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Abstract – The paper discusses the problem of integrating the 
equations of state observers associated with direct field 
orientation (DFO) of motor drives and studies the influence of 
the discretization method used on the accuracy of integration. In 
a typical implementation, discrete-time integration is done using 
Euler’s discretization method (forward rectangular rule) – the 
method is simple and integration is accurate when the drive 
operates at low and medium speed. However, as the frequency 
increases, the integration becomes inaccurate because the Euler 
approximation starts losing more and more area from under the 
curve. Theoretically, the problem could be alleviated by 
increasing the sampling frequency; however, this cannot always 
be done. Another idea would be to adopt a more accurate (but 
more computationally intensive) integration method, for 
example, trapezoidal integration (Tustin method). The paper 
shows that, at high frequency, under ideal conditions, trapezoidal 
integration performs better than the Euler method. In a real 
implementation, however, conditions are non-ideal since the 
measured signals bring dc offsets and imperfections into the 
terms to be integrated – as a result, pure integration must be 
replaced with quasi-low pass filtering. Under these conditions, 
the paper compares the Euler, Tustin and backward rectangular 
methods from the point of view of integration accuracy. The 
implications related to direct field orientation of motor drives are 
studied by considering a full-order observer for the PMSM – this 
is discretized using the three methods considered and the results 
are compared. At high frequency, neither integration method 
gives perfect results; the Euler method yields a waveform that 
leads the expected one while the backward rectangular method 
yield a waveforms that lags it. The paper finds that, surprisingly, 
when quasi-low pass filtering is used, the Tustin method is not 
significantly more accurate than the other ones – the waveform 
obtained lags the expected one by an angle comparable with the 
lead angle of the Euler method. It is shown that the integration 
accuracy depends on the frequency, sampling time, filter 
bandwidth and on the integration method used. Accurate high 
frequency drive DFO control would require correction of the 
magnitude/phase of the estimates.  

Keywords: discrete-time integration, Euler method, forward 
rectangular rule, Tustin method, trapezoidal integration, 
backward rectangular rule, permanent magnet synchronous 
motor, rotor position estimation, state observers. 

I. INTRODUCTION 

Direct Field Orientation (DFO) is a well-known estimation 
method used to obtain the rotor position needed for field 
oriented control of ac motor drives [1]-[4], [5]-[7]. The 
method is widely used to secure field orientation in sensorless 

schemes for the permanent magnet synchronous motor and for 
the induction motor [8]-[15]. In DFO, the rotor position angle 
(angle of the rotor flux) is obtained using the ି݊ܽݐଵ function 
of the stationary reference frame fluxes or EMF components 
of the motor. Generally, an observer is used to estimate these 
quantities. Full-order observers [16][17], reduced-order 
observers [18]-[20], sliding mode observers [21]-[23] or the 
Extended Kalman Filter can be used [24][25]. Since the 
observer is constructed based on the motor’s model in the 
stationary reference frame, all the quantities involved 
(voltages, currents, fluxes, EMFs etc) are theoretically 
sinusoidal quantities. Implementation of the observer requires 
(at a minimum) to measure the voltages and currents. With the 
sensors and interfacing circuitry involved in a typical motor 
drive, the measured quantities (which should theoretically be 
sinusoidal) appear in the controller corrupted by dc offsets, 
distorted, nonsinusoidal and usually containing noise. As a 
result, when the observer equations are integrated, to avoid the 
output divergence, the integrators must be replaced by quasi-
low pass filters [26][27]. 

From the point of view of the integration process, given a 
function (curve) ݔሺݐሻ whose integral must be obtained, the 
discrete-time integration methods available implement an 
approximation to computing the area underneath the curve 
[28]. For example, the Euler method obtains the integral by 
successively adding rectangular areas – each area is of the 
form ݔ ௌܶ (note that, at sampling time ݇, the last area added to 
the integral is ݔିଵ ௌܶ). Similarly, the backward rectangular 
rule computes the area under the curve also based on 
rectangles; the difference is that at sampling time ݇, the last 
area added to the integral is ݔ ௌܶ, thus, the rectangles extend 
“backwards” towards the previous samples of ݔሺݐሻ. However, 
the backward rectangular rule is rarely used since it can 
produce unstable discrete-time filters. 

Finally, the trapezoidal method (Tustin method) computes 
the integral by using trapezes whose areas are of the form 
ೄ
మ
ሺݔିଵ   ሻ. From an intuitive point of view, theݔ

trapezoidal method seems to be more accurate compared to 
the other ones since this approximation loses the smallest 
amount of area from under the curve. However, if the 
sampling time is sufficiently small, the loss of area is small no 
matter what integration method is used. With small sampling 
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with quasi-low pass filters (
ଵ

௦
 is replaced with 

ଵ

௦ା
  is the ܤ ;(

bandwidth of the filter.   
Table III shows the continuous to discrete-time 

correspondence of the transfer functions with the integration 
methods considered, when quasi-low pass filtering is used. 
These transfer functions will be used to integrate the equations 
of the observer studied. 
 

 TABLE III – CONTINUOUS TO DISCRETE-TIME EQUIVALENCE 
OF QUASI-LOW PASS FILTERS 

 
Method Discrete equivalent 

 
Forward 
Rectangular 
Rule (Euler) 

 
1

ݏ  ܤ
→ ௌܶ

ݖ െ ሺ1 െ ܤ ௌܶሻ
 

 
Trapezoidal 
method  
(Tustin method) 

 
1

ݏ  ܤ
→ ௌܶ

2
ݖ  1

ቀ1 
ܤ ௌܶ
2 ቁ ݖ െ ቀ1 െ

ܤ ௌܶ
2 ቁ

 

 
Backward 
Rectangular 
Rule 

 
1

ݏ  ܤ
→ ௌܶݖ
ሺ1  ܤ ௌܶሻݖ െ 1

 

III. MODELING OF PMSM AND DESIGN OF A 

FULL-ORDER OBSERVER FOR THE PMSM 

To develop the model of the PMSM, consider the flux 
components ߣெఈ,  ெఉ which are obtained by projecting theߣ
PM flux vector on the stationary reference frame. They are:  

൜
ெఈߣ ൌ ߠݏெܿߣ
ெఉߣ ൌ ߠ݊݅ݏெߣ

  (1) 

where ߠ ൌ ߱ݐ is the rotor position angle and ߣெ ൌ  ாܭ
(whereܭா is the EMF constant).  

The EMFs ݁ఈ, ఉ݁ of the PMSM are defined as the 
derivatives of the permanent magnet fluxes: 

൜
݁ఈ ൌ ெఈߣ ൌ െܭா߱ߠ݊݅ݏ
ఉ݁ ൌ ெఉߣ ൌ ߠݏா߱ܿܭ

  (2) 

For sinusoidal PMSM machines constructed with rotor 
mounted magnets, the flux produced by the stator winding 
sees a large effective airgap. Since the magnetic material has 
low permeability, the effective airgap seen by the stator 
winding consists of the mechanical airgap plus the thickness 
of the magnet; as a result, the armature reaction is small and 
these machines have low inductance. On the other hand, the 
magnets are relatively heavy which increases the inertia of the 
rotor, resulting in a wide separation between the electrical and 
the mechanical time constants of the machine. It is therefore 
quite reasonable to consider that the speed of the motor varies 
much slower than the electrical quantities ( ሶ߱  ൎ 0ሻ. To 
complete the model of the PMSM, the EMFs in (2) are 
differentiated with this assumption. 

When the stator equations are included, the model of the 
PMSM with respect to the currents and EMFs is: 

ە
ۖ
۔

ۖ
ۓ

ఈ݁ ൌ െ߱ ఉ݁
 ఉ݁ ൌ ߱݁ఈ

ఈ݅ ൌ െ
ோ


݅ఈ െ

ଵ


݁ఈ 

ଵ

 ఈܸ

ఉ݅ ൌ െ
ோ


݅ఉ െ

ଵ

 ఉ݁ 
ଵ

 ఉܸ

  (3) 

In matrix form, this can be written as:  

 ൦

݁ఈ
ఉ݁

݅ఈ
݅ఉ

൪ ൌ

ۏ
ێ
ێ
ێ
ۍ
0 െ߱ 0 0
߱ 0 0 0
െభ

ಽ
0 െೃ

ಽ
0

0 െభ
ಽ

0 െೃ
ಽے
ۑ
ۑ
ۑ
ې
൦

݁ఈ
ఉ݁

݅ఈ
݅ఉ

൪ 

ۏ
ێ
ێ
ۍ
0 0
0 0
భ
ಽ

0
0 భ

ಽے
ۑ
ۑ
ې
 ఈܸ

ఉܸ
൨    (4) 

With the currents as measured quantities, the output equations 
are: 


݅ఈ
݅ఉ
൨ ൌ ቂ0 0 1 0

0 0 0 1
ቃ ሾ݁ఈ ఉ݁ ݅ఈ ݅ఉሿ்  (5) 

Based on (4) and (5), a full-order observer can be designed to 
estimate the states of the PMSM model – this observer is 
designed based on continuous feedback of the current errors. 
Using linear observer design methods, the equations are: 



ۏ
ێ
ێ
ۍ
݁̂ఈ
݁̂ఉ
ଓఈ̂
ଓఉ̂ ے
ۑ
ۑ
ې
ൌ

ۏ
ێ
ێ
ێ
ۍ
0 െ߱ 0 0
߱ 0 0 0

െଵ


0 െோ


0

0 െଵ


0 െோ
ے
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ۍ
݁̂ఈ
݁̂ఉ
ଓఈ̂
ଓఉ̂ ے
ۑ
ۑ
ې


ۏ
ێ
ێ
ێ
ۍ
0 0
0 0
ଵ


0

0 ଵ
ے
ۑ
ۑ
ۑ
ې

 ఈܸ

ఉܸ
൨  

൦

݈ଵଵ ݈ଵଶ
݈ଶଵ ݈ଶଶ
݈ଷଵ ݈ଷଶ
݈ସଵ ݈ସଶ

൪ 
ଓఈ̅
ଓఉ̅
൨    (6) 

where gains ݈ଵଵ through ݈ସଶ should be designed and the 
current errors are:  

 
ଓఈ̅
ଓఉ̅
൨ ൌ 

ଓఈ̂
ଓఉ̂
൨ െ 

݅ఈ
݅ఉ
൨   (7) 

In the development of the observer, the voltages ఈܸ , ఉܸ and 
currents ݅ఈ, ݅ఉ are measured; the speed ߱ is considered 
known. Since matrix ܣ is time-varying (depends on	߱) the 
observer gains are designed based on Lyapunov’s nonlinear 
stability method. They are:  

ە
ۖ
۔

ۖ
ۓ ݈ଵଵ ൌ ݈ଶଶ ൌ

ଵ


݈ଵଶ ൌ ݈ଶଵ ൌ 0
݈ଷଶ ൌ ݈ସଵ ൌ 0	
݈ଷଵ ൌ ݈ସଶ ൌ െ݇

  (8) 

where ݇ is a design parameter,	݇  0. A comprehensive 
stability analysis and the step by step design procedure for the 
gains of this observer can be found in [x]. 

With the gains (8), the equations of this observer are: 

ە
ۖ
۔

ۖ
ۓ

ఈ̂݁ ൌ െ߱݁̂ఉ 
భ
ಽ
ଓఈ̅

ఉ̂݁ ൌ ߱݁̂ఈ 
భ
ಽ
ଓఉ̅

ଓ̂ఈ ൌ െ
ோ


ଓఈ̂ െ

ଵ


݁̂ఈ 

ଵ

 ఈܸ െ ݇ଓఈ̅

ଓఉ̂ ൌ െ
ோ


ଓఉ̂ െ

ଵ


݁̂ఉ 

ଵ

 ఉܸ െ ݇ଓఉ̅

 (9) 

In the paper, this observer is used to study the accuracy of the 
integration methods considered.  
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rotor position. The errors associated with discrete-time 
integration depend on four factors: the frequency of the 
signals to be integrated, the sampling time, the bandwidth of 
the quasi-low pass filter and the discretization method used. 
At high frequency, for accurate control, a correction algorithm 
for the estimates may be needed.       
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