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Abstract

The deterioration of infrastructures is a widespread problem in many countries. In order to assess such
structures for continued future service, simple and practical tools need to be developed for evaluating the
time-dependent reliability and performance of the structures. This paper describes the concept of a resis-
tance reduction factor due to degradation of a component to approximate a time-dependent reliability
problem as a time-independent one. With the factor the time-varying resistance can be equivalently
replaced with a time-invariant resistance, and load and resistance factors can be determined for the
assessment applying simple AFOSM. An approximation method to determine the factor is proposed, and a
numerical example shows that the target reliability level can be achieved fairly accurately using an
approximate reduction factor. It is also demonstrated that the approximation method can be applied to
estimate a resistance reduction factor including the cases when the strength of a component is restored to
some extent by means of inspection and repair, and, accordingly, to evaluate the effect of inspection and
repair on the reliability of the component. # 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The continued use of existing structures is of great importance because the built environment is
a huge economic and political asset [1]. Also the importance of preserving the earth environment
is well recognized. A major concern in evaluating structures for continued service is in ensuring
that their capacity to withstand extreme events has not deteriorated from structural aging during
their previous service history.
The safety problem in structural engineering can be treated more rationally with probabilistic

methods. These methods provide basic tools for evaluating structural safety quantitatively [2].
Uncertainties in loads, material properties, and construction practice, which have been traditionally
dealt with by empirical safety factors, can be taken into account explicitly and consistently in a
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probabilistic safety assessment. Such methods have been used to develop the first-generation of
limit state design codes, in which the safety checks are associated with a specified limit state
probability or reliability [3]. However, in the development of the first-generation codes the focus
has been put on new construction and there is no presumption that structural resistance decreases
and periodic inspection and repair would be carried out to restore the resistance.
In order to assess an existing structure for continued future service, one of the authors devel-

oped methodologies for evaluating time-dependent reliability and performance of a structural
component with resistance varying in time due to aging and/or aggressive service environments
[4]. Enright and Frangopol [5] extended these methodologies for the system reliability assessment
of deteriorating concrete bridges considering load redistribution. Vu and Stewart [6] used the
Monte-Carlo simulation method to estimate time-dependent reliability for RC bridge decks sub-
jected to corrosion resulting from chlorides taking the interaction between cracking, diffusion of
chlorides, and corrosion initiation into account. However, such an assessment requires a sub-
stantial investment in reliability analysis and acquisition of supporting data, which may not be
feasible for the assessment of the majority of buildings for possible retrofit [7]. Vrouwenvelder
and Schießl [8] proposed to provide two sets of partial factors within the framework of current
design code in order to take the deterioration of structural components into account. However,
the conditions of existing structures differ from structure to structure, and cannot be classified
into only a few categories. Moreover, the effect of inspection and repair should be taken into
account in the assessment for continued service. Simple but versatile reliability tools need to be
developed for use in practice.
This paper describes the concept of a resistance reduction factor reflecting the impact of

degradation of a component on its performance in order to approximate a time-dependent relia-
bility problem as a time-independent one. With the factor the time-varying resistance can be
equivalently replaced with a time-invariant resistance, and load and resistance factors can be
determined for the assessment of an existing structure applying simple Advanced first-order sec-
ond-moment method (AFOSM). In order to avoid time-dependent reliability analysis to deter-
mine the resistance reduction factor, an approximation method is proposed and a numerical
example shows that the target reliability level can be achieved fairly accurately using an approx-
imate reduction factor. It is also demonstrated that the approximation method can be applied to
determine a resistance reduction factor including the cases when the strength of a component is
restored to some extent by means of inspection and repair.

2. Structural degradation

Time-dependent effects on in situ strength must be considered in assessing the effect of aging
and possible structural deterioration of new or existing structures. The strength of a structure or a
component may degrade in time due to aging and/or environmental stressors according to,

RðtÞ ¼R0 �GðtÞ ð1Þ

in which R0 is the component capacity in the undegraded (original) state, and G(t) is a time-
dependent degradation function defining the fraction of initial strength remaining at time t. The
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degradation mechanisms are uncertain, experimental data are lacking, and thus the function G(t)
should be treated as stochastic. However, as it has been found that the variability in G(t) is of
minor importance when compared to mean degradation and load process characteristics [4], it is
assumed that G(t) is deterministic and equal to mean E[G(t)]=g(t).
Conceptually, a degradation function g(t) can be associated with each environmental stressor

[9]. For reinforced concrete structures, most significant resistance deterioration mechanisms have
been identified qualitatively [9,10]. Corrosion of reinforcement is one of the most damaging
mechanisms affecting the strength of reinforced or prestressed concrete structures over time, and
followed by sulfate attack, freeze-thaw cycling, and reactive aggregate reactions within the con-
crete. Quantitative degradation models are available for some of degradation mechanisms
[6,11,12].
It is assumed in the following that a degradation function is independent of the load history;

with this assumption, the subsequent formulation can address deterioration due to corrosion,
sulfate attack, and similar environmental effects.

3. Stochastic load models

Events resulting in significant structural loads occur randomly in time and are random in their
intensity and are in general modeled as a stochastic process, S(t). Examples of relatively simple
models of the overall temporal variation in structural loads are a Poisson impulse (PI) process
and a Poisson square wave (PSW) process [2,13,14].
A PI process consists of impulses which occur according to a Poisson process with a mean

occurrence rate, lPI. In a Poisson process, the probability that the N(t) load events occur within
the time interval (0, t) is expressed as,

P N tð Þ ¼ n½ � ¼
lPI �tð Þ

n
� exp �lPI �tf g

n!
; n ¼ 0; 1; 2; . . . ð2Þ

in which P[
] is the probability of event 
.
A PSW process consists of pulses; the changes of the intensity of the pulses occur

according to a Poisson process with a mean occurrence rate, lPSW. The duration of each
pulse is a random variable described by an exponential distribution function with a mean
value, 1=lPSW.
Sequence of load intensity Sj; j ¼ 1; 2; . . . ; n in the respective PI and PSW processes are

assumed to be identically distributed and statistically independent random variables. It is also
assumed that the intensity of each pulse in a PSW process is constant during its duration. Load
events that randomly occur with very short duration, such as wind load and earthquake load, are
generally modeled as a PI process, while load events to which a structure is always subjected and
whose intensity changes randomly, such as sustained live load, are generally modeled as a PSW
process.
The combination of a PSW process and a PI process along with a time-invariant dead load is

considered in the following (see Fig. 1).
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4. LRFD for deteriorating component

The design criteria of a deteriorating structural component subjected to dead load, sustained
live load (PSW process), and either wind or seismic load (PI process) can be expressed as,

P g tð Þ�R0 < Dþ Ls tð Þ þW tð Þ; for 0 <t4 tL½ �4PfT ð3Þ

in which PfT is the target failure probability, D is the intensity of time-invariant dead load, and
Ls(t) and W(t) are the intensity of sustained live load and either wind or seismic load at time t. R0

in Eq. (3) is expressed in units that are dimensionally consistent with D, L(t), and W(t). As a lot
of computational effort is in general required to evaluate the failure probability of the deterior-
ating structure, Eq. (3) is not appropriate for use in practice.
If one can appropriately evaluate an equivalent resistance reduction factor g* which makes the

following design criteria equivalent to Eq. (3), the reliability analysis can be simplified.

P g� �R0 < max
0<t<tL

Dþ Ls tð Þ þW tð Þ
� �� �

4PfT ð4Þ

Applying Turkstra’s rule [15] to evaluate the failure probability in Eq. (4) considering W(t) as
the primary load, the design criteria can be further simplified as,

P g� �R0 < Dþ Lsapt þ max
0<t<tL

W tð Þ
� �� �

4PfT ð5Þ

Fig. 1. Schematic representation of load process and resistance degradation.
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in which Lsapt is the intensity of arbitrary point-in-time sustained live load.
AFOSM can now be applied to evaluate the failure probability in Eq. (5) and also the checking

point can be determined. Then the design criterion can be reduced to a familiar load and resis-
tance factor format expressed as,

��g� �Rn > �D �Dn þ �L �Lsn þ �W �Wn ð6Þ

in which � is the resistance factor, g
 is the load factor for load 
, and 
n is the nominal value of 
.

5. Estimation of resistance reduction factor

5.1. Time-dependent reliability analysis

When a structural component subjected to stochastic load events modeled as a PI process and
when g(t) is independent of the load history, the probability of failure in a time interval (0, tL) is
expressed as [4],

F tLð Þ ¼ 1�

ð1
0

exp �l�tL � 1�
1

tL

ðtL
0

FS r�g tð Þ
� �

dt

� �� �
�fR0

rð Þdr ð7Þ

in which l is the mean occurrence rate of load events, FS(s) is the probability distribution func-
tion (cdf) of load intensity, S, and fR0

rð Þ is the probability density function (pdf) of R0.
Assuming that the variability in the intensity of dead load and sustained live load is relatively

small, the failure probability of a deteriorating structural component subjected to the combina-
tion of D, L(t), and W(t) during the time interval (0, tL) can be evaluated as,

F tLð Þ ¼ 1�

ð1
0

exp �lW �tL 1�
1

tL

ðtL
0

FW r�g �ð Þ � �DL

� �
d�

� �� �
fR0

rð Þdr ð8Þ

in which lW and FW(w) are the mean occurrence rate and the cdf of the intensity of the primary
load, W(t), respectively, and �DL is the mean value of D+Lsapt.
Using a resistance reduction factor, g*, the failure probability can be evaluated as,

F tLð Þ ¼ 1�

ð1
0

exp �lW �tL 1� FW r�g� � �DL

� �� �� �
fR0

rð Þdr ð9Þ

A resistance reduction factor can be determined so that the failure probability estimated by Eq.
(8) may be equal to that by Eq. (9).

5.2. Sensitivity of g*

The resistance reduction factor, g*, would be dependent on the target reliability level, the rate
and shape of a degradation function, the variability in resistance, and the degree of dominance,
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the mean occurrence rate, and the statistical characteristics of the intensity of the primary load.
The degree of the dependence of g* on these factors is investigated using a simple degradation
model defined by

g tð Þ ¼ 1� a�tb ð10Þ

in which a is the degradation rate, and b is dependent on the degradation mechanism. Example of
the value of b for typical degradation mechanisms of a reinforced concrete component are pre-
sented in Table 1 [9].
Fig. 2(a)–(g) illustrates the resistance reduction factor g* as a function of the degradation level,

g(tL), at the end of the reference period of 100 years using the degradation model and the prob-
ability model shown in Tables 1 and 2, respectively. The values in the parentheses in Table 2 are
used in the following unless otherwise noted.
Fig. 2(a)–(d) show the dependence of g* on the coefficient of variation (c.o.v.) of resistance, VR,

the mean number of the primary load events during the reference period, lW �tL, the c.o.v. of the
primary load intensity, VW, and the ratio of the mean value of the primary load intensity to that
of dead load intensity, �W=�D, respectively, assuming that the primary load intensity is lognor-
mally distributed. Fig. 2(e)–(g) shows the dependence of g* on the target reliability index, 	T,
assuming that the primary load intensity is described by (e) lognormal distribution function, (f)
Type I extreme value distribution function, and (g) Type II extreme value distribution function.
It can be seen from Fig. 2(a)–(g) that a resistance reduction factor is fairly lightly dependent on

VR;lW�tL;�W=�D, and 	T, but strongly dependent on the behavior of the degradation function
and the statistical characteristics of the primary load intensity.

5.3. Approximation method for g*

The procedure of determining a resistance reduction factor described in Section 5.1. requires a
time-dependent reliability analysis, which is not suitable for use in practice. In this section an
approximation method is proposed to estimate g* without losing accuracy.
Taking the first order approximation, Eqs. (8) and (9) can be rewritten by Eqs. (11) and (12),

respectively.

F tLð Þ ’ 1� exp �lW �tL 1�
1

tL

ðtL
0

FW �R0
�g �ð Þ � �DL

� �
d�

� �� �
ð11Þ

Table 1
Degradation model

Shape of the degradation function Corresponding degradation mechanism

Linear: g(t)=1-at Corrosion

Parabolic: g(t)=1-at2 Sulfate attack
Square root: g tð Þ ¼ 1� a

ffiffi
t

p
Diffusion controlled degradation
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Fig. 2. Degradation level g(tL) vs. resistance reduction factor g*.
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F tLð Þ ’ 1� exp �lW �tL 1� FW �R0
�g� � �DL

� �� �� �
ð12Þ

Letting Eq. (11) equal Eq. (12), the resistance reduction factor, g*, can be evaluated by

g� ¼

F�1
W

1

tL

ðtL
0

FW �R0
�g �ð Þ � �DL

� �
d�

� �
þ �DL

�R0

ð13Þ

in which F�1
W wð Þ is the inverse of the cdf FW(w), and �R0

is the mean value of the initial resistance.
It can be seen from Eq. (13) that g* is a function of the statistical characteristics of the primary
load intensity and the degradation function, which agrees with the fact observed in the sensitivity
analysis in Section 5.2.
When designing a structural component taking time-varying resistance into account, two

unknown values in Eq. (13), i.e. �R0
and g*, must be determined. This task can be achieved sol-

ving Eq. (13) along with Eq. (14) simultaneously in an iterative manner.

�R0
¼ �R=g

� ð14Þ

in which mR is the mean value of the resistance of a non-degrading component with the same
target reliability level, which can be determined by AFOSM or load and resistance factors eval-
uated by the simplified method provided in the draft recommendations of limit state design by
AIJ [16] (see Appendix A).
As g* is fairly insensitive to the mean and variance of the initial resistance as seen in Fig. 2(a)

and Fig. 2(e)–(g), only one loop of iteration could provide a good approximation. �R0
for Eq.

(13) can be estimated by Eq. (14) replacing g* with g�, the temporal mean value of the degradation
function over the time interval (0,tL], evaluated by

g� ¼
1

tL

ðtL
0

g �ð Þd� ð15Þ

Table 2
Probability model of load and resistance

pdf Mean� c.o.v. Process l (year�1)

D Normal �D 0.10 – –

LS LN 0.3�D 0.40 PSW 1=8
W Type I, II, lognormal 0.5�D–2.5�D(1.0�D) 0.20–1.00 (0.45) PI 1=20–2.0(1.0)
R Lognormal 	T=1.0–3.0 in 100 years (2.0) 0.1–1.3 (0.15) – –
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6. Numerical example

6.1. Accuracy of approximate g*

In Figs. 3(a)–(c) and 4(a)–(c), the reduction factors estimated by Eq. (13) are illustrated as a
function of g(100) using the degradation model and probability model in Tables 1 and 2. It is
assumed that VW equals 0.2 [Fig. 3(a)–(c)] or 0.8 [Fig. 4(a)–(c)]. The solid lines, chain lines, and
dashed lines are the approximate g* for the degradation function with b in Eq. (10) equals 0.5,
1.0, and 2.0, respectively. The resistance reduction factors evaluated accurately as described in
Section 5.1 are also plotted in the figures. The intensity of the primary load is described by (a)
lognormal distribution function, (b) Type I extreme value distribution function, and (c) Type II
extreme value distribution function, respectively.
Fig. 5(a)–(c) illustrates the effect of error in the estimation of g* on the reliability index

assuming that the degradation level at 100 years after construction, g(100), equals 0.7 and that

Fig. 3. Accuracy of approximate g* (VW=0.2).

Fig. 4. Accuracy of approximate g* (VW=0.8).
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Fig. 5. Sensitivity of reliability index to g*.
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the primary load intensity is described by (a) lognormal distribution function, (b) Type I extreme
value distribution function, (c) Type II extreme value distribution function. In any case, the
reliability index 	 decreases almost linearly as g* increases within the range of 	 considered in the
example. The slope of the line is dependent on the type of the cdf of the primary load intensity
but nearly independent of the shape of the degradation function. The slope is about 5/1 when the
primary load intensity is described by a lognormal or a Type I distribution function, yielding
about 5% error in the estimation of 	 with the error of 0.02 in the estimation of g*. When the
load intensity is described by a Type II distribution function, the slope is about 2.5/1 yielding
only 2.5% error. Therefore, the error observed in Fig. 4(a)–(c) would not have much importance
in practice.

6.2. Reliability level achieved using approximate g*

The reliability level achieved using g* estimated by Eqs. (12)–(15) is illustrated in Fig. 6(a)–(f) in
terms of the ratio of the actual failure probability of a degrading component designed using
approximate g* to the target failure probability. Load and resistance factors by the simple
method provided in the draft recommendations of limit state design by AIJ is used changing the
reference period from 50 years to 100 years to determine �R in Eq. (14). In order to avoid the
error other than using an approximate g* in designing a component, the maximum intensity of
the combination of time-varying load processes is accurately evaluated using the method pro-
posed by Mori and Murai [17], and probability analysis using FFT [18] is applied for accurate
and efficient reliability analysis. Time-dependent reliabilities are evaluated by Monte Carlo
simulation. The number of samples is 	T ¼ 1:0 and 2.0, and 106 for 	T ¼ 3:0.
Fig. 6(a)–(c) illustrates the dependence of the achieved level on g(100) considering (a) square

root, (b) linear, and (c) parabolic degradation functions. Fig. 6(d)–(f) illustrates the dependence
of the achieved level on (d) VR, (e) VW, and (f) �W=�D. In any case, the target reliability level is
achieved fairly accurately using an approximate g*.

6.3. In-service inspection and repair

Periodic in-service inspection followed by suitable repair may restore a degraded structural
component to near-original condition. Since inspection and repair is costly, there are tradeoffs
between the frequency, extent and accuracy of inspection, required level of reliability, and cost.
To design the optimum inspection/repair strategy, one must solve the non-linear optimization
problem including time-dependent reliability analysis, which requires substantial computational
effort [19]. However, using the resistance reduction factor, the optimization problem can be
reduced into two simpler problems neither of which requires time-dependent reliability analysis:
determination of g* required to achieve the target reliability level and determination of schedule
and accuracy of inspection and repair which satisfies g*.
In order to illustrate the role of inspection and repair in maintaining the reliability of a dete-

riorating component and to demonstrate how an approximate resistance reduction factor works
to assess the reliability of the component with inspection and repair, two simple inspection and
repair strategies are considered: (1) infrequent inspection and repair carried out at 30 and 65
years after the construction with strength restored to its original level following repair, and (2)
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Fig. 6. Reliability level achieved using approximate g*.
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Fig. 7. Role of inspection and repair.
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frequent inspection and repair performed at 30, 44, 58, 72 and 86 years with strength restored to
only 95% of its original level following repair. Without inspection/repair it is assumed that
resistance of the component degrades as,

g tð Þ ¼ 1� 0:03
ffiffi
t

p
ð16Þ

It is also assumed that following repair the resistance degrades as,

g tð Þ ¼ c� 0:03
ffiffiffiffiffiffiffiffiffiffiffiffi
t� tR

p
ð17Þ

in which c is the level of the resistance restored by the repair and tR is the time of inspection/
repair. The degradation functions, the resistance reduction factors, and failure probabilities of a
component associated with these strategies are illustrated in Fig. 7(a)–(c), respectively. The failure
probability using approximate g* is evaluated applying the method proposed by Mori and Murai
for load combination and probability analysis using FFT in order to avoid the error other than
using the reduction factor. The time-dependent reliabilities evaluated by the Monte-Carlo simu-
lation is also plotted in Fig. 7(c). After the first inspection/repair, the resistance reduction factor is
kept relatively constantly by the following periodic inspection/repair. At any time of the reference
period the failure probability is fairly accurately estimated using an approximate g*. At the time
of inspection and repair, the failure probability changes its slope; this change is more distinct
when the component is inspected more thoroughly. If PfT=5�10�3 for the reference period of
100 years, both strategies would be acceptable in terms of risk. The selection of strategy, then,
will be based on the cost associated with each strategy.

7. Conclusions

The concept of a resistance reduction factor to take into account the deterioration of a
structural component is introduced to approximate a time-dependent reliability problem as a
time-independent one. It is found that the resistance reduction factor is fairly lightly dependent
on the mean number of occurrences of the primary load during the reference period, the ratio of
the mean intensity of the primary load to that of the dead load, and target reliability level. An
approximation method is proposed to estimate the reduction factor simply for use in prac-
tice. Numerical example shows that the target reliability level can be achieved fairly accu-
rately using an approximate reduction factor. It is also demonstrated that the approximation
method can be applied to estimate a resistance reduction factor including the cases when the
strength of a component is restored to some extent by means of inspection and repair, and,
accordingly, to evaluate the effect of inspection and repair on the reliability of the compo-
nent. Thus, using a resistance reduction factor, the optimal inspection/repair strategy to
maintain structural reliability at an acceptable level during the remaining service life of an
existing structure with minimal cost can be determined without time-dependent reliability
analysis.
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Appendix A

Conceptually structural engineers could control the reliability level of a structure within the
framework of a limit state design method. However, in most of the first-generation of limit state
design codes, only one set of load and resistance factors are provided for each load combination,
and thus the reliability level is basically fixed using these factors. If an engineer would like to
control the reliability level, they have to conduct a reliability analysis by themselves. Recently, a
simple procedure to determine load and resistance factors is provided in the draft recommenda-
tion of limit state design, AIJ taking the variability in loads and resistance and target reliability
level into account [16]. The procedure is described in the following.
Load and resistance factor design format can generally be expressed as,

���R ¼
X
i

�i��Si
ðA1Þ

in which � is the mean value of , and � and �i are a resistance factor and a load factor for load Si,
respectively, to be multiplied to the respective mean value.
When all the basic random variables are lognormally distributed, the load and resistance fac-

tors can be estimated fairly accurately by [20],

� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ V2
R

p exp ��R �	T ��lnRð Þ ðA2Þ

�i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ V2
Si

q exp �i �	T ��lnSi

� 
ðA3Þ

in which �
, V
 are standard deviation and coefficient of variation (c.o.v) of 
, respectively, 	T is
the target reliability index, and �
 is the separation function of variable 
, which can be
approximately estimated by

�R ¼
�~Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�~2R þ
P

�S2
i

p ðA4Þ

�Si
¼

�Siffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�~2R þ

P
�S2

i

p ðA5Þ

in which �~R ¼ VR �
P

�Si
.
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When the basic random variables are not lognormally distributed, ‘equivalent’’ lognormal
random variates can be used. In the recommendation, it is presumed that the statistical char-
acteristics of the annual maximum value of each load are given and the reference period is con-
sidered to be 50 years. The statistics of the equivalent lognormal random variate of the primary
load are determined so that the 50 and 99% values of the 50-year maximum value of the primary
load intensity and those of the equivalent lognormal random variate may be equal to each other
except for the case when the target reliability level is higher than 2.6 and the annual maximum
value is described by a Type II distribution function. The statistics of an equivalent lognormal
random variate of the secondary load is determined so that the 50 and 99% values of the annual
maximum value of the secondary load intensity and that of the equivalent lognormal random
variate may be equal to each other.
The following regression formulas are provided in the recommendation to estimate the statistics

of the equivalent lognormal random variate, Seqi, easily. The parameters in Eqs. (A6) and (A7)
are presented in Tables A1 and A2.

�lnSeqi ¼ e0 þ e1 �VSi
þ e2 �VS þ e3 �VS þ ln �Sið Þ ðA6Þ

�lnSeqi ¼ s0 þ s1 �VSi
þ s2 �VS þ s3 �VS ðA7Þ

The c.o.v., mean value, and standard deviation of the equivalent lognormal random variate are
estimated using �lnSeqi and �lnSeqi as,

Table A1
Coefficient for Eqs. (A6) and (A7) for annual maximum value

Type of a year max value Eq. (A6) Eq. (A7)

e0 e1 e2 e3 s0 s1 s2 s3

Normal 0.00 0.00 0.00 0.00 0.01 0.85 �0.49 0.14
Type I 0.00 �0.16 �0.01 0.00 0.02 1.13 �0.67 0.20
Type II 0.00 �0.28 �0.05 0.07 0.00 1.44 �0.98 0.26

Table A2
Coefficient for Eqs. (A6) and (A7) for 50-year maximum value

Type of a year max value Eq. (A6) Eq. (A7)

e0 e1 e2 e3 s0 s1 s2 s3

Normal 0.02 1.89 �1.05 0.30 0.02 0.34 �0.32 0.11
Lognormal �0.01 2.34 �1.01 0.16 0.00 0.61 �0.13 0.00
Type I 0.04 2.32 �1.43 0.43 0.05 0.59 �0.60 0.22

Type II 	T 4 2:6ð Þ 0.01 2.82 �2.15 0.62 0.00 1.44 �0.98 0.26
Type II 	T > 2:6ð Þ 0.01 2.28 �2.15 0.62 0.00 1.68 �1.14 0.30
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VSeqi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp �lnSeq

� q
� 1 ðA8Þ

�Seqi ¼ exp �lnSeqi

� 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VSeqi

p
ðA9Þ

�Seqi ¼ �Seqi �VSeqi ðA10Þ

Load and resistance factors can now be determined by Eqs. (A2)–(A5) using the statistics of the
equivalent lognormal random variates evaluated by Eqs. (A6)–(A10).
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