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a b s t r a c t

We consider the problem of global stabilization by state feedback for a class of high-order nonlinear
systems with time-delay. By developing a novel dynamic gain-based backstepping approach, a state
feedback controller independent of the time-delay is explicitly constructed with the help of appropriate
Lyapunov–Krasovskii functionals. The precise knowledge (even the upper bound) of the time-delay is not
required. It is proved that the states of the nonlinear time-delay systems can be regulated to the origin
while all the closed loop signals are globally bounded. Finally, both physical and academic examples are
given to illustrate the applications of the proposed scheme.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we consider the state feedback control for a class
of high-order nonlinear time-delay systems via the Lyapunov–
Krasovskii method:

ẋi (t) = xpii+1 (t) + gi (x̄i (t)) + fi (x̄i (t − d)) ,

i = 1, . . . , n − 1,
ẋn (t) = u (t) + gn (x (t)) + fn (x (t − d)) ,

x(τ ) = ζ (τ ), τ ∈ [−d, 0], (1)

where x = [x1, . . . , xn]T ∈ Rn is the state vector, x̄i = [x1, . . . ,
xi]T , u ∈ R is the system input, pi are odd integers, gi and fi
are locally Lipschitz functions and not necessary to be completely
known, the nonnegative constant d denotes the unknown time-
delay, and ζ (τ ) ∈ Rn is a continuous function vector defined on
[−d, 0].

High-order nonlinear system (1) in the absence of time-delay
has been widely studied in [1–3]. It is pointed out in [1] that global
stabilization of the system (1) without time-delay can be achieved
by state feedback under a high-order version of feedback lineariz-
able condition.
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When pi = 1, 1 ≤ i ≤ n − 1, the system (1) reduces to
the well-known strict feedback systemwith time-delay. In [4], the
author extended the backstepping method [5,6] to such a nonlin-
ear time-delay system and designed a memoryless state feedback
controller using the Lyapunov–Krasovskiimethodwhich, however,
was proved incorrect later by [7,8]. The problem existing in [4] is
that the Lyapunov functions in the traditional backstepping design
are no longer effective for the nonlinear time-delay systems and
the virtual control signals are too hard to design. By employing the
idea of changing supply functions [9], this problemwas solved for a
class of lower-triangular systems in [10]with the knowledge of the
upper bound of the time-delay. A more general class of nonlinear
time-delay systems was investigated in [11], but the delay ampli-
tude knowledge was still required. When some restrictive growth
conditions [12,13] are imposed on the systemnonlinearities, global
output feedback stabilization can be achieved. Note that the prob-
lem in [4] can be avoided for these output feedback schemes be-
cause the construction of the Lyapunov–Krasovskii functional is
necessary in one step.

When pi > 1, the system (1) is in the high-order strict-feedback
form [1] with time-delay. While the Jacobian linearization is un-
controllable, the mentioned system is not feedback linearizable.
If we apply adding a power integrator technique [1] to the con-
troller design by using the Lyapunov–Krasovskii method, the same
problem in [4] will occur and become more complicated for such
high-order systems. Under restrictive growth conditions, output
feedback control was considered in [14,15] for high-order time-
delay systems which, by the same reason as those for pi = 1
[12,13], can also avoid the problem in [4]. Indeed, compared with
output feedback control, state feedback control for the nonlinear
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time-delay systems is a more challenging issue. It remains unclear
and open how a memoryless state feedback controller can be con-
structed for the system (1) to achieve global asymptotic stabiliza-
tion in the sense that, for any initial conditions x (t0) , −d ≤ t0 ≤ 0,
the state x converges to the origin and all the closed loop signals are
bounded. Hence, a new tool is required for the global stabilization
problem.

The main objective of this paper is to give a solution to global
state feedback stabilization of the high-order nonlinear time-delay
system (1) and in particular, to circumvent the long-standing
problem in [4]. For this purpose, we develop a novel dynamic
gain-based backstepping approachwhich, in addition, introduces a
dynamic gain in each step of the recursive design. A key feature of
the proposed dynamic gain-based backstepping technique is that
the Lyapunov function is chosen in a new recursive manner with
appropriately designed gain-based Krasovskii functionals. Owing
to the introduction of the dynamic gains, additional negative
terms appear in the derivative of the Lyapunov function, which
can be used to counteract stronger system nonlinearities. As a
result, a memoryless state feedback controller can be constructed.
Moreover, the upper bound of the time-delay is not required to be
known a priori. It is shown that the system states can be regulated
to the origin while all the closed loop signals are globally bounded.
Finally, numerical examples are given to show the effectiveness of
the proposed scheme.

2. Preliminary lemmas

In this section, we shall introduce two technical lemmas which
are useful for the controller design and stability analysis.

Lemma 1. For any positive integers m, n and any positive function
f (x, y) : R2

→ R+, the following inequality holds

|x|m |y|n ≤
m

m + n
f (x, y) |x|m+n

+
n

m + n
f −m/n (x, y) |y|m+n . (2)

Proof. The reader may refer to [1] for the proof of this lemma.

Lemma 2. For any nonnegative smooth function f (x1, . . . , xn) and
positive integer k, there exist nonnegative smooth functions fi (x1,
. . . , xi) , 1 ≤ i ≤ n, such that

f (x1, . . . , xn)
n

i=1

|xi|k ≤

n
i=1

fi (x1, . . . , xi) |xi|k . (3)

Proof. Define a nonnegative continuous function1

f̄ (r) = max
x∈Br

|f (x)| , Br =

x : ∥x∥2

≤ r, r ≥ 0

, (4)

where x = [x1, . . . , xn]T . It is known that any continuous function
f̄ (r) : [0, +∞) → R can be dominated by a smooth nondecreas-
ing function f ∗ (r), i.e., f̄ (r) ≤ f ∗ (r). Note that f (x) ≤ f̄


∥x∥2.

Then, we can obtain that

f (x) ≤ f̄

∥x∥2

≤ f ∗

∥x∥2

= f ∗

x21 + · · · + x2n


≤ f ∗


nx21


+ · · · + f ∗


nx2n


. (5)

1 Throughout the paper, we use ∥·∥ to denote the Euclidean norm of a vector or
the corresponding induced norm of a matrix.
For 1 ≤ i, j ≤ n, we have

f ∗

nx2i

 xjk =

f ∗


nx2i


− f ∗ (0)

 xjk + f ∗ (0)
xjk

≤ fij (xi) |xi|
xjk + f ∗ (0)

xjk
≤ f̄ij (xi) |xi|k+1

+
xjk+1

+ f ∗ (0)
xjk , (6)

where to obtain the last inequality, Lemma 1 has been used by con-
sidering fij (xi) |xi| as one part, and fij (xi) and f̄ij (xi) are some non-
negative smooth functions. With (5) and (6), it is not difficult to
prove that Lemma 2 holds.

3. Main results

To achieve global stabilization of the nonlinear time-delay
systems, the following assumptions have been made for (1).

A.1: p1 ≥ · · · ≥ pn−1 ≥ pn = 1.
A.2: The nonlinearities gi (x̄i) and fi (x̄id) , 1 ≤ i ≤ n, satisfy2

|gi (x̄i)| ≤ γi (x̄i)

|x1|pi + · · · + |xi|pi


,

|fi (x̄id)| ≤ σi (x̄id)

|x1d|pi + · · · + |xid|pi


, (7)

for known nonnegative smooth functions γi and σi.

Remark 1. Without considering the time-delay, the above hy-
potheses can be viewed as a high-order version of feedback lin-
earizable condition, whose global stabilization problem has been
solved in [1] by means of adding a power integrator. However, the
presence of time-delay makes it impossible to implement the con-
ventional recursive design. Specifically, the virtual controllers can-
not be well defined to counteract the time-delay nonlinearities,
which may result from the utilization of inappropriate Lyapunov
functions. Therefore, it is necessary to find appropriate Lyapunov
functions for global stabilization of the nonlinear time-delay sys-
tems. In this paper, a new recursive designmethod is developed by
introducing one dynamic gain and the corresponding gain-based
Lyapunov function at each step. Togetherwith Krasovskii function-
als, the designed controller guarantees global stability of the closed
loop system.

Remark 2. It should be pointed out that when the functions
gi (x̄i) + fi (x̄id) are replaced by fi (x, xd) in the right-hand side of
(1), the condition

|fi (x, xd)| ≤ σi (x̄i, x̄id)
i

j=1

xjpi + xjdpi (8)

is equivalent to (7). In fact, according to the inequalities (5) and (6)
in the proof of Lemma 2, we have |fi (x, xd)| ≤ σi1 (x̄i)

i
j=1

xjpi
+ σi2 (x̄id)

i
j=1

xjdpi for some nonnegative smooth functions
σi1 (x̄i) and σi2 (x̄id). Here, the expressions gi (x̄i) + fi (x̄id) are used
only for the sake of a better understanding of our proposedmethod.

Now, we are ready to present the main results of the paper.

Theorem 1. Consider the nonlinear time-delay system (1) satisfying
the hypotheses A.1 and A.2. Then, a (n − 1)th-order memoryless
state feedback controller can be constructed to globally asymptotically
stabilize the mentioned system in the sense that, for any continuous
initial conditions x (t0) , −d ≤ t0 ≤ 0, the state x converges to the
origin while all the signals of the closed loop system are bounded.

2 In this paper, for simplicity, we let ςd denote the corresponding delay term
ς (t − d). For instance, x1d = x1 (t − d) and fi (x̄id) = fi(x̄i(t − d)).
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Proof. The memoryless state feedback controller is designed
based on a dynamic gain-based backstepping approach.

Step 1: The derivative of S1 = x1 by viewing (1) is computed as

Ṡ1 = xp12 + g1 (x1) + f1 (x1d) . (9)

Let S2 = x2 − α1 with

α1 = −β
1/p1
1 (S1) S1, (10)

where β1 is a positive smooth design function. From (10), it
can be seen that the difference between our proposed method
and [11] is that the upper bound knowledge of the time-delay is
not required in the virtual controller design. The same feature is
also possessed by the subsequent recursive design. Consider the
Lyapunov function

V1 =
S21
2

+
S21
2l1

, (11)

where l1 is a dynamic gain updated by

l̇1 = Sp1−1
1 max


−2l21 + l1ρ1 (S1) , 0


, l1 (0) = 1 (12)

with ρ1 a positive smooth function to be determined. Note that
the right-hand side of the differential equation (12) is locally
Lipschitz in (S1, l1). Some important properties of l1 to be used in
the following are listed here

0 ≤ l̇1 ≤ l1ρ1S
p1−1
1 ,

l̇1 ≥ −2l21S
p1−1
1 + l1ρ1S

p1−1
1 ,

l1 ≥ l1d ≥ 1. (13)

Using (13), the derivative of V1 is computed as

V̇1 =


1 +

1
l1


S1


xp12 − α

p1
1 − β1S

p1
1 + g1 + f1


−

l̇1
2l21

S21

≤ − (β1 − 1) Sp1+1
1 + 2

S1 
xp12 − α

p1
1


+ 2 |S1g1| + 2 |S1f1| −

ρ1

2l1
Sp1+1
1 . (14)

By Lemma 1 and the assumption A.2, the following inequalities
hold

2
S1 

xp12 − α
p1
1

 = 2

S1S2 p1
i=1

xp1−i
2 αi−1

1


≤ Sp1+1

1 + φ2 (S1, S2) S
p1+1
2 ,

2 |S1f1| ≤ Sp1+1
1 + σ̄1 (S1d) S

p1+1
1d (15)

for some nonnegative smooth functions φ2 and σ̄1. From (15) it
follows that

V̇1 ≤ − (β1 − 3 − 2γ1) S
p1+1
1 + φ2S

p1+1
2

+ σ̄1 (S1d) S
p1+1
1d −

ρ1

2l1
Sp1+1
1 . (16)

Define the Lyapunov–Krasovskii functional

V1KL = V1 +

 t

t−d
σ̄1 (S1 (τ )) Sp1+1

1 (τ ) dτ , (17)

whose time derivative by viewing (16), satisfies

V̇1KL ≤ − (β1 − Υ1) S
p1+1
1 + φ2S

p1+1
2 −

ρ1

2l1
Sp1+1
1 , (18)

where Υ1 (S1) = 3 + 2γ1 + σ̄1. It is seen that by introducing
the dynamic gain and the corresponding gain-based Lyapunov
function, an additional term −ρ1S
p1+1
1 / (2l1) is generated in V̇1,

which can be used to counteract the terms associated with α1
appearing in the next steps.

Step 2: The derivative of S2 = x2 − α1 by viewing (1) and (10),
is computed as

Ṡ2 = xp23 + ḡ2 + f̄2, (19)

where

ḡ2 = g2 (x1, x2) −
∂α1

∂x1


xp12 + g1 (x1)


,

f̄2 = f2 (x1d, x2d) −
∂α1

∂x1
f1 (x1d) . (20)

Let S3 = x3 − α2 with

α2 = −l1/p21 β
1/p2
2 (S1, S2) S2, (21)

where β2 is a positive smooth design function. Consider the
Lyapunov function

V2 = V1KL +
Sp1−p2+2
2

(p1 − p2 + 2) l1
+

Sp1−p2+2
2

(p1 − p2 + 2) l1l2
. (22)

The dynamic gain l2 is updated by

l̇2 = l1S
p2−1
2 max


− (p1 − p2 + 2) l22

+ l2ρ2 (l1, S1, S2) , 0} , l2 (0) = 1 (23)

with a positive smooth function ρ2 to be determined. From (23), l2
owns similar properties to l1. Moreover, it can be proved by con-
tradiction3 that if (l1, S1, S2) are bounded on the right maximum
time interval [0, Tf ) for some Tf ∈ (0, +∞], then l2 is bounded on
[0, Tf ). Differentiating V2 yields

V̇2 ≤ − (β1 − Υ1) S
p1+1
1 + φ2S

p1+1
2 −

ρ1

2l1
Sp1+1
1

+
1
l1


1 +

1
l2


Sp1−p2+1
2


xp23 − α

p2
2 − l1β2S

p2
2 + ḡ2 + f̄2


−

l̇1S
p1−p2+2
2

(p1 − p2 + 2) l21
−


l̇1l2 + l1 l̇2


Sp1−p2+2
2

(p1 − p2 + 2) l21l
2
2

≤ − (β1 − Υ1) S
p1+1
1 −

ρ1

2l1
Sp1+1
1 − (β2 − 1 − φ2) S

p1+1
2

+ 2
Sp1−p2+1

2


xp23 − α

p2
2

 + 2
Sp1−p2+1

2 ḡ2


+
2
l1

Sp1−p2+1
2 f̄2

 −
ρ2

(p1 − p2 + 2) l2
Sp1+1
2 , (24)

where the properties of l1 and l2 have been used. According to Lem-
mas 1–2, the assumptions A.1–A.2 and the fact l1 ≥ l1d ≥ 1, we
have

2
Sp1−p2+1

2


xp23 − α

p2
2

 ≤ Sp1+1
2 + φ3 (l1, S1, S2, S3) S

p1+1
3 ,

2
Sp1−p2+1

2 ḡ2
 ≤ Sp1+1

1 + γ̄2 (S1, S2) S
p1+1
2 ,

3 Note that l2(t) is a positive nondecreasing function of time t . Suppose
limt→Tf l2(t) = ∞. Then, from (23), the smoothness of ρ2(l1, S1, S2) and the
boundedness of (l1, S1, S2), there must exist a time T1 ∈ (0, Tf ) such that l̇2 ≡ 0 on
(T1, Tf ). Therefore, l2(t) = l2(T1) +

 t
T1

l̇2(s)ds = l2(T1) on (T1, Tf ), a contradiction.
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2
l1

Sp1−p2+1
2 f̄2

 ≤ γ ∗

2 (S1, S2) S
p1+1
2 +

1
l1d

σ̄21 (x1d) x
p1+1
1d

+
1
l1d

σ̄22 (x1d, x2d) x
p1+1
2d

≤ γ ∗

2 (S1, S2) S
p1+1
2 +

1
l1d

ρ̄21 (S1d) S
p1+1
1d

+ ρ̄22 (S1d, S2d) S
p1+1
2d (25)

for some nonnegative smooth functions φ3, γ̄2, γ
∗

2 , σ̄2i and ρ̄2i, i =

1, 2. Define the Lyapunov–Krasovskii functional

V2KL = V2 +

 t

t−d


1

l1 (τ )
ρ̄21 (S1 (τ )) Sp1+1

1 (τ )

+ ρ̄22 (S1 (τ ) , S2 (τ )) Sp1+1
2 (τ )


dτ , (26)

whose time derivative by viewing (24) and (25), satisfies

V̇2KL ≤ − (β1 − Υ1 − 1) Sp1+1
1 − (β2 − Υ2) S

p1+1
2 + φ3S

p1+1
3

−
ρ1

2l1
Sp1+1
1 +

1
l1

ρ̄21S
p1+1
1 −

ρ2

(p1 − p2 + 2) l2
Sp1+1
2 , (27)

where Υ2 (S1, S2) = 2+φ2 + γ̄2 + γ ∗

2 + ρ̄22. Because ρ̄21 is related
to β1, the term l−1

1 ρ̄21S
p1+1
1 cannot be eliminated by choosing β1.

However, the introduction of the dynamic gain l1 makes it possible
to eliminate l−1

1 ρ̄21S
p1+1
1 by the term −ρ1S

p1+1
1 / (2l1).

Step i (3 ≤ i ≤ n − 1): The derivative of Si = xi − αi−1 by
viewing (1) and αi−1 given by the previous step, is computed as

Ṡi = xpii+1 + ḡi + f̄i, (28)

where

ḡi = gi (x̄i) −

i−1
j=1

∂αi−1

∂xj


x
pj
j+1 + gj


x̄j


−

i−2
j=1

∂αi−1

∂ lj
l̇j,

f̄i = fi (x̄id) −

i−1
j=1

∂αi−1

∂xj
fj

x̄jd


. (29)

Let Si+1 = xi+1 − αi with

αi = − (l1 · · · li−1)
1/pi β

1/pi
i (l1, . . . , li−2, S1, . . . , Si) Si, (30)

where βi is a positive smooth design function. Suppose by induc-
tion that at step i− 1, there are a positive definite and radially un-
bounded Lyapunov function Vi−1KL and a change of coordinates

S1 = x1,

S2 = x2 − α1, α1 = −β
1/p1
1 (S1) S1,

...

Si = xi − αi−1, αi−1 = − (l1 · · · li−2)
1/pi−1

× β
1/pi−1
i−1 (l1, . . . , li−3, S1, . . . , Si−1) Si−1, (31)

such that

V̇(i−1)KL ≤ −

i−1
j=1


βj − i + j + 1 − Υj


Sp1+1
j + φiS

p1+1
i

−

i−1
j=1

ρj
p1 − pj + 2


lj
Sp1+1
j

+

i−2
j=1

i−1
k=j+1

1
lj
ρ̄kjS

p1+1
j . (32)
Then, consider the Lyapunov function

Vi = V(i−1)KL +
Sp1−pi+2
i

(p1 − pi + 2) l1 · · · li−1

+
Sp1−pi+2
i

(p1 − pi + 2) l1 · · · li
. (33)

The dynamic gain li is updated by

l̇i = l1 · · · li−1S
pi−1
i max


− (p1 − pi + 2) l2i

+ liρi (l1, . . . , li−1, S1, . . . , Si) , 0} , li (0) = 1 (34)

with a positive smooth function ρi to be determined. Differentiat-
ing Vi yields

V̇i ≤ −

i−1
j=1


βj − i + j + 1 − Υj


Sp1+1
j

−

i−1
j=1

ρj
p1 − pj + 2


lj
Sp1+1
j +

i−2
j=1

i−1
k=j+1

1
lj
ρ̄kjS

p1+1
j

− (βi − 1 − φi) S
p1+1
i + 2

Sp1−pi+1
i


xpii+1 − α

pi
i


+ 2

Sp1−pi+1
i ḡi

 +
2

l1 · · · li−1

Sp1−pi+1
i f̄i


−

ρi

(p1 − pi + 2) li
Sp1+1
i . (35)

Similar to (25), it can be checked that

2
Sp1−pi+1

i


xpii+1 − α

pi
i


≤ Sp1+1

i + φi+1 (l1, . . . , li−1, S1, . . . , Si+1) S
p1+1
i+1 ,

2
Sp1−pi+1

i ḡi


≤

i−1
j=1

Sp1+1
j + γ̄i (l1, . . . , li−2, S1, . . . , Si) S

p1+1
i ,

2
l1 · · · li−1

Sp1−pi+1
i f̄i

 ≤ γ ∗

i (l1, . . . , li−2, S1, . . . , Si) S
p1+1
i

+
1

l1d · · · li−1d

i
j=1

σ̄ij

x1d, . . . , xjd


xp1+1
jd

≤ γ ∗

i (l1, . . . , li−2, S1, . . . , Si) S
p1+1
i

+

i−1
j=1

1
ljd

ρ̄ij

l1d, . . . , lj−1d, S1d, . . . , Sjd


Sp1+1
jd

+ ρ̄ii (l1d, . . . , li−2d, S1d, . . . , Sid) S
p1+1
id (36)

for some nonnegative smooth functions φi+1, γ̄i, γ
∗

i , σ̄ij, and
ρ̄ij, 1 ≤ j ≤ i. Note that ρ̄ij, 1 ≤ j ≤ i − 1, only depends on
α1, . . . , αj. Define the Lyapunov–Krasovskii functional

ViKL = Vi +

 t

t−d


i−1
j=1

1
lj (τ )

ρ̄ij

l1 (τ ) , . . . , lj−1 (τ ) ,

S1 (τ ) , . . . , Sj (τ )

Sp1+1
j (τ ) + ρ̄ii (l1 (τ ) , . . . ,

li−2 (τ ) , S1 (τ ) , . . . , Si (τ )) Sp1+1
i (τ )


dτ , (37)
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whose time derivative by viewing (35) and (36), satisfies

V̇iKL ≤ −

i
j=1


βj − i + j − Υj


Sp1+1
j

+φi+1S
p1+1
i+1 −

i
j=1

ρj
p1 − pj + 2


lj
Sp1+1
j

+

i−1
j=1

i
k=j+1

1
lj
ρ̄kjS

p1+1
j , (38)

where Υi (l1, . . . , li−2, S1, . . . , Si) = 2 + φi + γ̄i + γ ∗

i + ρ̄ii.
Step n: The derivative of Sn = xn −αn−1 by viewing (1) and (30)

with i = n − 1, is computed as

Ṡn = u + gn (x) + fn (xd) −

n−2
i=1

∂αn−1

∂ li
l̇i

−

n−1
i=1

∂αn−1

∂xi


xpii+1 + gi (xi) + fi (xid)


. (39)

Finally, the actual control u is chosen as

u = −l1 · · · ln−1βn (l1, . . . , ln−2, S1, . . . , Sn) Sn (40)

with βn a positive smooth design function. Consider the Lyapunov
functions

Vn = V(n−1)KL +
Sp1+1
n

(p1 + 1) l1 · · · ln−1
,

VnKL = Vn +

 t

t−d


n−1
i=1

1
li (τ )

ρ̄ni (l1 (τ ) , . . . , li−1 (τ ) ,

S1 (τ ) , . . . , Si (τ )) Sp1+1
i (τ ) + ρ̄nn (l1 (τ ) , . . . ,

ln−2 (τ ) , S1 (τ ) , . . . , Sn (τ )) Sp1+1
n (τ )


dτ , (41)

where ρ̄ni, 1 ≤ i ≤ n, are nonnegative smooth functions. The
derivative of VnKL satisfies

V̇nKL ≤ −

n
i=1

(βi − n + i − Υi) S
p1+1
i

−

n−1
i=1

ρi

(p1 − pi + 2) li
Sp1+1
i +

n−1
i=1

n
j=i+1

1
li
ρ̄jiS

p1+1
i , (42)

where Υn (l1, . . . , ln−2, S1, . . . , Sn) is a nonnegative smooth func-
tion. Choosing the design functions βi, ρi such that

βi ≥ n − i + Υi + c, 1 ≤ i ≤ n,

ρi ≥ (p1 − pi + 2)
n

j=i+1

ρ̄ji, 1 ≤ i ≤ n − 1 (43)

for a positive constant c , we arrive at

V̇n ≤ −c
n

i=1

Sp1+1
i , (44)

which implies that S1, S
p1−pi+2
i / (l1 · · · li−1) , 2 ≤ i ≤ n, are

bounded on the right maximum time interval [0, Tf ). Note that if
l1, . . . , li−1, S1, . . . , Si are bounded, then it can be proved from the
updated law (34) that li is bounded. Therefore, the boundedness of
S1, l1, S2, l2, . . . , Sn−1, ln−1, Sn can be proved one by one,which fol-
lows that x is bounded. Hence, Tf = +∞. Moreover, (44) implies
that S1, . . . , Sn converge to zero asymptotically. Using the change
of coordinates S1 = x1, Si = xi − αi−1, 2 ≤ i ≤ n, the convergence
of x can be inferred, i.e., global asymptotic stabilization of system
(1) can be achieved via the proposed approach. This completes the
proof. �

Remark 3. From the above analysis, it is clear that the main dif-
ference between the proposed dynamic gain-based backstepping
approach and the conventional backstepping approach is that, by
introducing a dynamic gain at each design step, the Lyapunov func-
tion is constructed in a new recursive manner. Such a design pro-
cedure produces additional negative terms in the derivative of the
Lyapunov function which, compared with the conventional back-
stepping design, is able to eliminate the effects of stronger system
nonlinearities. Notice that the dynamic gains do not converge to
the origin but a positive constant. Therefore, one may call the con-
sidered stabilization problem a regulation problem.

Remark 4. When pi = 1, 1 ≤ i ≤ n − 1, as a special case, our
proposed approach gives a solution to the state feedback control
of the strict feedback system [5,6] with time-delay. In particular,
the difficulty encountered in [4] can be circumvented by using our
controller design.

Remark 5. In this paper, the time-delay d is an unknown constant
and the upper bound of d is not required in the controller design.
It should be pointed out that if the time-delay is nonnegative
bounded time-varying function d (t), the main results still hold
under the condition ḋ ≤ d̄ < 1 for a known constant d̄.

Remark 6. The design functions β1, ρ1, β2, ρ2, . . . , βn−1, ρn−1, βn
are chosen recursively such that (43) holds. The functions Υi
and ρ̄ji depend on the system nonlinearities and can be directly
determined by using the assumptions A.1–A.2, Lemmas 1–2, (15),
(25) and (36).

4. Illustrative examples

In this section, we use both academic and physical examples to
illustrate the applications of our scheme.

Example 1. Consider the following second-order plant

ẋ1 (t) = x32 (t) ,

ẋ2 (t) = u (t) + 0.5x22 (t − d) , (45)

where d denotes the unknown time-delay. Obviously, (45) satisfies
the assumptions A.1–A.2 and therefore, it can be globally stabilized
by the memoryless state feedback controller given in Section 3.
Following the design procedure, the controller is constructed as
follows.

Step 1: Let S1 = x1 and S2 = x2 − α1 with α1 = −β
1/3
1 (S1) S1.

The dynamic gain l1 is updated by

l̇1 = S21 max

−2l21 + l1ρ1 (S1) , 0


, l1 (0) = 1. (46)

The derivative of V1 = S21/2 + S21/ (2l1) is computed as

V̇1 ≤ − (β1 − 1) S41 + 2
S1 

x32 − α3
1

 −
ρ1

2l1
S41

≤ − (β1 − 2) S41 + φ2 (S1, S2) S42 −
ρ1

2l1
S41 , (47)

where φ2 is determined by (15). Choose β1 = 2.5. Then, we have

V̇1 ≤ −0.5S41 + 120S42 −
ρ1

2l1
S41 . (48)

Since the first differential equation of (45) has no time-delay, we
can simply let V1KL = V1.
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Fig. 1. System states (x1, x2).

Step 2: By (40), the actual control u is designed as

u = −l1β2 (S1, S2) S2, (49)

where the positive smooth design function β2 (S1, S2) will be
determined later. The derivative of V2 = V1KL+S42/4l1 is computed
as

V̇2 ≤ −0.5S41 −
ρ1

2l1
S41 − (β2 − 120) S42

+
1
l1

S32 
0.2x22d − 2.51/3x32


≤ −0.5S41 −

ρ1

2l1
S41 − (β2 − 120) S42

+ 40S42 + 9S62 +
5
l1
S61 + 0.25S82d +

2
l1
S81d. (50)

Define the Lyapunov–Krasovskii functional

V2KL = V2 +

 t

t−d


2

l1 (τ )
S81 (τ ) + 0.25S82 (τ )


dτ , (51)

whose time derivative satisfies

V̇2KL ≤ −0.5S41 −
1
2l1


ρ1 − 10S21 − 4S41


S41

−

β2 − 160 − 9S22 − 0.25S42


S42 . (52)

Choosing ρ1 = 10S21 + 4S41 and β2 = 160.5 + 9S22 + 0.25S42 , we
have V̇2KL ≤ −0.5S41 − 0.5S42 and the final form of the controller

u = −l1[160.5 + 9(x2 + 2.51/3x1)2 + 0.25(x2 + 2.51/3x1)4]
× (x2 + 2.51/3x1),

l̇1 = x21 max{−2l21 + l1(10x21 + 4x41), 0}, l1 (0) = 1. (53)

With d = 2 and the initial conditions (x1 (t0) , x2 (t0)) = (1, 10)
for t0 ∈ [−2, 0], Figs. 1–2 show the simulation results, which
accord with the analysis in Section 3.

Example 2. Let us consider the cascade chemical system [10] with
two reactors

ẋ1(t) = −k1x1(t) −
1
θ1

x1(t) −
1
θ1

x1(t − d)

+
1 − R2

V1
x2(t) + δ1(x1(t − d)),

ẋ2(t) = −k2x2(t) −
1
θ2

x22(t) +
R1

V2
x1(t − d) −

1
θ2

x2(t)

+
R2

V2
x2(t − d) +

F
V2

u(t) + δ2(x2(t − d)), (54)
Fig. 2. Dynamic gain l1 .

where x1(t) and x2(t) are the compositions, d is the unknown time-
delay, Ri, i = 1, 2, are the recycle flow rates, θi are the reactor
residence times, ki are the reaction constants, F is the feed rate, Vi
are reactor volumes, and δi are nonlinear functions for describing
the system uncertainties and external disturbances. A global stabi-
lizer was designed in [10] for system (54) but requiring the knowl-
edge of the upper bound of the time-delay. When the time-delay
d is completely unknown, existing results based on the Lyapunov–
Krasovskii method cannot be applied to global stabilization of the
time-delay system. However, noting that the system is in the form
(1)with p1 = p2 = 1, amemoryless state feedback can be designed
for (54) according to Theorem 1.

To proceed the simulation, we choose the same parameters as
those of [10]: θi = 2, ki = 0.5, Ri = 0.5, Vi = 0.5, and F = 0.5.
The uncertainties δi are the functions: δ1(x1(t −d)) = 0.5x1(t −d)
and δ2(x2(t−d)) = 0.5x22(t−d)e0.01x2(t−d). Then, the state feedback
controller is given by

u = −l1β2 (S1, S2) S2,

l̇1 = max

−2l21 + l1ρ1 (S1) , 0


, l1 (0) = 1, (55)

where S1 = x1, S2 = x2 − α1 = x2 + β1 (S1) S1. Consider the Lya-
punov–Krasovskii functional

V2KL =
S21
2

+
S21
2l1

+
S22
2l1

+

 t

t−d


S21 (τ ) +

1
4l1 (τ )

S21 (τ )


dτ

+

 t

t−d

0.01
l1 (τ )

β4
1 (S1 (τ )) e−0.01β1(S1(τ ))S1(τ )S41 (τ ) dτ

+

 t

t−d

0.0001
l1 (τ )

β2
1 (S1 (τ )) e−0.04β1(S1(τ ))S1(τ )S21 (τ ) dτ

+

 t

t−d


1
4
e0.02S2(τ )S42 (τ ) + 0.01e0.04S2(τ )S22 (τ )


dτ , (56)

whose time derivative satisfies

V̇2KL ≤ − (β1 − 3.5) S21 −
1
2l1

(ρ1 − 5) S21

+
0.01
l1

β4
1e

−0.01β1S1S41 +
0.0001

l1
β2
1e

−0.04β1S1S21

−

β2 − 8 − 1.75S22


S22 +


1
4
β4
1 +

1
4
β2
1 +

9
8
β1


S22

+
1
4
e0.02S2S42 + 0.01e0.04S2S22 . (57)

From (57), the design functions β1, ρ1 and β2 are chosen as β1 =

4, ρ1 = 5 + 2e−0.04S1S21 + 0.004e−0.16S1 and β2 = 81 + 1.75S22 +

0.25e0.02S2S22 + 0.01e0.04S2 , respectively. Then, we have V̇2KL
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Fig. 3. System states (x1, x2).

Fig. 4. Dynamic gain l1 .

≤ −0.5S21 − 0.5S22 and the final form of the controller

u = −l1[81 + 1.75 (x2 + 4x1)2 + 0.25e0.02(x2+4x1) (x2 + 4x1)2

+ 0.01e0.04(x2+4x1)] (x2 + 4x1) ,

l̇1 = max{−2l21 + l1(5 + 2e−0.04x1x21
+ 0.004e−0.16x1), 0}, l1 (0) = 1.

(58)

With d = 0.5 and the initial conditions (x1 (t0) , x2 (t0)) =

(1, −2) for t0 ∈ [−0.5, 0], the simulation results are shown in
Figs. 3–4, which illustrate the effectiveness of our scheme.
5. Conclusion

In this paper, the problem of global stabilization by state feed-
back for a class of high-order nonlinear systems with time-delay
has been addressed. With new Lyapunov–Krasovskii functionals, a
memoryless state feedback controller is explicitly constructed via
the novel dynamic gain-based backstepping approach. The precise
knowledge of the time-delay is not necessary for the controller de-
sign and stability analysis. It has been proved that the states of the
nonlinear time-delay systems converge to the origin while all the
closed loop signals are globally bounded. Both physical and aca-
demic examples have been given to illustrate the applications of
the proposed scheme.
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