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Abstract — The paper discusses the problem of integrating the
equations of state observers associated with direct field
orientation (DFO) of motor drives and studies the influence of
the discretization method used on the accuracy of integration. In
a typical implementation, discrete-time integration is done using
Euler’s discretization method (forward rectangular rule) — the
method is simple and integration is accurate when the drive
operates at low and medium speed. However, as the frequency
increases, the integration becomes inaccurate because the Euler
approximation starts losing more and more area from under the
curve. Theoretically, the problem could be alleviated by
increasing the sampling frequency; however, this cannot always
be done. Another idea would be to adopt a more accurate (but
more computationally intensive) integration method, for
example, trapezoidal integration (Tustin method). The paper
shows that, at high frequency, under ideal conditions, trapezoidal
integration performs better than the Euler method. In a real
implementation, however, conditions are non-ideal since the
measured signals bring dc offsets and imperfections into the
terms to be integrated — as a result, pure integration must be
replaced with quasi-low pass filtering. Under these conditions,
the paper compares the Euler, Tustin and backward rectangular
methods from the point of view of integration accuracy. The
implications related to direct field orientation of motor drives are
studied by considering a full-order observer for the PMSM - this
is discretized using the three methods considered and the results
are compared. At high frequency, neither integration method
gives perfect results; the Euler method yields a waveform that
leads the expected one while the backward rectangular method
yield a waveforms that lags it. The paper finds that, surprisingly,
when quasi-low pass filtering is used, the Tustin method is not
significantly more accurate than the other ones — the waveform
obtained lags the expected one by an angle comparable with the
lead angle of the Euler method. It is shown that the integration
accuracy depends on the frequency, sampling time, filter
bandwidth and on the integration method used. Accurate high
frequency drive DFO control would require correction of the
magnitude/phase of the estimates.
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rectangular rule, Tustin method, trapezoidal integration,
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L INTRODUCTION

Direct Field Orientation (DFO) is a well-known estimation
method used to obtain the rotor position needed for field
oriented control of ac motor drives [1]-[4], [5]-[7]. The
method is widely used to secure field orientation in sensorless
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schemes for the permanent magnet synchronous motor and for
the induction motor [8]-[15]. In DFO, the rotor position angle
(angle of the rotor flux) is obtained using the tan™! function
of the stationary reference frame fluxes or EMF components
of the motor. Generally, an observer is used to estimate these
quantities. Full-order observers [16][17], reduced-order
observers [18]-[20], sliding mode observers [21]-[23] or the
Extended Kalman Filter can be used [24][25]. Since the
observer is constructed based on the motor’s model in the
stationary reference frame, all the quantities involved
(voltages, currents, fluxes, EMFs etc) are theoretically
sinusoidal quantities. Implementation of the observer requires
(at a minimum) to measure the voltages and currents. With the
sensors and interfacing circuitry involved in a typical motor
drive, the measured quantities (which should theoretically be
sinusoidal) appear in the controller corrupted by dc offsets,
distorted, nonsinusoidal and usually containing noise. As a
result, when the observer equations are integrated, to avoid the
output divergence, the integrators must be replaced by quasi-
low pass filters [26][27].

From the point of view of the integration process, given a
function (curve) x(t) whose integral must be obtained, the
discrete-time integration methods available implement an
approximation to computing the area underneath the curve
[28]. For example, the Euler method obtains the integral by
successively adding rectangular areas — each area is of the
form x;Ts (note that, at sampling time k, the last area added to
the integral is x,_;Ts). Similarly, the backward rectangular
rule computes the area under the curve also based on
rectangles; the difference is that at sampling time k, the last
area added to the integral is x, T, thus, the rectangles extend
“backwards” towards the previous samples of x(t). However,
the backward rectangular rule is rarely used since it can
produce unstable discrete-time filters.

Finally, the trapezoidal method (Tustin method) computes
the integral by using trapezes whose areas are of the form
Tz—s(xk_1 +x;). From an intuitive point of view, the
trapezoidal method seems to be more accurate compared to
the other ones since this approximation loses the smallest
amount of area from under the curve. However, if the
sampling time is sufficiently small, the loss of area is small no
matter what integration method is used. With small sampling



time, both the Euler method and the backward rectangular
method perform very well too and the extra-accuracy of the
trapezoidal method does not produce a significant advantage.

As a result, it is standard to use Euler’s method for discrete-
time integration since this provides a simpler implementation
(simpler calculations and less variables stored from one
sampling time to the next) and always gives a stable discrete-
time filter. Note that most application notes and real-time
software available from the vendors of digital signal
processors are developed using this approach [29].

In a real implementation of a three-phase DFO motor drive
that requires integration of observer equations, the system’s
sampling time must be selected based on several performance
criteria and constraints. A significant one comes from the fact
that the sampling frequency of the control algorithm is very
often equal to the switching frequency of the inverter (this is
the case when the drive is controlled with a single interrupt).
As a result, the sampling frequency cannot be very high since
this would require the semiconductor devices to switch very
fast. Therefore, if there are accuracy problems related to the
discrete-time integration, it may not be possible to reduce the
sampling time. Note that in a typical motor drive
implementation, the signals are measured by periodic
sampling (the sampling time is constant); also, a typical
switching frequency is in the range of 1 to 20 KHz.

When the signals to be integrated are of low and medium
frequency, Euler based integration works very well. With the
state observers associated with DFO, the signals to be
integrated are sinusoidal (theoretically) — they correspond to

II. CHARACTERISTICS OF DISCRETE-TIME

INTEGRATION METHODS

In discrete-time control, integration and discretization are
equivalent. As explained, if the function x(t) is to be
integrated in discrete-time, this is done by calculating
(approximating) the area under the curve. The three methods
considered in this paper are the Euler method (forward
rectangular rule), the Tustin method (trapezoidal integration)
and the Dbackward rectangular rule. These three
approximations to the integral are shown in Fig.1.
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Fig. 1. Discrete-time integration based on the Euler, Tustin and backward
rectangular methods

Corresponding to Fig. 1, Table I gives the expressions of the
areas (at sampling time k) that correspond to the three
integration methods.

TABLE I - APPROXIMATION OF AREAS WITH THE THREE

the stationary reference frame quantities of the motor.

However, as the frequency of these signals (and the speed of
the drive) increase, Euler integration becomes inaccurate. This

is because the loss of area from under the curve becomes more
and more significant (another explanation is that the ratio

between the sampling frequency and the signal’s frequency is
not high enough).

INTEGRATION METHODS

Method Area (A)
Forward Rectangular
Rule (Euler) Ak) =Ak —1) + x4 T
Trapezoidal method
(Tustin method) Ak) = Ak — 1) + %(xk_ﬁxk)
Backward
Rectangular Rule Ak) = Ak —1) + x, T

The paper shows that, at high frequency, under ideal
conditions, the trapezoidal integration method performs better
than the Euler method — integration is accurate and the
expected signals are obtained. However, when quasi-low pass
filters are used instead of ideal integrators, the accuracy
expected from the trapezoidal method is not maintained. The

Considering the transition from continuous-time to discrete-
time, Table II gives the discrete-time transfer functions.

TABLE II - CONTINUOUS TO DISCRETE-TIME EQUIVALENTS

paper finds that, at high frequency, the Euler method yields a

signal that is leading the expecting signal, the trapezoidal
integration yields a signal that lags it; however, the phase
errors are comparable.

The paper also investigates the performance of the backward
rectangular rule under the same conditions (high frequency
and quasi-low pass filtering) — the signal obtained lags the

expected signal by an angle even bigger than that obtained
with the trapezoidal method.
The PMSM and an associated full-order observer are used

Method Discrete equivalent
Forward Rectangular l N T
Rule (Euler) s z—1
Trapezoidal method 1 R EZ +1
(Tustin method) s 2z7—-1
Backward 1 Tsz
Rectangular Rule s 7-1

as an example of DFO. The equations of this observer are
integrated with the Euler, Tustin and backward rectangular
method and the integration accuracy is compared.
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Finally, when the equations of observers with continuous
feedback are integrated, the pure integrators must be replaced




with quasi-low pass filters (§ is replaced with ﬁ); B is the

bandwidth of the filter.

Table III shows the continuous to discrete-time
correspondence of the transfer functions with the integration
methods considered, when quasi-low pass filtering is used.
These transfer functions will be used to integrate the equations
of the observer studied.

TABLE III - CONTINUOUS TO DISCRETE-TIME EQUIVALENCE
OF QUASI-LOW PASS FILTERS

Method Discrete equivalent
Forward 1 N T
Rectangular s+B z—(1-BTy)
Rule (Euler)
Trapezoidal 1 N Ts z+1
method s+B 2 BT BT
(Tustin method) (1 + T) - ( B T)
Backward 1 N Tsz
Rectangular s+B (1+BTyz—-1
Rule

III. MODELING OF PMSM AND DESIGN OF A
FULL-ORDER OBSERVER FOR THE PMSM

To develop the model of the PMSM, consider the flux
components Apyq, Apyp Which are obtained by projecting the
PM flux vector on the stationary reference frame. They are:
Appa = ApycosO
{APW = Apyysind @
where 6 = w,t is the rotor position angle and Apy = K
(whereKp, is the EMF constant).
The EMFs e,, ez of the PMSM are defined as the
derivatives of the permanent magnet fluxes:
ex = PApya = —Kpw,Sind
{fo P e @)
eg = pApup = Kgwcoso
For sinusoidal PMSM machines constructed with rotor
mounted magnets, the flux produced by the stator winding
sees a large effective airgap. Since the magnetic material has
low permeability, the effective airgap seen by the stator
winding consists of the mechanical airgap plus the thickness
of the magnet; as a result, the armature reaction is small and
these machines have low inductance. On the other hand, the
magnets are relatively heavy which increases the inertia of the
rotor, resulting in a wide separation between the electrical and
the mechanical time constants of the machine. It is therefore
quite reasonable to consider that the speed of the motor varies
much slower than the electrical quantities (w, = 0). To
complete the model of the PMSM, the EMFs in (2) are
differentiated with this assumption.
When the stator equations are included, the model of the
PMSM with respect to the currents and EMFs is:
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With the currents as measured quantities, the output equations
are:

i .

-0 8 8 e @ i
Based on (4) and (5), a full-order observer can be designed to
estimate the states of the PMSM model — this observer is
designed based on continuous feedback of the current errors.
Using linear observer design methods, the equations are:
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where gains [;; through [l;, should be designed and the

current errors are:

la] _ [la ig]

l51= 5115 o
In the development of the observer, the voltages V,, Vg and

currents i4,ig are measured; the speed w, is considered

known. Since matrix A is time-varying (depends on w,) the
observer gains are designed based on Lyapunov’s nonlinear
stability method. They are:

( Ly =1y :%
liz=10,=0 ®)
l3 =14 =0
l31 =l =—k

where k is a design parameter,k > 0. A comprehensive
stability analysis and the step by step design procedure for the
gains of this observer can be found in [x].

With the gains (8), the equations of this observer are:

( Péy = —w.ép + 1Ty

1 - 9

V= ki ©)
a R . 1, 1 —
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In the paper, this observer is used to study the accuracy of the
integration methods considered.



Iv. SIMULATION RESULTS

Simulations are done using the Matlab/Simulink package. The
parameters of the PMSM used are shown in Table V.

TABLE IV - PMSM PARAMETERS

Stator resistance R 250
Synchronous inductance L 1.8 mH
Rated voltage V, 182V
Rated continuous torque T 50 oz-in
Rated speed n 6000 rpm
Number of poles P 4

The simulation model uses PI controllers to regulate the d,q
axis currents of the PMSM. A PI controller is also used for
speed regulation (this produces the reference iz). On the d
axis, iy = 0. Simulations are done at a sampling time of
100 ps. The model does not use a PWM state machine.

Since the implementation of the observer requires
knowledge of the speed, in the simulation, the speed of the
PMSM is measured and is fed in the observer. For an
experimental implementation, an accurate speed signal could
be obtained by, for example, differentiating the estimated
rotor position yielded by the observer.

In the investigation, the motor is operated in speed control
mode and is field-oriented with the correct rotor position right
from the beginning of the motion (at start-up, 8, = 0). The
observer runs in parallel with the PMSM model; the estimates
of the states are captured and are compared with the expected
ones. The design gain in (8) is k = 1000.

Fig.1 shows the results of integration under ideal conditions
(no dc offsets in measurements) — pure discrete-time
integration is implemented corresponding to the transfer
functions in Table II.
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Fig. 1. Real versus estimated EMFs of the linear observer using the Euler,
trapezoidal and backward integration methods

[F)

The speed of the PMSM is commanded to 1000 rpm and the
drive runs at medium frequency (around 30 Hz). The motor
starts against a load torque of 0.3 Nm and another 0.3 Nm are
added at t=0.4s. The observer shown is implemented using the

628

three integration methods proposed (in the simulation, there
are three observers that run simultaneously).

Fig. 1 shows a comparison of the results; at this frequency,
the estimated EMFs match the real ones irrespective of the
integration method used — they all perform very well.

In conclusion, if only low/medium speed operation is
intended, the simplest (or safest) integration method should be
used; generally, the Euler method is preferred.

The three integration methods are compared again in Fig.2
where the PMSM drive is commanded to a speed of 5000
rpm; the corresponding frequency of the electrical signals is
around 160 Hz. The load torque applied is the same.

Under these conditions, it is clear that the trapezoidal
method outperforms the other two. The EMFs obtained from
trapezoidal integration are closest to the real EMFs in both
magnitude and phase.

Interestingly, the Euler method gives a waveform that leads
the real EMF and whose magnitude is greater than real. To be
exact, at 5000 rpm, with a sampling time of 100 us, the lead
angle is 16.2" and there is a 55% magnitude difference (150 V
estimated instead of 95 V real).

The backward rectangular rule gives a waveform that lags
the real EMF and has magnitude smaller than real. In Fig. 2,
the lag angle is approximately 10.8°and the magnitude is 35%
smaller than expected.

Note that if the EMFs obtained were used in a DFO scheme,
the resulting lead or lag error angle of the estimates
propagates in the estimated rotor position.

In conclusion, under ideal conditions, when high frequency
signals are to be integrated, the trapezoidal method performs
very well; results are accurate in both magnitude and phase.
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Fig. 2. Real versus estimated EMFs of the linear observer using the Euler,
trapezoidal and backward integration methods at high frequency

Under real conditions, however, pure integration cannot be
implemented. When the terms to be integrated contain
measured signals, the ideal integrators must be replaced with
. . 1
the quasi-low pass filters which are of the form =
The observer presented is simulated under these conditions
in order to compare the performance of the three discretization



methods. The discrete transfer functions in Table III are used.
The bandwidth of the filter is 20 rad /s (3.18 Hz) - this is a
typical value used in a real-time implementation.

Fig.3 shows the results when the drive operates at 1000
rpm. With all three methods, the estimated EMFs have
slightly smaller magnitude (approximately 15%) than the real
ones. More important, they are in phase with the real EMFs.

In conclusion, when quasi-low pass filtering is used, at
medium frequency, the three discretization methods
considered give comparable results and perform well.
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Fig. 3. Real vs. estimated EMFs with quasi-low pass filtering at low
frequency

Finally, the results of integration at high frequency and with
quasi-low pass filtering are shown in Fig 4. Under these
conditions, none of the integration method proposed gives
100% accurate results.
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Fig. 4. Real vs. estimated EMFs with quasi-low pass filtering at high
frequency

The Euler method yields a waveform that has 35% higher
magnitude than real and is leading the real EMF by 8.4°. On
the other hand, the backward rectangular rule gives an EMF
that has a magnitude 40% lower than real and lags the real
EMF by 12.6°.

The trapezoidal method is still the most accurate among the
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three: the waveform obtained is only 15% smaller in
magnitude and lags the real EMF by 7.2°. However, note that
this lag angle is pretty comparable with the lead angle of the
Euler method and, under the circumstances; the high accuracy
exhibited by the trapezoidal method at high frequency and
with ideal integration (Fig. 2) is not maintained.

Note that if these waveforms are used to field-orient the
PMSM, the Euler method will give a rotor position angle that
leads the real rotor position by 8.4 while the trapezoidal
method would give a position lagging by 7.2°- slightly better
but not quite a big difference.

Some concluding remarks: the accuracy of discrete-time
integration is influenced primarily by four factors: the
sampling frequency, the frequency of the signals to be
integrated, the filter’s bandwidth and the integration
(discretization) method used. With a fixed sampling time, the
accuracy of integration worsens as the frequency of the
signals increase.

When the estimates obtained are to be used in a high
accuracy motor drive control algorithm, their magnitudes and
phases may need corrected.

The phase of the estimates can be corrected (based on either
theoretical or experimental methods) by mapping the lead/lag
angle to the specific conditions (filter bandwidth used,
sampling time, choice of integration method). The accuracy of
the rotor position angle is an important performance factor in
DFO drives (an accurate rotor position angle reduces
oscillations and increases the region of stability of the drive).

The magnitude of the estimates needs to be corrected when
they are directly used for feedback (for example, if the
observer estimates the flux components of a motor and if the
flux magnitude is controlled).

V. CONCLUSIONS

The paper discusses the problem of discrete-time integration
of the equations of state observers and compares the accuracy
of three integration methods at medium and at high frequency.
Integration under ideal conditions (with pure integrators) and
under real conditions (with quasi-low pass filters) is studied
by considering a full-order observer for the permanent magnet
synchronous motor. The Euler integration method, the
trapezoidal method and the backward rectangular rule are
compared. The paper finds that, under ideal conditions, at high
frequency, the trapezoidal method gives very good results
while the Euler and backward method are inaccurate in both
magnitude and phase. Under real conditions, however,
although it still performs the best, the trapezoidal method does
not provide the expected accuracy — the lag angle of the
estimates is better than that obtained with the backward
method but is quite comparable with the lead angle yielded by
the Euler method. The errors introduced by integration are
relevant for direct field oriented motor drives running at high
speed — for accurate control, the angle of the estimates should
be corrected since the angle errors propagate in the estimated



rotor position. The errors associated with discrete-time
integration depend on four factors: the frequency of the
signals to be integrated, the sampling time, the bandwidth of
the quasi-low pass filter and the discretization method used.
At high frequency, for accurate control, a correction algorithm
for the estimates may be needed.
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