′i~θ
′ = pi.

Lemma 6. For any i∈V \int(H̄), Ai
~θ? 6=pi almost surely.2

Proof: For any i ∈ V \int(H̄), there exists a node j ∈
VH such that aij 6= 0. Now since the set of solutions ~x to
Ai~x = pi is a measure zero set in Rn and θ?j is a random
modification of θ′j , Ai

~θ? 6= pi almost surely.
Lemmas 5 and 6 indicate that given A, ~θ, and ~θ? one can
find int(H̄) by computing V \supp(A~θ? − ~p).

Corollary 4. int(H̄)=V \supp(A~θ?−~p), almost surely.

2. In probability theory, one says that an event happens almost surely,
if it happens with probability one.

𝐻

IEEE 118-Bus

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

𝐶7

Fig. 2: H is an induced subgraph of G that represents
the attacked area. Green, yellow, orange, and red nodes
represent nodes in int(H̄), ∂(H̄), ∂(H), and int(H), re-
spectively. C1, C2, . . . , C7 are the connected components of
G\(∂(H̄) ∪ ∂(H)) that are used in Subsection 5.2 to detect
the attacked area after a data replay attack.

Define S0 := G[supp(A~θ? − ~p)]. We know from Corol-
lary 4 that int(H̄) = VS̄0

and from Lemma 6 that VH ⊂ VS0
.

Therefore, S0 clearly contains H . The following lemma
demonstrates that int(S0) is a better approximation for VH .
For example, in Fig. 2, S0 is represented by non-green nodes
and int(S0) contains H plus nodes 95, 72, and 74. We use
this lemma in Subsection 5.4 to improve the approximation
of the attacked area.

Lemma 7. VH ⊆ int(S0), almost surely.

Proof: Assume not. Then there exists a node i ∈ VH
such that N(i) ∩ VS̄0

6= ∅. Assume j ∈ N(i) ∩ VS̄0
6= ∅, then

with a similar argument as in the proof of Lemma 6, one can
show that Aj

~θ? 6= pj almost surely, which contradicts with
j /∈ VS0 . Hence, N(i) ∩ VS̄0

= ∅ and VH ⊆ int(S0).

5.2 Data Replay

In this subsection, we consider data replay attacks. Recall
that we assume ~θ?H = ~θ′′H such that ~θ′′ satisfies A~θ′′ = ~p ′′.
The power supply/demand vector ~p ′′ is arbitrarily selected
such that ~p ′′H = ~pH , and ~p ′′

H̄
is selected generally enough.

The data replay attacks are harder to detect since the
data seems to be correct locally. Again, one can easily see
that A~θ? 6= ~p, but here unlike the data distortion case, not
all the nodes in H can be detected by checking Ai

~θ? 6= pi.
The following lemmas and corollaries show why attacked
area containment is more difficult after a data replay attack.
In particular, Corollary 5 demonstrates that in the case of a
data replay attack, supp(A~θ? − ~p) only reveals the nodes in
the boundaries of the attacked area and its complement–
i.e., ∂(H) and ∂(H̄). For example, in Fig. 2, yellow and
orange nodes represent the boundary nodes in H̄ and H ,
respectively.

Lemma 8. For any i ∈ int(H) ∪ int(H̄), Ai
~θ? = pi.

5

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

Proof: Similar to the proof of Lemma 5, it is easy to
show that for any i ∈ int(H̄), Ai

~θ? = pi. The only new
part is to show the same for nodes in int(H). So assume
i ∈ int(H), following the definition of the interior, it can
be verified that Ai

~θ? = Ai|H~θ
?
H . On the other hand, since

~θ?H = ~θ′′H and ~p ′′H = ~pH , we can verify that Ai|H~θ
?
H =

Ai|H~θ
′′
H = p′′i = pi. Hence, for all i ∈ int(H) also Ai

~θ? = pi.

Lemma 9. For any i ∈ ∂(H) ∪ ∂(H̄), Ai
~θ? 6= pi, almost

surely.

Proof: The proof of this lemma is similar to the proof
of Lemma 6. For any i ∈ ∂(H̄), there exists a node j ∈
VH such that aij 6= 0. Now since the set of solutions ~x to
Ai~x = pi is a measure zero set in Rn and θ?j = θ′′j for
a generally enough selected vector p′′

H̄
, Ai

~θ? 6= pi almost
surely. A similar argument holds for i ∈ ∂(H).

Corollary 5. supp(A~θ? − ~p) = ∂(H) ∪ ∂(H̄), almost surely.

From comparing Corollaries 4 and 5, one can see that in the
replay attack case, S0 = G[supp(A~θ? − ~p)] does not contain
the attacked area H anymore. For example, in Fig. 2, S0

contains only the yellow and orange nodes which does not
contain the attacked area. In the following lemmas, we show
how one can still contain the attacked area in this case.

Lemma 10. If C1, C2, . . . , Ck are the connected compo-
nents of G\S0, then these connected components can
be divided into two disjoint sets {i1, i2, . . . , is} and
{j1, j2, . . . , jt} such thatG[int(H)] = Ci1∪Ci2∪· · ·∪Cis
and G[int(H̄)] = Cj1 ∪ Cj2 ∪ · · · ∪ Cjt .

Proof: It is a direct result of Corollary 5.
Following Lemma 10, it can be seen that in Fig. 2,
G[int(H)] = C1 ∪ C2 and G[int(H̄)] = C3 ∪ · · · ∪ C7.

Lemma 11. For two connected components Ci and Cj of
G\S0, if N(Ci) ∩ N(Cj) 6= ∅, then either Ci ∪ Cj ⊆
int(H) or Ci ∪ Cj ⊆ int(H̄).

Proof: From Lemma 10, for any i, either Ci ⊆
G[int(H̄)] or Ci ⊆ G[int(H)]. If Ci ⊆ G[int(H̄)] then
N(Ci) ⊆ ∂(H̄), and if Ci ⊆ G[int(H)] then N(Ci) ⊆ ∂(H).
Hence, since ∂(H̄) ∩ ∂(H) = ∅, if N(Ci) ∩N(Cj) 6= ∅, then
either Ci ∪ Cj ⊆ int(H) or Ci ∪ Cj ⊆ int(H̄).
Following Lemma 11, one can see that connected compo-
nents C1, C2, . . . , Ck can be combined into disjoint sub-
graphs G1, G2, . . . , Gt such that for any two of these sub-
graphs such as Gi and Gj , N(Gi) ∩ N(Gj) = ∅. Moreover
for any i, either Gi ⊆ G[int(H)] or Gi ⊆ G[int(H̄)].

For example, in Fig. 2, the connected components can be
combined as G1 := C1 ∪ C2, G2 := C4 ∪ C5, G3 := C3, and
G4 := C6 ∪ C7. It is easy to see that for any two of these
subgraphs N(Gi)∩N(Gj) = ∅. In the following lemma, we
use this fact to contain the attacked area.

Lemma 12. There exists 1 ≤ i ≤ t, such that H ⊂ G\Gi.
Moreover, H ⊆ G[int(G\Gi)].

Proof: The first part of the proof is the direct result
of Lemmas 10 and 11. To prove the second part, notice that
for any i, S0 ⊂ G\Gi. Therefore, for any i, ∂(H̄) ⊂ G\Gi.
Hence, if H ⊂ G\Gi, since ∂(H̄) ⊂ G\Gi, one can verify
that H ⊆ G[int(G\Gi)].

𝑆0

𝐺2 𝐺1

𝐻1

𝐻2𝐺

Fig. 3: An ambiguous scenario. Both a data replay attack
on the attacked area H1 or a data distortion attack on the
attacked area H2 result in the same S0 = G[supp(A~θ? − ~p)].

Module 1: ATtacked Area Containment (ATAC)

Input: G, A, ~θ, and ~θ?

1: Compute ~p = A~θ
2: Compute S0 = G[supp(A~θ? − ~p)]
3: Find the connected components C1, C2, . . . , Ck of G\S0

4: Using Lemma 11, combine the connected components with
common neighbors to obtain G1, . . . , Gt (sorted based on
their size from largest to smallest)

5: Return S0, S1 := G\G1, S2 := G\G2, . . . , St := G\Gt

Lemma 12 demonstrates that at least one of G\Gi con-
tains the attacked area. Hence, one can use this fact to
contain the attacked area after a data replay attack. For
example, in Fig. 2, G\G2, G\G3, and G\G4, all contain
H . Hence, any of them can be used to contain the attacked
area. This clearly shows the difficulty in accurate detection
of the attacked area after a replay attack compared to after a
distortion attack. Since the system operator does not know
the type of the attack in advance, in the next subsection, we
combine the results of this subsection and the previous one
to introduce a method for detecting the attacked area after
both the data distortion and replay attacks.

5.3 The ATAC Module

Using the results in the previous subsections, here we in-
troduce the ATtacked Area Containment (ATAC) Module
for containing the attacked area after both types of data
attacks. The main challenge is to distinguish between the
two data attacks. As shown in Fig. 3, there are scenarios for
which the data attack type cannot be recognized by simply
looking at S0. Hence, the ATAC Module does not return a
single subgraph containing the attacked area but a series of
possible subgraphs. In Sections 6 and 7, we show that by
defining the confidence of the solution, an algorithm can go
over all of these subgraphs until it detects the attacked area
and the set of line failures with high confidence.

The steps of the ATAC Module are summarized in
Module 1. As can be seen, S0 is the first possible subgraph
returned by the ATAC module, which is for the case when
there is a data distortion attack. Then based on Lemma 12,
S1 := G\G1, S2 := G\G2, . . . , St := G\Gt are other
possible areas containing the attacked area, if there is a
replay attack. Notice that since t < |V |, therefore the ATAC
module is a polynomial time algorithm.

6

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

5.4 Improving Attacked Area Approximation
Assume that from the subgraphs returned by the ATAC
Module, S∗ is one of them that contains the attacked area
H . Following Lemma 7 and Lemma 12, Sa := G[int(S∗)] is
a better approximation for the attacked area H . In order to
find a more accurate approximation for H , we provide the
following lemma which is similar to [3, Lemma 1].
Lemma 13. For a subgraph S, if VH ⊆ VS , then:

AS̄|G(~θ − ~θ′) = 0. (4)

Proof: Since all the line failures are inside H , and also
VH ⊆ VS , therefore it can be seen that AS̄|G = A′S̄|G. On the

other hand, AS̄|G
~θ = ~pS̄ and A′S̄|G~θ

′ = ~pS̄ . Hence, AS̄|G
~θ −

A′S̄|G~θ
′ = 0 and therefore AS̄|G(~θ − ~θ′) = 0.

Lemma 13 can be effectively used to estimate the phase
angle of the nodes in S and to detect the attacked area H
using these estimated values. The idea is to break (4) into
parts that are known and unknown as follows:

AS̄|S̄(~θS̄ − ~θ′S̄) + AS̄|S(~θS − ~θ′S).

Notice that since VH ⊆ VS , therefore ~θ′
S̄

= ~θ?
S̄

. Hence, the
only unknown variable in the equation above is ~θ′S . Assume
~y ∈ R|VS | is a solution to the following equation:

AS̄|S~y = AS̄|S̄(~θS̄ − ~θ?S̄) + AS̄|S
~θS . (5)

In the following lemma, we demonstrate that supp(~y − ~θ?S)
can be used to estimate H .
Lemma 14. If ~y is a solution to (5), VH ⊆ supp(~y − ~θ?S),

almost surely.

Proof: Since ~θ?H is selected generally enough (for both
the data distortion and replay attacks) for any i ∈ H , the
only way yi = θ?i satisfying (5) is that AS̄|i = 0. In that case
any yi ∈ R satisfies (5). So the set of solutions ~y such that
yi = θ?i is a measure zero set and yi 6= θ?i almost surely.
Hence, VH ⊆ supp(~y − ~θ?S), almost surely.
Following Lemma 14, if ~y is a solution to (5) for S = Sa,
then Sb := G[supp(~y − ~θ?Sa

)] is a better approximation for
the attacked area H . Fig. 4 shows the difference between S∗,
Sa, and Sb in approximating the attacked area for the case of
a distortion attack and if S∗ = S0 (recall that S0 is the first
set returned by the ATAC Module). It can be seen that Sb is
not exactly equal to H even in the case of the data distortion
attack.

The following lemma demonstrates when Sb is exactly
equal to H .
Lemma 15. For a subgraph S such that VH ⊆ VS , if VS\VH ⊆

∂(S) and there is a matching between the nodes in S̄ and
∂(S) that covers all the nodes in ∂(S), then G[supp(~y −
~θ?S)] = H , in which ~y is the solution to (5).

Proof: If there is a matching between the nodes inside
and outside of H that covers all the nodes in ∂(S), one
can prove that AS̄|∂(S) has linearly independent columns,
almost surely (see [3, Corollary 2]). Moreover, it is easy to
see that AS̄|int(S) = 0. Hence, if ~y is a solution to (5), y∂(H) =
~θ′∂(H). Now since VS\VH ⊆ ∂(S), for any i in VS\VH , yi =

θ′i = θ?i . On the other hand, since ~θ?H are selected generally
enough, one can verify that for any i ∈ H , yi 6= ~θ?i , almost
surely. Therefore, G[supp(~y − ~θ?S)] = H , almost surely.

𝐻

IEEE 118-Bus

Fig. 4: H is an induced subgraph of G that represents the
attacked area. If the data attack type is data distortion and
S∗ = S0, then the red, orange, yellow, and green nodes
represent the nodes in Sb, Sa\Sb, S∗\Sa, G\S∗ as defined
in Subsection 5.4, respectively.

6 LINE FAILURES DETECTION

In the previous section, we provided methods to find a good
approximation S for the attacked area H . In this section,
we provide a method to detect line failures inside S. For
this reason, we use and build on the idea introduced in [3].
It was proved in [3] that if the attacked area H is known,
then there always exists feasible vectors ~x ∈ R|EH | and ~y ∈
R|VH | satisfying the conditions of the following optimization
problem such that supp(~x) = F and ~y = ~θ′H :

min
~x,~y
‖~x‖1 s.t.

AH|H(~θH − ~y) + AH|H̄(~θH̄ − ~θ′H̄) = DH~x (6)

AH̄|H(~θH − ~y) + AH̄|H̄(~θH̄ − ~θ′H̄) = 0.

Notice that the optimization problem (6) can be solved
efficiently using Linear Program (LP). It is proved in [3] that
under some conditions on H and the set of line failures F ,
the solution to (6) is unique, therefore the relaxation is exact
and the set of line failures can be detected by solving (6). In
particular, it is proved in [3] that if H is acyclic and there is
a matching between the nodes in H and H̄ that covers H ,
the solution to (6) is unique for any set of line failures.

For example, in Fig. 4, it is easy to see that H
is acyclic. Moreover, it can be verified that M =
{{96, 97}, {80, 99}, {98, 100}, {78, 79}, {76, 118}, {77, 82},
{75, 74}, {70, 69}, {24, 72}, {81, 68}} is a matching between
the nodes in H and H̄ that covers H . Hence, if H is known–
i.e., we could detect the attacked area accurately–solving (6)
recovers the phase angles and detect the line failures.

Since the conditions on H and F as described in [3]
may not always hold for the exactness of the line failures
detection using (6), it cannot be used in general cases to
detect line failures. To address this issue, here, we introduce
a randomized version of (6).

Assume that W ∈ R|ES |×|ES | is a diagonal matrix.
We show that the solution to the following optimization

7

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

Module 2: LIne Failures Detection (LIFD)

Input: G, A, ~θ, S, T , and ~θ?

1: Compute ~p = A~θ
2: Compute a solution ~x, ~y to (7) for W = I
3: Set F † = supp(~x) and ~θ †

S = ~y

4: while c(F †, ~θ †
S) < 99.99% & counter< T do

5: counter++
6: Draw random numbers w1, w2, . . . , w|VS | from an

exponential distribution with rate λ = 1
7: Compute a solution ~x, ~y to (7) for

W = diag(w1, w2, . . . , w|VS |)

8: Set F † = supp(~x) and ~θ †
S = ~y

9: if c(F †, ~θ †
S) > 99.99% then

10: return F †, ~θ †
S

11: else
12: return F †, ~θ †

S with maximum c(F †, ~θ †
S) in all iterations

problem can detect line failures in S accurately for a “good”
matrix W:

min
~x,~y
‖W~x‖1 s.t.

AS|S(~θS − ~y) + AS|S̄(~θS̄ − ~θ′S̄) = DS~x (7)

AS̄|S(~θS − ~y) + AS̄|S̄(~θS̄ − ~θ′S̄) = 0.

The idea behind optimizing the weighted norm-1 of vector
~x is to be able to detect the line failures when the solution to
(6) does not detect the correct set of line failures but a small
disturbance results in the correct detection.

Before we demonstrate the effectiveness of the optimiza-
tion (7) in detecting line failures, we provide a metric for
measuring the confidence of a solution. In a subgraph S, as-
sume F † = supp(~x) and ~θ †S = ~y are the set of detected line
failures and the recovered phase angles using the solution
to (7). Also assume that A† is the admittance matrix after re-
moving the lines in F † and define ~p † := AG|S̄

~θ′
S̄

+ A†G|S
~θ †S .

Notice that ~x and ~y satisfying (7) does not necessarily imply
~p † = ~p . Hence, one can use this difference to compute the
confidence of a solution as follows.
Definition 2. The confidence of the solution is denoted by

c(F †, ~θ †S) and defined as:

c(F †, ~θ †S) := (1− ‖~p † − ~p‖2/‖~p‖2)+ × 100, (8)

in which (z)+ := max(0, z).

The confidence of the solution, simply shows how much
the solution is consistent with the part of the observed data
that we detected as correct. In other words, it checks if the
solution fulfills the conditions provided in Lemma 4.

The confidence of the solution along with a random
selection of the weight matrix W in (7) can be used to
detect line failures that cannot be detected using (6). The
idea is to repeatedly solve (7) using a random weight matrix
until the confidence of the solution for F † = supp(~x) and
~θ †S = ~y is 100% or reach a maximum number of iterations
(T). Here, we consider the case when the diagonal entries
of matrix W are randomly selected from an exponential
distribution. This approach is summarized in Module 2 as
the LIne Failures Detection (LIFD) Module.

Through the rest of this section, we demonstrate why the
LIFD Module is effective and when the number of iterations

(T) is enough to be polynomial in terms of the input size to
make sure that it finds the line failures accurately.
Lemma 16. Assume w1, w2, . . . , wm are i.i.d. exponential

random variables, then for 1 ≤ k ≤ m− 1:

Pr(
k∑
i=1

wi <
m∑

i=k+1

wi) =

∑m−1
j=k

(m−1
j

)
2m−1

.

Proof: See Section 10.
Corollary 6. Assume w1, w2, . . . , wm are i.i.d. exponential

random variables, then for k ≤ m/2 + Θ(
√
m):

Pr(
k∑
i=1

wi <
m∑

i=k+1

wi) = Ω(
1√
m

).

Proof: See Section 10.
Lemma 17. If S = H , H is a cycle with m nodes and edges,

and there is a matching between the nodes inside and
outside ofH that covers all the inside nodes, then any set
of line failures of size k can be found by the LIFD Module
for expectedly T = 2m−1/(

∑m−1
j=k

(m−1
j

)
). Moreover, if

k ≤ m/2 + Θ(
√
m), then LIFD Module can detect line

failures for T = O(
√
m).

Proof: First, one can see that if S = H , and there is
a matching between the nodes inside and outside of H that
covers all the inside nodes, then AS̄|S = AH̄|H has uniquely
independent columns, almost surely [3, Corollary 2]. Hence,
the solution ~y to (7) is unique and ~y = ~θ′H . Therefore, we can
assume that ~θ′ is given. Without loss of generality assume
that F = {e1, . . . , ek}. We prove that the solution ~x to (7)
is unique and supp(~x) = F , if

∑k
i=1 wi <

∑m
i=k+1 wi, in

which W = diag(w1, . . . , wm).
Without loss of generality, assume that DH is the incidence
matrix ofH when lines ofH are oriented clockwise. SinceH
is connected, it is known that rank(DH) = m− 1 [41, Theo-
rem 2.2]. Therefore, dim(Null(DH)) = 1. Suppose ~z ∈ R|EH |

is the all one vector. It can be verified that DH~z = 0. Since
dim(Null(DH)) = 1, ~z forms a basis for the null space of D.
Now suppose ~x† is a solution to AH|G(~θ − ~θ′) = DH~x such
that supp(~x†) = F (from [3, Lemma 2], we know that such a
solution exists). Since ~z forms a basis for Null(D), all other
solutions of AH|G(~θ−~θ′) = DH~x can be written in the form
of ~x† + c~z. We want to prove that if

∑k
i=1 wi <

∑m
i=k+1 wi,

then for any c ∈ R\{0}, ‖W~x†‖1 < ‖W(~x† + c~z)‖1. Since
supp(~x†) = F , x†1, x

†
2, . . . , x

†
k are the only nonzero elements

of ~x†. Moreover Wd :=
∑m
i=k+1 wi −

∑k
i=1 wi > 0. Hence,

‖W(~x† + c~z)‖1 =
k∑
i=1

wi|x†i − c|+ |c|
m∑

i=k+1

wi

=
k∑
i=1

wi(|x†i − c|+ |c|) + |c|Wd

≥
k∑
i=1

wi|x†i |+ |c|Wd >
k∑
i=1

wi|x†i | = ‖W~x†‖1.

Therefore, the solution ~x to (7) is unique and supp(~x) =
F , if

∑k
i=1 wi <

∑m
i=k+1 wi. One the other hand, from

Lemma 16, Pr(
∑k
i=1 wi <

∑m
i=k+1 wi) =

∑m−1
j=k (m−1

j)
2m−1 .

8

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

Algorithm 1: REcurrent Attack Containment and
deTection (REACT)

Input: G, A, ~θ, ~θ?, and T
1: Compute ~p = A~θ
2: Obtain S0, S1, . . . , St using the ATAC Module
3: for i = 1 to t do
4: Compute Sa = G[int(Si)]
5: if (5) is feasible for S = Sa then
6: Find a solution ~y to (5) for S = Sa

7: else
8: continue
9: Compute Sb = G[supp(~y − ~θ?S)]

10: Set S = Sb as an approximation for the attacked area H
11: Compute a solution ~x, ~y to (7) for W = I
12: Set F † = supp(~x) and ~θ †

S = ~y

13: if c(F †, ~θ †
S) < 99.99% then

14: Obtain F †, ~θ †
S from module LIFD for inputs S and T

15: if c(F †, ~θ †
S) > 99.99% then

16: return H = supp(~θ †
S − ~θ

?
S) as the detected attacked

area and F †, ~θ †
H as the detected line failures and

recovered phase angle of the nodes inside H
17: return S and F †, ~θ †

S with maximum c(F †, ~θ †
S) in all

iterations

Hence, expectedly 2m−1∑m−1
j=k (m−1

j)
number of iterations (T)

should be enough to satisfy this inequality. Corollary 6
also gives the expected number of iterations needed when
k ≤ m/2 + Θ(

√
m).

Lemma 17 clearly demonstrates the effectiveness of using a
weight matrix W in (7). It was previously proved in [3] that
if H is a cycle and there is a matching between the nodes
inside and outside ofH that covers all the inside nodes, then
for any set of line failures of size less than half of the lines inH ,
supp(~x) of the solution ~x to (6) exactly reveals the set of line
failures. However, for the line failures with the size more
than half of the lines in H , this approach comes short. In
these cases, Lemma 17 indicates that solving (7) for random
matrices W for polynomial number of times can lead to the
correct detection.

Although providing a similar analytical bound for T
to ensure detecting line failures in general cases is very
difficult, in Section 8, we numerically show that small values
of T is enough to detect line failures in more complex
attacked areas as well.

7 REACT ALGORITHM

In this section, we present the REcurrent Attack Contain-
ment and deTection (REACT) Algorithm based on the re-
sults presented in the previous sections. The steps of the
REACT Algorithm are summarized in Algorithm 1.

The REACT Algorithm first obtains a set of possible
subgraphs S0, S1, . . . , St that may contain the attacked area
H using the ATAC Module. Then, for each subgraph Si
using the results in Subsection 5.4, it improves the approx-
imation of the attacked area. In particular, it first computes
Sa = G[int(Si)] and then finds a solution to (5) for S = Sa.
If (5) is not feasible, then it means that Si does not contain
the attacked area H , and therefore, the algorithm goes to
the next iteration and tries the next possible subgraph. If (5)
has a feasible solution ~y, it obtains a better approximation

of the attacked area H by computing Sb = G[supp(~y − ~θ?S)]
(Lemma 14).

Then, it solves the optimization (7) for W = I, in which
I is the identity matrix. Notice that this is basically similar
to solving (6). Then it checks the confidence of the solution
c(F †, ~θ †S). If it is less than 99.99%, it calls the LIFD Module
to obtain another solution F †, ~θ †S . Finally, it checks whether
the confidence of the solution is c(F †, ~θ †S) > 99.99%. If so,
it approximates the attacked area H using this solution and
returns F †, ~θ †H .

If the REACT Algorithm cannot find a solution with
confidence greater than 99.99%, it returns a solution with
the highest confidence between all the solutions obtained in
all the iterations.

Notice that the REACT Algorithm is a polynomial time
algorithm. Therefore, it cannot return the correct solution
to an NP-hard problem in all cases. However, in the next
section we numerically demonstrate that it performs very
well in reasonable settings.

8 NUMERICAL RESULTS

In this section, we evaluate the performance of the REACT
Algorithm in detecting the attacked area and recovering
the information after a cyber-physical attack as described
in Section 3.2. We consider two attacked areas H1 and H2

within the IEEE 300-bus system [4] as depicted in Fig. 5. H1

has 15 nodes and 16 edges, and H2 which contains H1, has
31 nodes and 41 edges. It can be verified that none of these
two subgraphs are acyclic and there is no matching between
the nodes inside and outside of these two subgraphs that
covers their insides nodes. Hence, the methods provided in [3]
cannot recover the information inside these areas even when the
attacked areas are known in advance.

For the physical part of the attack, we consider all single
line failures, and 100 samples of all double and triple line
failures within H1 and H2. Figs. 7 and 8 illustrate the
REACT Algorithm’s performance after these attacks. In the
Algorithm, we set T = 20 so that the while loop in the LIFD
Module runs only for 20 iterations.

Fig. 7 shows the performance of the REACT Algorithm
in detecting the attacked area and recovering the informa-
tion after data distortion and data replay attacks on the
attacked area H1 accompanied by single, double, and triple
line failures. As can be seen in Fig. 7(a), the REACT Algo-
rithm can exactly detect the attacked area after all attack
scenarios under both the distortion attack and the replay
attack. Hence, the performance of the REACT Algorithm is
almost the same in detecting line failures and recovering the
phase angles after both data attack scenarios.

Fig. 7(b) shows the average number of False Negatives
(FN) and False Positives (FP) in detecting line failures. As
can be seen, the REACT Algorithm can detect line failures
with very low average number of FNs and FPs. Moreover,
as it is shown in Fig. 7(c), the REACT Algorithm exactly
detects single, double, and triple line failures in 94%, 87%,
and 82% of the cases, respectively.

Fig. 7(d) shows the average running time of the REACT
Algorithm in detecting all attacked scenarios in this case.
Our system has an Intel Core i7-2600 3.40GHz CPU and
16GB RAM. One can see that the running time of the

9

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

IEEE 300-Bus

Fig. 5: The two attacked areas in the IEEE 300-bus systems that are used in simulations. The red octagon nodes are the
nodes in H1 and H2, and the orange square nodes are the nodes that are only in H2.

(a) Data Distortion Attack (b) Data Replay Attack

Fig. 6: The difference in difficulty of detecting the attacked area after a data distortion attack and a data replay attack on
the attacked area H2 accompanied by a triple line failure within H2. The yellow filled nodes represent the nodes in the
detected attacked area by the REACT Algorithm, the nodes with a thick red border represent the nodes in H2 that are
actually attacked, and blue empty nodes represent the rest of the nodes.

REACT Algorithm is very low. The average confidence of
the solutions are also shown in Fig. 7(e). As can be seen,
despite few false negatives and positives in detecting line
failures, the solutions obtained by the REACT Algorithm
have very high confidence which means that the REACT
Algorithm barely missed finding the correct solution.

Finally, Fig. 7(f) shows the average percentage error in
the recovered phase angles. It can be seen that the phase
angles inside the attacked area can be recovered with less
than 3%, 5%, and 7% error after the single, double, and triple
line failures, respectively.

As we observed in Fig. 7, when the attacked area is rela-
tively small, the REACT Algorithm performs very similarly
after the two types of data attack. However, as it can be
clearly seen in Fig. 8, it is not the case as the attacked area
becomes larger. Before we analyze the results provided in

Fig. 8, in order to better show the difficulty of detecting
the attacked area after a data replay attack, we depicted in
Fig. 6 one of the analyzed attacked scenarios in Fig. 8. As
can be seen in Fig. 6(a), the REACT Algorithm can exactly
detect the attacked area after a data distortion attack on H2

which is accompanied by a triple line failure. However, it
may have difficulties detecting the attacked area after a data
replay attack on the same area with the same set of line
failures. Recall from Subsection 5.2 that the main reason for
this is the difficulty of distinguishing between the nodes in
int(H) and int(H̄).

Fig. 8(a) shows the extra nodes that are incorrectly de-
tected by the REACT Algorithm as part of the attacked area.
As can be seen, in the case of the data distortion attack,
the number of line failures do not significantly affect the
performance of the REACT Algorithm. However, in the case

10

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

1 2 3

0

1

Number of Line Failures

E
x
tr

a
 D

e
te

c
te

d
 N

o
d
e
s

Distortion

Replay

(a)

1 2 3
0.05

0.1

0.15

0.2

0.25

Number of Line Failures

N
u
m

b
e
r

o
f
F

a
ls

e
 D

e
te

c
ti
o
n
s

FN Dist.

FP Dist

FN Rep.

FP Rep.

(b)

1 2 3
0.8

0.85

0.9

0.95

1

Number of Line Failures

E
x
a
c
t
R

e
c
o
v
e
ry

 P
e
rc

e
n
t

Distortion

Replay

(c)

1 2 3
0

0.5

1

1.5

2

2.5

3

Number of Line Failures

R
u
n
n
in

g
 T

im
e
 (

s
e
c
.)

Distortion

Replay

(d)

1 2 3
99.92

99.94

99.96

99.98

100

Number of Line Failures

A
v
g
.
C

o
n
fi
d
e
n
c
e
 o

f
th

e
 S

o
lu

ti
o
n

Distortion

Replay

(e)

1 2 3
2

3

4

5

6

7

Number of Line Failures

A
v
g
.
P

e
rc

e
n
t
E

rr
.
P

h
a
s
e
 A

n
g
.

Distortion

Replay

(f)

Fig. 7: The REACT Algorithm’s performance in detecting
the attacked area and recovering the information after data
distortion and replay attacks on the attacked areaH1 accom-
panied by single, double, and triple line failures. (a) Average
number of extra nodes detected as attacked in detecting the
attacked area, (b) average number of false positives and
negatives in detecting line failures, (c) percentage of the
cases with exact line failures detection, (d) running time of
the algorithm, (e) average confidence of the solutions, and
(f) average error in recovered phase angles.

of the replay attack, as the number of line failures within the
attacked area increases, the REACT Algorithm provides less
accurate approximation of the attacked area.

Despite its difficulty in detecting the attacked area after
a data replay attack, Figs. 8(b) and 8(c) demonstrate that
the REACT Algorithm detects the line failures relatively
accurately. For example, the REACT Algorithm accurately
detects the single and double line failures in 95% and 65%
of the cases, respectively. This clearly demonstrates the
advantage of the optimization (7) that is used in the LIFD
module compared to (6) that suggested in [3]. Since (6) fails
to detect the line failures accurately as the attacked zone
contains more cycles and more internal nodes (i.e., nodes
that are not connected to any nodes outside of the attacked
zone), as it is the case here.

As can be seen in Fig. 8(d), the running time of the
REACT Algorithm increases as the size of the attacked
area increases. However, it still detects line failures much

1 2 3
0

20

40

60

80

100

120

Number of Line Failures

E
x
tr

a
 D

e
te

c
te

d
 N

o
d
e
s

Distortion

Replay

(a)

1 2 3
0

1

2

3

4

Number of Line Failures

N
u
m

b
e
r

o
f
F

a
ls

e
 D

e
te

c
ti
o
n
s

FN Dist.

FP Dist

FN Rep.

FP Rep.

(b)

1 2 3
0.2

0.4

0.6

0.8

1

Number of Line Failures

E
x
a
c
t
R

e
c
o
v
e
ry

 P
e
rc

e
n
t

Distortion

Replay

(c)

1 2 3
0

20

40

60

80

100

Number of Line Failures

R
u
n
n
in

g
 T

im
e
 (

s
e
c
.)

Distortion

Replay

(d)

1 2 3
97

97.5

98

98.5

99

99.5

100

Number of Line Failures

A
v
g
.
C

o
n
fi
d
e
n
c
e
 o

f
th

e
 S

o
lu

ti
o
n

Distortion

Replay

(e)

1 2 3
0

1

2

3

4

5

Number of Line Failures

A
v
g
.
P

e
rc

e
n
t
E

rr
.
P

h
a
s
e
 A

n
g
.

Distortion

Replay

(f)

Fig. 8: The REACT Algorithm’s performance in detecting
the attacked area and recovering the information after data
distortion and replay attacks on the attacked areaH2 accom-
panied by single, double, and triple line failures. (a) Average
number of extra nodes detected as attacked in detecting the
attacked area, (b) average number of false positives and
negatives in detecting line failures, (c) percentage of the
cases with exact line failures detection, (d) running time of
the algorithm, (e) average confidence of the solutions, and
(f) average error in recovered phase angles.

faster than existing brute force methods [29], [30], [32],
[42], [43] which their running time increases exponentially
as the number of line failures and the total number of
possibilities increase. Notice that [29], [30], [32], [42], [43]
do not deal with the case that the attack area is unknown.
The comparison is only between the running time of the
LIFD module and the brute force methods. The exponential
running times of the brute force algorithms become more
problematic in the data replay attack case. Since in this
case, as described in Section 5, the attacked zone cannot be
approximated independently of the line failures detection
module and this module should be called for different
possible attacked zones in order to detect the one that
contains the actual attacked zone. Hence, the exponential
running time of the brute force search algorithms make
them completely impractical for this case.

Similar to the previous attack scenario, one can see in
Fig. 8(e) that the confidence of the solutions obtained by

11

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

the REACT Algorithm are very high. It means that in these
attack scenarios, many good solutions exist near the optimal
solution. This demonstrates another difficulty of dealing
with recovery of information after a cyber-physical attack
on the power grid.

Finally, Fig. 8(f) indicates that the REACT Algorithm
performs very well in recovering the phase angles in this
case as well. As can be seen, for both the data distortion and
the data replay attacks accompanied by single, double, and
triple line failures, the REACT Algorithm recovers the phase
angles with less than 5% error.

Overall, the simulation results in this section demon-
strate that the REACT Algorithm performs very well in
detecting the attacked area and the line failures when the at-
tacked area is relatively small. As the attacked area becomes
larger, the Algorithm still performs very well in detecting
the attacked area after a distortion data attack. However, it
may face difficulties providing an accurate approximation
of the attacked area after a replay attack. Despite this, in
both data attack scenarios, it detects line failures relatively
well. One of the important observations in this section is
that the LIFD module outperforms the methods provided
in [3] for detecting line failures with an slight increase in
the running time, since it needs to find a solution to (7)
several times instead of once. The results in this section
clearly demonstrate that in the attacked areas H1 and H2

that do not have the conditions provided [3], the LIFD
Module can still detect the line failures relatively accurately
with less than 20 iterations. In most of theses cases, the LIFD
Module detects the line failures within much fewer number
of iterations.

9 CONCLUSION

In this paper, we considered a model for cyber-physical
attacks on power grids focusing on both data distortion and
data reply attacks. We proved that the problem of detecting
the line failures after such an attack is NP-hard in general
and even when the attacked area is known. However, using
the algebraic properties of the DC power flows, we devel-
oped the polynomial time REACT Algorithm for approx-
imating the attacked area and detecting the line failures
after a cyber-physical attack on the grid. We numerically
showed that the REACT Algorithm obtains accurate results
when there are few number of line failures and the attacked
area is small. We showed that as the attacked area becomes
larger and the number of line failures increases, the REACT
Algorithm faces some difficulties but still can approximate
the attacked area and detect line failures with few false
negatives and positives.

The goal of this paper was to provide a theoretical
foundation for the problem of attacked area and line failures
detection after a cyber-physical attack on the power grid.
Hence, in this work, we neglected the measurement noise
in our analysis and also considered the availability of PMUs
at all the nodes. Nevertheless, we demonstrated that this
problem is already very challenging without considering
these constraints. Extending the results and methods of this
paper to the cases where the measurements are noisy and
there are limited number of PMUs in the system is part of
our future work.

Although the DC power flows only provide an ap-
proximation for the more accurate AC power flows, since
the ATAC Module for detecting the attacked area mostly
depends on the flow conservation checks at each node, the
ATAC Module can be easily applied under the AC power
flows as well. Moreover, the weight randomization tech-
nique and the confidence metric used in the LIFD Module
can also be extended to the AC power flows using the
methods provided in a recent paper [34]. Extending the
results provided in this paper to the transient state of power
grids, however, is of particular interest to the power systems
community and is part of our future work.

As we proved in Section 6, when the attacked area is a
cycle, the weight randomization technique in the LIFD Mod-
ule can detect the line failures accurately in the expected
polynomial running time. Extending this analytical result to
the attacked areas with arbitrary topology is an interesting
and challenging future work.

Finally, we analytically and numerically showed that the
data replay attacks are harder to deal with than the data
distortion attacks. Moreover, It is possible for an adversary
to devise more sophisticated attacks to further obscure the
system’s state. We believe that by trading running time for
accuracy, we may be able to improve the accuracy of the
REACT Algorithm in detecting the attacked area and the
line failures after replay attacks. However, depending on
the situation, a faster but approximately accurate algorithm
may be more desirable than a more accurate but slower one.
Careful speculation of such trade-offs and exploring more
sophisticated attacks are part of our future work.

10 OMITTED PROOFS

Proof of Corollary 1: It is easy to see that if one can
find a set of line failures F with an algorithm, the output
of that algorithm can be used here to verify the correctness
and existence of such a set as well. Therefore, this problem
is at least as hard as the existence problem.

Proof of Lemma 3: The idea of the proof is very
similar to the proof of Lemma 2. Again we reduce the
3-partition problem with a given set S as described in
Def. 1 to this problem. Consider sets X1 = {1, . . . , k},
X2 = {k + 1, . . . , 2k}, Y2 = {2k + 1, . . . , 5k}, Y1 =
{5k+1, . . . , 8k}. We form a bipartite graph G = (V,E) such
that V = X1 ∪ X2 ∪ Y2 ∪ Y1 and E = {{i, k + i}|1 ≤ i ≤
k}∪{{x, y}|x ∈ X2, y ∈ Y2}∪{{j, j+3k}|2k+1 ≤ j ≤ 5k}.
Notice that the defined bipartite graph here is very similar to
the one defined in the proof of Lemma 2 except that here for
each node inX2 and Y2 there exist a dummy node inX1 and
Y1, accordingly, that is directly connected to its counterpart.
We set H = G[X2 ∪ Y2]. It is easy to see that H has exactly
the same topology as the graph G in the proof of Lemma 2.
Again for all edges in G, we set the reactance values equal
to 1. For each i ∈ X2 ∪Y2 we set pi = 0, for each i ∈ X1, we
set pi = B, and for each j ∈ Y1 we set pj = −sj−5k. Define
the vector of phase angles ~θ as follows:

θi =

B 1 ≤ i ≤ k
0 k + 1 ≤ i ≤ 2k

−si−2k/k 2k + 1 ≤ i ≤ 5k

−si−5k/k − si−5k 5k + 1 ≤ i ≤ 8k

12

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

If A is the admittance matrix of G, it is easy to check that
A~θ = ~p. Now define ~θ′ as follows:

θ′i =

B 1 ≤ i ≤ k
0 k + 1 ≤ i ≤ 2k

−si−2k 2k + 1 ≤ i ≤ 5k

−2si−5k 5k + 1 ≤ i ≤ 8k

Now given ~θ′
H̄

, since each node in H is connected to an
exactly one distinct node in H̄ , there exist a matching
between the nodes in H and H̄ that covers nodes in H
and therefore from [3, Corollary 2], ~θ′H will be determined
uniquely. Hence, we can assume that ~θ′ is given for all the
nodes. Now we prove that there exist a set of line failures
F in H such that A′~θ′ = ~p if, and only if, there exist a
solution to the 3-partition problem. Given the way we build
the graph G and since the set of failures should be in H , the
rest of the proof is exactly similar to the proof of Lemma 2.

Proof of Lemma 4: Again we reduce the 3-partition
partition problem to this problem. The proof is similar to
the proof of Lemma 3. Given an instance of a 3-partition
problem, we build a graph G, subgraph H , and supply and
demand vector ~p exactly as in the proof of Lemma 3. Define
~θ?
H̄

= ~θ′
H̄

as defined in Lemma 3 and ~θ?H = ~z, in which
~z is a random vector with arbitrary distribution with no
positive probability mass in any proper linear subspace. For
any i ∈ X1, node i is only connected to node i + k. Since
θi = B and θk+i = zi for a random variable zi, θi−θk+i 6= B
almost surely. So in order for the flow equations to hold,
either both i, i+ k ∈ H0 or i+ k ∈ H0. The same argument
holds for any node j ∈ Y1 and its only neighbor j−3k. So in
order for the problem to have a solution, H0 should contain
both X2 and Y2. On the other hand, since |VH0 | ≤ |V |/2,
thereforeH0 = G[X2∪Y2] = H is the only possible attacked
area. Now since H0 = H , we can assume that the attacked
area is given and the rest of the proof is exactly similar to
the proof of Lemma 3.

Proof of Lemma 16: Define sk :=
∑k
i=1 wi. It is known

that

fsk(x) =
λe−λx(λx)k−1

(k − 1)!
.

Now since wis are i.i.d. random variables,
∑m
i=k+1 wi ∼

sm−k. Therefore, all we need to compute is Pr(sk < sm−k).

Pr(
k∑
i=1

wi <
m∑

i=k+1

wi) =

∫ ∞
0
Pr(sm−k − sk = a) da

=

∫ ∞
0

∫ ∞
0
Pr(sk = y)Pr(sm−k = y + a) dy da

=

∫ ∞
0

∫ ∞
0

λe−λy(λy)k−1

(k − 1)!

λe−λ(y+a)(λ(y + a))m−k−1

(m− k − 1)!
dy da

=

∫ ∞
0

λme−2λyyk−1

(k − 1)!(m− k − 1)!

(∫ ∞
0
e−λa(y + a)(m−k−1)da

)
dy.

(9)

On the other hand, by defining z := λ(y + a), we have:∫ ∞
0
e−λa(y + a)(m−k−1)da =

eλy

λm−k

∫ ∞
λy

e−zzm−k−1 dz.

Define T (n+ 1) :=
∫∞
λy e

−zzn dz. Using partial integration:

T (n+ 1) =
[
−e−zzn

]∞
λy

+

∫ ∞
λy

nzn−1e−z dz

= e−λy(λy)n + nT (n) = n!e−λy
n∑
i=0

(λy)i

i!
.

Using equation above in (9) results in:

Pr(
k∑
i=1

wi<
m∑

i=k+1

wi) =

=

∫ ∞
0

λne−2λyyk−1

(k − 1)!(m− k − 1)!

eλy

λm−k
T (m− k)

=
λk

(k − 1)!

∫ ∞
0

e−2λyyk−1
(m−k−1∑

i=0

(λy)i

i!

)
dy

=
λk

(k − 1)!

m−k−1∑
i=0

(∫ ∞
0

e−2λyyk−1 (λy)i

i!
dy
)
.

By defining x := 2λy and using Gamma function:

Pr(
k∑
i=1

wi<
m∑

i=k+1

wi) =

=
λk

(k − 1)!

m−k−1∑
i=0

(λ−k

i!2i+k

∫ ∞
0

e−xxk+i−1 dx
)

=
λk

(k − 1)!

m−k−1∑
i=0

(λ−k

i!2i+k
(k + i− 1)!

)
=
m−k−1∑
i=0

2−i−k
(
k + i− 1

i

)

= 2−(m−1)
m−k−1∑
i=0

2(m−1)−(i+k)

(
k + i− 1

k − 1

)
. (10)

Now notice that
∑m−k−1
i=0 2(m−1)−(i+k)

(k+i−1
i

)
is equal to

the total number of subsets of {1, . . . ,m − 1} with at least
k elements. The reason is that this summation is equal to
the total number of subsets that contain k + i and exactly
k− 1 elements from {1, 2, . . . , k + i− 1}. It is easy to verify
that by summing this up on i, we count all the subsets of
{1, . . . ,m− 1} with at least k elements. On the other hand,
we can count the total number of subsets of {1, . . . ,m− 1}
with at least k elements using the complement rule. The
total number of subsets with at least k elements is equal to
the total number of subsets minus number of subsets of size
0,1,. . . ,k − 1. Hence,

m−k−1∑
i=0

2(m−1)−(i+k)

(
k + i− 1

k − 1

)
= 2m−1 −

k−1∑
i=0

(
m− 1

j

)
.

Now using the equation above in (10) and using the equality
2m−1 =

∑m−1
i=0

(m−1
j

)
, proves the lemma.

Proof of Corollary 6: It is easy to see that if k ≤ (m −
1)/2, then

∑m−1
j=k

(m−1
j

)
≥ 2m−2. Therefore from Lemma 16,

Pr(
∑k
i=1 wi <

∑m
i=k+1 wi) ≥ 1/2 and there is nothing left

13

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

to prove. So assume k = m/2 + Θ(
√
m). It is proved in [44,

Lemma 10.8] that for any 1/2 < α < 1,

2nH(α)√
8nα(1− α)

≤
n∑

j=αn

(
n

k

)
,

in which H(α) = −α log2(α) − (1 − α) log2(1 − α) is the
entropy function. Now to prove Corollary 6, select n = m−
1, and α = 1/2 + ε for ε = Θ(1/

√
n). First notice that one

can show that the Taylor expansion of the entropy function
around 1/2 can be computed as:

H(α) = 1− 1

2 ln 2

∞∑
i=1

(1− 2α)2i

i(2i− 1)
.

Using approximation above, it is easy to see that H(α) ≈
1 − Θ(ε2) = 1 − Θ(1/n). Hence, 2nH(α) = 2n−Θ(1). On the
other hand,√

8nα(1− α) =
√

8n(1/2 + ε)(1/2− ε) =
√

8n(1/4− ε2)

=
√

2n−Θ(1) ≈ Θ(
√
n).

Hence, by replacing n by m − 1 and using Lemma 16, one
can verify:

Pr(
k∑
i=1

wi <
m∑

i=k+1

wi) = Ω(
1√
m

).

ACKNOWLEDGEMENT

This work was supported in part by DTRA grant HDTRA1-
13-1-0021, DARPA RADICS under contract #FA-8750-16-C-
0054, funding from the U.S. DOE OE as part of the DOE
Grid Modernization Initiative, and NSF under grant CCF-
1703925 and CCF-1423100.

REFERENCES

[1] “DARPA Rapid Attack Detection, Isolation and Characterization
Systems (RADICS),” http://goo.gl/5Einfw.

[2] “Analysis of the cyber attack on the Ukrainian power grid,”
Mar. 2016, http://www.nerc.com/pa/CI/ESISAC/Documents/
E-ISAC SANS Ukraine DUC 18Mar2016.pdf.

[3] S. Soltan, M. Yannakakis, and G. Zussman, “Power grid state
estimation following a joint cyber and physical attack,” to appear
in IEEE Trans. Control Netw. Syst. (available on IEEE Xplore Digital
Library), 2017.

[4] “IEEE benchmark systems,” available at http://www.ee.
washington.edu/research/pstca/.

[5] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance
of complex networks,” Nature, vol. 406, no. 6794, pp. 378–382, 2000.

[6] C. Phillips, “The network inhibition problem,” in Proc. ACM
STOC’93, May 1993.

[7] J. Kleinberg, M. Sandler, and A. Slivkins, “Network failure detec-
tion and graph connectivity,” in Proc. ACM-SIAM SODA’04, Jan.
2004.

[8] H. Zhang, Y. Shen, and M. T. Thai, “Robustness of power-law
networks: its assessment and optimization,” J. Comb. Opt., vol. 32,
no. 3, pp. 696–720, 2016.

[9] D. L. Alderson, G. G. Brown, and W. M. Carlyle, “Operational
models of infrastructure resilience,” Risk Analysis, vol. 35, no. 4,
pp. 562–586, 2015.

[10] S. Ciavarella, N. Bartolini, H. Khamfroush, and T. La Porta, “Pro-
gressive damage assessment and network recovery after massive
failures,” in Proc. IEEE INFOCOM’17, May 2017.

[11] D. Z. Tootaghaj, H. Khamfroush, N. Bartolini, S. Ciavarella,
S. Hayes, and T. La Porta, “Network recovery from massive
failures under uncertain knowledge of damages,” in Proc. IFIP
Networking’17, June 2017.

[12] T. Nesti, J. Nair, and B. Zwart, “Reliability of DC power grids
under uncertainty: a large deviations approach,” arXiv preprint
arXiv:1606.02986, 2016.

[13] A. Pinar, J. Meza, V. Donde, and B. Lesieutre, “Optimization
strategies for the vulnerability analysis of the electric power grid,”
SIAM J. Optimiz., vol. 20, no. 4, pp. 1786–1810, 2010.

[14] T. Kim, S. J. Wright, D. Bienstock, and S. Harnett, “Analyzing
vulnerability of power systems with continuous optimization
formulations,” IEEE Trans. Net. Sci. Eng., vol. 3, no. 3, pp. 132–146,
2016.

[15] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, and G. Zussman,
“Power grid vulnerability to geographically correlated failures -
analysis and control implications,” in Proc. IEEE INFOCOM’14,
Apr. 2014.

[16] L. Gan, A. Wierman, U. Topcu, N. Chen, and S. H. Low, “Real-time
deferrable load control: handling the uncertainties of renewable
generation,” in Proc. ACM e-Energy’13, May 2013.

[17] I. Dobson, B. Carreras, V. Lynch, and D. Newman, “Complex
systems analysis of series of blackouts: cascading failure, critical
points, and self-organization,” Chaos, vol. 17, no. 2, p. 026103, 2007.

[18] D. Bienstock, Electrical Transmission System Cascades and Vulnerabil-
ity: An Operations Research Viewpoint. SIAM, 2016.

[19] H. Kesavareddigari, A. Eryilmaz, and R. Srikant, “Controlled link
shedding for maximizing supportable demand of a disrupted
power network,” in Proc. IEEE CDC’16, 2016.

[20] H. Cetinay, S. Soltan, F. A. Kuipers, G. Zussman, and
P. Van Mieghem, “Comparing the effects of failures in power grids
under the ac and dc power flow models,” to appear in IEEE Trans.
Netw. Sci. Eng., 2017.

[21] J. Kim and L. Tong, “On topology attack of a smart grid: unde-
tectable attacks and countermeasures,” IEEE J. Sel. Areas Commun,
vol. 31, no. 7, pp. 1294–1305, 2013.

[22] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks
against state estimation in electric power grids,” ACM Trans. Inf.
Syst. Secur., vol. 14, no. 1, p. 13, 2011.

[23] G. Dán and H. Sandberg, “Stealth attacks and protection schemes
for state estimators in power systems,” in Proc. IEEE SmartGrid-
Comm’10, 2010.

[24] O. Vukovic, K. C. Sou, G. Dán, and H. Sandberg, “Network-layer
protection schemes against stealth attacks on state estimators in
power systems,” in Proc. IEEE SmartGridComm’11, 2011.

[25] S. Li, Y. Yılmaz, and X. Wang, “Quickest detection of false data
injection attack in wide-area smart grids,” IEEE Trans. Smart Grid,
vol. 6, no. 6, pp. 2725–2735, 2015.

[26] J. Kim, L. Tong, and R. J. Thomas, “Subspace methods for data
attack on state estimation: A data driven approach,” IEEE Trans.
Signal Process., vol. 63, no. 5, pp. 1102–1114, 2015.

[27] R. B. Bobba, K. M. Rogers, Q. Wang, H. Khurana, K. Nahrstedt,
and T. J. Overbye, “Detecting false data injection attacks on dc
state estimation,” in Proc. SCS CPSWEEK’10, vol. 2010, 2010.

[28] A. Teixeira, S. Amin, H. Sandberg, K. H. Johansson, and S. S.
Sastry, “Cyber security analysis of state estimators in electric
power systems,” in Proc. IEEE CDC’10, 2010.

[29] J. E. Tate and T. J. Overbye, “Line outage detection using phasor
angle measurements,” IEEE Trans. Power Syst., vol. 23, no. 4, pp.
1644–1652, 2008.

[30] ——, “Double line outage detection using phasor angle measure-
ments,” in Proc. IEEE PES’09, July 2009.

[31] M. Garcia, T. Catanach, S. Vander Wiel, R. Bent, and E. Lawrence,
“Line outage localization using phasor measurement data in tran-
sient state,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 3019–3027,
2016.

[32] H. Zhu and G. B. Giannakis, “Sparse overcomplete representations
for efficient identification of power line outages,” IEEE Trans.
Power Syst., vol. 27, no. 4, pp. 2215–2224, 2012.

[33] S. Soltan and G. Zussman, “Power grid state estimation after a
cyber-physical attack under the AC power flow model,” in Proc.
IEEE PES-GM’17, 2017.

[34] ——, “EXPOSE the line failures following a cyber-physical attack
on the power grid,” arXiv preprint arXiv:1709.07399, Sept. 2017.

[35] Z. Li, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah,
“Bilevel model for analyzing coordinated cyber-physical attacks

14

http://goo.gl/5Einfw
http://www.nerc.com/pa/CI/ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf
http://www.nerc.com/pa/CI/ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf
http://www.ee.washington.edu/research/pstca/
http://www.ee.washington.edu/research/pstca/

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2837894, IEEE
Transactions on Network Science and Engineering

on power systems,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2260–
2272, 2016.

[36] R. Deng, P. Zhuang, and H. Liang, “CCPA: Coordinated cyber-
physical attacks and countermeasures in smart grid,” IEEE Trans.
Smart Grid, vol. 8, no. 5, pp. 2420–2430, 2017.

[37] J. Zhang and L. Sankar, “Physical system consequences of unob-
servable state-and-topology cyber-physical attacks,” IEEE Trans.
Smart Grid, vol. 7, no. 4, 2016.

[38] D. Bienstock and M. Escobar, “Computing undetectable attacks on
power grids,” ACM SIGMETRICS Performance Evaluation Review,
vol. 45, no. 2, pp. 115–118, 2017.

[39] J. A. Bondy and U. Murty, “Graph theory, volume 244 of graduate
texts in mathematics,” 2008.

[40] M. R. Garey and D. S. Johnson, “Computers and intractability: a
guide to the theory of NP-completeness,” 1979.

[41] R. Bapat, Graphs and matrices. Springer, 2010.
[42] Y. Zhao, A. Goldsmith, and H. V. Poor, “On PMU location selection

for line outage detection in wide-area transmission networks,” in
Proc. IEEE PES’12, July 2012.

[43] H. Zhu and Y. Shi, “Phasor measurement unit placement for
identifying power line outages in wide-area transmission system
monitoring,” in HICSS’14, 2014, pp. 2483–2492.

[44] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes. Elsevier, 1977.

Saleh Soltan is a postdoctoral research asso-
ciate in the department of Electrical Engineering
at Princeton University. In 2017, he obtained
the Ph.D. degree in Electrical Engineering from
Columbia University. He received B.S. degrees
in Electrical Engineering and Mathematics (dou-
ble major) from Sharif University of Technology,
Iran in 2011 and the M.S. degree in Electrical En-
gineering from Columbia University in 2012. He
is the Gold Medalist of the 23rd National Math-
ematics Olympiad in Iran in 2005 and the recip-

ient of Columbia University Electrical Engineering Armstrong Memorial
Award in 2012.

Mihalis Yannakakis is the Percy K. and Vida L.
W. Hudson Professor of Computer Science at
Columbia University. Prior to joining Columbia,
he was Head of the Computing Principles Re-
search Department at Bell Labs and at Avaya
Labs, and Professor of Computer Science at
Stanford University. Dr. Yannakakis received his
PhD from Princeton University. He has served on
the editorial boards of several journals, including
as editor-in-chief of the SIAM Journal on Com-
puting, and has chaired various conferences, in-

cluding the IEEE Symposium on Foundations of Computer Science, the
ACM Symposium on Theory of Computing, and the ACM Symposium
on Principles of Database Systems. Dr. Yannakakis is a recipient of
the Knuth Prize, a member of the National Academy of Engineering,
of Academia Europaea, a Fellow of the ACM, and a Bell Labs Fellow.

Gil Zussman received the Ph.D. degree in elec-
trical engineering from the Technion in 2004 and
was a postdoctoral associate at MIT in 2004-
2007. He is currently an Associate Professor
of Electrical Engineering at Columbia University.
He is a co-recipient of 7 paper awards including
the ACM SIGMETRICS06 Best Paper Award,
the 2011 IEEE Communications Society Award
for Advances in Communication, and the ACM
CoNEXT’16 Best Paper Award. He received the
Fulbright Fellowship, the DTRA Young Investi-

gator Award, and the NSF CAREER Award, and was a member of a
team that won first place in the 2009 Vodafone Foundation Wireless
Innovation Project competition.

15

