
Internet of Things 3–4 (2018) 69–81 

Contents lists available at ScienceDirect 

Internet of Things 

journal homepage: www.elsevier.com/locate/iot 

Design and implementation of a platform for hyperconnected 

cyber physical systems 

Ian Thomas c , Shinji Kikuchi d , Emmanuel Baccelli b , Kaspar Schleiser b , 
Joerg Doerr a , ∗, Andreas Morgenstern 

a 

a Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany 
b Inria, 1 rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France 
c FUJITSU RunMyProcess, 3 Rue de Gramont, 75002 Paris, France 
d FUJITSU LABORATORIES LTD. 1-1, Kamikodanaka 4-chrome, 211-8588 Kawasaki, Japan 

a r t i c l e i n f o 

Article history: 

Received 30 August 2018 

Accepted 31 August 2018 

Available online 15 September 2018 

a b s t r a c t 

The Internet of Things (IoT) is an area of growing importance as more and more comput- 

ing capability becomes embedded into real world objects and environments. But at the 

same time IoT is just one component of a widespread shift towards a new age of fed- 

eration, combining with other trends such as cloud computing, blockchain and automa- 

tion to create a new hyperconnected infrastructure . This infrastructure will emerge from the 

convergence of traditional, cloud and IoT-based models of computing, creating a more de- 

centralised, secure and democratic computing platform for the future. But while bringing 

significant benefits, federation also brings significant problems – in particular the com- 

plexity of building, integrating and managing systems built using highly distributed and 

heterogeneous platforms. In this paper we discuss our work on modelling, deployment and 

management for this new converged computing environment, leveraging previous work on 

domain languages, cloud computing and the Web of Things to accelerate and democratize 

the development of real world hyperconnected systems. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

The Internet of Things (IoT), is an emerging computing paradigm in which a wide range of physical objects - such as

machines, vehicles, appliances, wearables etc. - are equipped with sensing, processing and connectivity features. Analyst

firm Gartner predicts that the number of deployed IoT devices will grow from 5 Billion in 2015 to 25 Billion in 2020 [2] ,

making IoT one of the most important trends in the field of computer science [27] . 

At the same time we anticipate that IoT will combine with the cloud to create a new hyperconnected infrastructure - a

distributed computing fabric consisting of multiple cloud platforms and billions of smart devices [14,30] . Today, however,

these environments are largely viewed as separate, with distinct technologies, tools and management approaches applied to

each. Beyond the collection of device data in the cloud for further analysis there is typically very little functional overlap

between the two worlds in today’s pioneering deployments, limiting the utility of the whole. 
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Fig. 1. Bringing the best of web and cloud to the IoT via fast cycles and efficient deployment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

But as we drive towards increasingly distributed infrastructures, today’s centralized cloud-based processing models will

need to evolve; real world data is simply too massive, complex and time sensitive to always send to the cloud for processing.

Being able to quickly build, test and evolve systems deployed across the full range of cloud and IoT infrastructure will

therefore become critical to placing intelligence in the right place and meeting the needs of next generation digital systems.

But today’s IoT is not well suited to fast iteration and rapid, continual deployment, while the divergence in tools, practices

and skills between the cloud and IoT is often a barrier to mainstream adoption. Furthermore current work on ‘fog’ computing

often focuses on relatively powerful in-network infrastructure or the use of high-capability devices such as the Raspberry Pi,

but these approaches cannot reach all the way to the furthest edges of the network where we expect to see huge numbers

of very low cost but highly constrained devices deployed over the next few years as IoT penetrates more deeply into the

fabric of society. 

In this paper, we therefore outline our work to extend the rapid development, deployment and evolution characteristics

of the cloud into the most constrained corners of the IoT, enabling fast and iterative development of converged hyper-

connected solutions in line with cloud best-practices such as modelling, continuous deployment [22] , micro-services and

serverless execution [12] . In this way our work aims to reduce the significant technical and skills-based barriers to creating

hyperconnected systems, unify the tools and practices necessary to deliver them and create a more agile, responsive and

configurable IoT – encompassing every kind of node from the most powerful to the most constrained. 

2. From a passive to an active IoT 

In previous work we described our vision to enable composite business ecosystems, a new kind of organizational

paradigm in which people co-create value by connecting resources [28] . As part of this work we introduced RunMyPro-

cess [9] , a platform that simplifies the creation of complex, cloud-based applications. By offering users a way to easily

model, integrate and deploy processes in the cloud, RunMyProcess simplifies the deployment and management of business

functionality for organizations around the world. 

During this previous work we were primarily focused on extending the ability of our platform to easily connect to re-

sources within the Web of Things [29] and on enabling the use of IoT-based data within real-time business processes as part

of our vision of composition. During real-world testing [32,33] , however, we discovered that collecting data was not enough;

in fact we found a range of use cases in which we needed to move more of the intelligence out of the cloud and into the

nodes themselves. Without this ability we found ourselves unable to deal with issues in real time and often overloaded with

the costs of processing worthless data. 

In trying to address these issues, however, we quickly ran into several problems due to the differing lifecycles of cloud

and IoT based systems. Changes to the overall system that seemed trivial could be addressed on the cloud side in minutes

but would often cause significant delays as we customized firmware on the device side. Rolling out updates would be instant

for the cloud elements but be far more complex for the device side. Finding skills for the IoT aspects of the development

was a challenge, with deep expertise in hardware and low level programming languages a pre-requisite for customization.

And the fragmentation of the environment – with different tools, practices and approaches – made it very difficult to run a

combined lifecycle with common testing and deployment; often we could only test after a long and painful update on the

IoT side. 

For these reasons we decided to extend our vision of composition out of the cloud and into the IoT, aiming to find a

way of bringing the same benefits of fast delivery, continuous deployment and simple management into the whole hyper-

connected environment ( Fig. 1 ). 
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Fig. 2. Top level conceptual architecture. 
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3. Creating a converged platform for hyperconnected systems 

In considering the goals for our extended platform research we therefore set ourselves four major goals: 

1) Simplified development: Non-specialised developers should be able to build, deploy and test IoT applications. Given that

accessibility of skills is a major barrier to the growth of the IoT, preserving the simplicity and accessibility of an estab-

lished, model-based approach was a key goal in extending the scope of our platform to encompass the direct deployment

of IoT device behaviour. 

2) Flexible deployment: Logic should be able to be deployed seamlessly to both the cloud and the IoT. We believe that

we must simplify users’ view of the world, enabling them to focus on the business logic they require without worrying

about the wide range of nodes, topologies, protocols and other technical challenges that exist at the intersection of cloud

and IoT. 

3) Easy integration: When modelling functionality users should be able to easily connect resources whether they physically

exist within the cloud or the IoT. We want to reduce unnecessary friction between cloud and IoT systems in order to

simplify development of complex distributed systems and encourage innovation. 

4) Power optimized: The approach should not require expensive firmware updates and distribution. Working with cheap,

low cost devices means limiting the power, energy and bandwidth burdens our approach places onto the IoT hardware. 

4. Designing a converged environment 

To map the capabilities we needed to generate IoT solutions, we began by building a conceptual architecture of the

environment we wished to realize. This led to our intended functional architecture, as described in Fig. 2: 

To meet our goals we had some particular requirements based on our prior experiences. Firstly we wanted to enable

less skilled people to model the device functionality they needed and deploy it easily and immediately alongside the other

cloud-based components that made up their overall solution. These components were assigned to our cloud platform layer.

At the opposite end - to enable this - we also wanted to eliminate the painful customization of firmware by relying on a

device ‘operating system’ that could hide the differences in a broad range of standard devices and could be extended to

offer an execution container for process definitions. These components were assigned to our device layer. But to make the

two layers work together we needed to create a shared meta-model. 

One of the most important elements of this architecture was therefore the domain meta-model of concepts needed to

satisfy our implementation goals ( Fig. 3 ). 

By using a range of real world use cases provided by enterprises – spanning retail, utilities, facilities management and

manufacturing - we were able to identify the core concepts that needed to be expressed within our models and supported

by our execution environment – from steps within a process through to timers, sensor thresholds and external communi-

cation. In addition we used IPSO smart object definitions to capture the IoT specific information about the capabilities of

each object. By building up and using this meta-model we were able to visualize requirements across the whole architec-

ture, from the elements that needed to be modelled within our cloud environment to the capabilities our device runtime

container needed to interpret and execute the modelled functionality ( Fig. 4 ). 
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Fig. 3. Meta-model of solution space. 

Fig. 4. Transforming inputs into components via a meta-model. 

 

 

 

 

5. Platform implementation 

Together with our research partners we implemented the capabilities outlined in Fig. 2 , creating an environment in which

is it possible to model and deploy functionality to the IoT in a simple, fast and iterative way ( Fig. 5 ) 

The implemented platform consists of three main elements – the cloud modelling and execution environment, the com-

munication model and the open IoT platform. We will describe each in turn. 

5.1. Cloud modelling and execution 

The cloud modelling and execution environment is the main working environment for people using the platform. It

provides the modelling, registry, deployment and management capabilities necessary for the creation of converged cloud-

IoT solutions. 
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Fig. 5. End to end modelling and deployment for IoT. 

Fig. 6. IoT functionality modelled as BPMN. 
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1) Cloud based modelling : Using RunMyProcess we built an IoT modelling canvas which enables users to graphically model

and deploy functionality to be executed in the smart IoT node. It enables users to browse the available device types

in the registry together with the configurations and available resources for each. We considered a range of different

modelling techniques for building this functionality, in particular state machines, but after testing different approaches

we concluded that BPMN 2.0 models provided the best match between the concepts we had discovered in the meta-

model and our ease of use requirements. In particular we appreciated the fact that (i) BPMN 2.0 is a language which

reflects the way that non-IT users are accustomed to think and that (ii) it uses an XML-notation which was verbose

enough to facilitate transformation into other assets such as code, increasing our architectural options. We also noted

studies which suggested that BPMN is a more IoT-aware modelling approach when compared with alternatives such as

eEPC (extended EPC) or UML activity diagrams [21] . A screenshot of the process modelled for the example scenario in

section VI is presented in Fig. 6 . 
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2) Open LWM2M registry : In order to keep track of the devices that we wish to manage and update we needed to inte-

grate a repository into our existing cloud environment. Unlike with cloud deployment there is no central, homogenous

runtime for the functionality being developed, so we need to understand the capabilities of each device and be able to

choose which ones should receive any new behaviour. For IoT device management we chose to use the OMA Lighweight

M2M standard [11] , giving us a standards based model for interacting with devices. To implement this component we

integrated Eclipse Leshan, an open source implementation of LWM2M written in Java [1] . It relies on Californium to pro-

vide CoAP and DTLS support and provides a simple web interface for viewing and interacting with the list of connected

LWM2M clients. By integrating Leshan into our environment we have enabled people to choose the device type they

wish to target new functionality towards. 

3) Javascript generation and deployment : Once modelling is complete we need to deploy the functionality to the underlying

devices. We considered a range of approaches for this but finally decided to transform the BPMN model into JavaScript,

due to its widespread use and the availability of interpreters on a large number of device platforms. In order to achieve

this the cloud environment dispatches the BPMN model to a domain specific language (DSL) server. Using the concepts

from the meta-model the DSL server is able to transform the model into Javascript compatible with the device execution

engine and its enabling APIs. We considered several language workbenches for the creation of the DSL server, including

Xtext, MPS, spoofax, Rascal and ANTLR - an excellent comparison of the different f eatures of these popular DSL work-

benches can be found in [41] – but finally decided to adopt the eclipse-based Xtext. We made this decision due to its

wide use across industry, ease of access through open source and the fact that it can be used to compile to any target

language. 

Once the BPMN model is transformed into Javascript it is then deployed to the chosen devices using CoAP. 

5.2. Cloud-IoT communication 

Over the last few years there has been significant and growing interest in the use of internet protocols to bridge the

traditionally separate worlds of the Web and embedded devices in order to create an Internet of Things. One benefit of

such an approach is the ability to enhance the discrete functionality of individual devices with additional logic in the cloud,

using the speed and scale of cloud development to build more intelligent systems. While it has been demonstrated that

existing Web architectures and protocols can successfully be used for the integration of constrained devices [34] , it is un-

likely that such an approach will be suitable for the types of limited capability devices we intended to support in this

project. 

For this reason we adopted the Constrained Application Protocol (CoAP) [26] . CoAP attempts to create a balance between

consistency on the one hand and recognition of the limited power, reliability and bandwidth available to constrained de-

vices on the other. When combined with the wider effort s of the IETF in creating 6LoWPAN [35] we can clearly see the

foundations emerging for a Web of Things [36] . Support for CoAP within RunMyProcess was the subject of previous work

[29] . 

In particular while CoAP is not a compression of HTTP it does offer a consistent interaction model along with best

practices for mapping [37] . Using CoAP, individual resources continue to be identified and addressed via Universal Resource

Identifiers (URIs), represented using arbitrary formats (such as JSON or XML) and manipulated using the same methods as

HTTP. This use of a familiar approach will reduce the complexity of managing, integrating and updating distributed devices

from our cloud platform. 

5.3. Open IoT platform 

As already discussed the use of an IoT “operating system” was a key enabler to our overall requirements, shielding

developers from the complexities and cost of low level development. A number of IoT operating systems are available for

the type of hardware and scenarios we wanted to enable [38] . In this project we chose to use RIOT [13,8] as the basic

layer of our IoT device platform, an open source operating system with a low memory footprint, high modularity, good

interoperability and support for a wide variety of low-end IoT devices. 

In order to meet the goals of our project, however, we needed to add significant new functionality to the RIOT environ-

ment, including registration, deployment and execution support for our modelled code. 

1) Device Registration: As discussed IoT device registration is implemented using Eclipse Leshan, which provides a LWM2M

server implementation written in Java [1] . To facilitate the cloud to device interactions, we have implemented a minimal

LWM2M client within the RIOT environment to register with the server. To expedite our research, the bootstrap process

uses simple pre-shared keys. As an example of the registration data exchanged at bootstrap, the LWM2M client in RIOT

registers the resources < 3/0 > , < 9/0 > , < 3303/0 > and < 3315/0 > for the example scenario discussed in section VI,

which map respectively to the IoT device, the JavaScript container, the light sensor and the sound-level sensor, as per

the OMA standard [24] . 

2) Javascript code deployment: The code deployment component receives Javascript files and safely installs them into the

memory of the device. Deployment messages are sent using CoAP. This approach is used as an alternative to the distri-

bution of binaries, allowing small scripts to be dynamically updated and executed. This is an attractive approach as a



I. Thomas et al. / Internet of Things 3–4 (2018) 69–81 75 

Fig. 7. Test scenario. 

Listing 1. Example RIOT Javascript APIs. 
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result of the emergence of small footprint interpreters such as MicroPython [39] and JerryScript [40] . In this project, we

have built upon a small footprint interpreter (JerryScript, as described below), and dynamically load scripts to roll out

and update business logic on low-end IoT devices. 

3) Javascript code execution: In order to support the execution of the modelled processes, the RIOT OS has been extended

with a framework that interfaces between the Javascript logic and the underlying OS. This isolates the business logic

from the underlying hardware and low level interfaces and provides a local execution environment for the generated

Javascript. This environment enables e.g.: 

4) interaction with sensors and actuators; 

5) receipt of reliable, pre-processed data and events extracted from sensors, and 

6) remote interaction with the cloud or other devices in order to exhange information and trigger wider application com-

ponents. 

For the script engine, we chose to create a RIOT package for JerryScript [3] , a lightweight JavaScript interpreter, and com-

bined it with our new framework. This framework maps the low level APIs offered by RIOT – e.g. timers, sensor interactions,

event callbacks etc – into more developer-friendly Javascript. Examples of the resulting RIOT JavaScript APIs are shown in

Listing 1 . 

6. Testing 

In order to test our work we chose a facilities management use case from the list of scenarios we used as input for

our analysis work. This scenario is based on building security management and deals with intrusion detection and reso-

lution. It uses an on-device process to detect and process a combination of light and sound information before making

a local decision whether to trigger the attached alarm and notify a security guard via a cloud-based mobile notification

( Fig. 7 ). 
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Fig. 8. Modelled security process (top layer is device process). 

Fig. 9. Option to cancel the alarm on the mobile device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that we chose this use-case only for practical, proof-of-concept purposes. The approach we present is generic and

can easily be applied to a wide variety of other IoT use cases. 

6.1. Executing the scenario 

During the execution of the scenario, the IoT device monitors light levels looking for anomalies, with raised light levels

set as the ‘triggering event’ within the process model. At deployment time a threshold event is created within the operating

system by the Javascript. If an anomaly is detected then an event is sent from the operating system to the Javascript to

trigger the rest of the code representing the modelled process (as shown in Fig. 8 ). 

Once triggered, the code first listens for sound using the attached sensor in order to attempt to confirm that an intrusion

is likely and reduce false alarms. An important point to note is that the implementation of the Javascript APIs used to

interface with the underlying operating system pre-process the returned data to minimize noise and anomalies, reducing

the need to deal with potential hardware issues within the business logic. 

If sound is also detected than the alarm is triggered, a message is sent via CoAP to the cloud in order to trigger the

security process and the device process enters a wait state. 

On receiving the CoAP message the cloud platform starts a second process to manage attendance by the security guard.

This process extracts the necessary data about location and issue and sends a notification via a mobile application imple-

mented with RunMyProcess to alert the security guard. Once accepted the security guard can choose to cancel the alarm

from their mobile device (see Fig. 9 ). 

Once cancelled a message is sent back to the cloud platform, which in turn sends a CoAP message to the device in order

to instruct it to switch off the alarm. On receipt of the event the device switches off the alarm, completes the process and

returns to monitoring mode. 

An overview of the end-to-end components involved in this process can be seen in Fig. 10 . 

Listing 2 illustrates the JavaScript implementation of the process model shown in Fig. 8 , demonstrating what is deployed

to the device. As you will see this Javascript is able to interact with the underlying sensors, actuators and networking

components in order to implement the behaviour necessary to support the desired scenario. 
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Listing 2. 

Fig. 10. Components used involved in implementation. 
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Fig. 11. IoT test hardware. 

Fig. 12. Connectivity setup. 
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6.2. Hardware and connectivity 

As many of our goals relate to the use of low power, low capability hardware we wanted to ensure that our approach

worked for simple devices. In this section we will briefly outline the hardware and connectivity set up used for the IoT

aspects of the project. 

1) IoT hardware: In order to meet the requirements of the implemented scenario we produced a low-end IoT device. This

device was based on commercially available equipment from Microchip, the SAMR21-xpro [4] . The SMAR21 features

a 32- bit micro-controller, 32 kBytes of RAM and 256 kBytes of Flash memory, together with an IEEE 802.15.4 radio

transceiver. Note that the SAMR21 has no memory protection unit (MPU) in hardware. We extended the SAMR21 with a

custom break-out board shown in Fig. 11 , connecting a light sensor, sound level sensor and revolving light via GPIO. 

2) Connectivity: The low-end IoT device was connected the to the Internet via a cheap RaspberryPi with a IEEE 802.15.4

radio module, configured in a standard fashion to act as a border router between plain IPv6 and the LoWPAN [20] . The

setup is shown in Fig. 12 . 

7. Evaluation 

At the outset of our project we identified four major goals, simplified development, flexible deployment, easy integration

and power optimization. In this section we will briefly review our work in the context of these goals. 

7.1. Simplified development 

Our goal here was twofold – to enable non-specialised IoT developers to build IoT application and to enable a faster and

more iterative approach to IoT development. 

It is outside the scope of this paper to consider whether BPMN is a simple approach in general, but on the assumption

that it provides a non-IoT specific way to model business functionality we believe this criteria has been met. From informal

testing with colleagues and customers with no specific IoT development experience or skills we have observed that the

extended cloud modelling environment enables non-specialized developers to build and deploy simple IoT applications. By

using the adapted BPMN modelling language in combination with drag and drop, such users can graphically design the

business logic they wish to be executed on the IoT devices. 

Equally importantly the deployment of this functionality now happens at the click of a button, enabling a much more

iterative cycle of modelling, deployment and testing. In fact we observed a side effect of this process during the implemen-

tation of our own test scenario. Because deployment can now be a continuous process rather than a single event we were

able to quickly deploy the solution and tune thresholds and other parameters based on observation in situ rather than esti-

mations. We believe that this experience could point to a significant additional benefit of our approach, enabling the faster,

cheaper and lower risk deployment of IoT solutions due to the ease of adapting their behaviour post-implementation. 
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7.2. Flexible deployment 

Our extended cloud development environment offers the opportunity to model both cloud and IoT processes within the

same environment and using the same concepts and models. Today the developer has to choose from the outset whether

they wish the process to be targeted at the cloud or the IoT, since there are some additional concepts and deployment steps

necessary for the IoT. As a result while we have succeeded in our main goal of enabling the deployment of processes to the

cloud and the IoT as part of the same project/solution within the development environment, it is currently not possible to

move such modelled processes between environments as a further optimization. This will be the subject of future research. 

7.3. Easy integration 

As demonstrated in our test scenario, processes within the cloud and IoT are able to easily inter-operate at runtime using

CoAP. This means that it is simple to create ‘hyperconnected’ solutions which consist of different components, deployed in

different environments, but which are still able to form part of the same over-arching solution through integration. 

Equally importantly, from a development time perspective the inclusion of a basic device registry makes it easy to dis-

cover, introspect and connect devices and their behaviour within process flows. This is an equally important perspective in

terms of integration. Today much of the work to do this is still manual, e.g. in terms of viewing and copying over infor-

mation from the registry into the process flow. A topic of future research will therefore be the automation of this kind of

activity to enhance developer productivity and reduce risk of errors. 

7.4. Power optimized 

In considering the viability of our approach from a resource perspective we have to look at two perspectives: (i) the

memory overhead of running the Javascript engine vs directly implementing functionality in C and (ii) the comparative

overhead of updating scripts vs firmware updates. 

In the first case, we estimate that the total overhead of running the Javascript engine based on our analysis is ∼12kB of

RAM and ∼96kB of flash memory. While this may look like an overhead vs a native C implementation, the efficiency of the

RIOT OS means that it would rarely take the overall capacity requirements outside the scope of the majority of standard off-

the-shelf low power devices (e.g. 32kB of RAM and 256kB of flash memory). In fact our analysis suggests that our solution

could be readily compiled and run on more than 84 different types of IoT devices, corresponding to more than 80% of all

the IoT hardware supported by RIOT today. 

In the second case, the number of bytes transmitted over-the-air to update the functionality of the device for our Security

Scenario is 1kB (the size of the script shown in Listing 2 ). This script is actually relatively complex with multiple accesses

of sensors and actuators, calculations and external communications. Compared to this, a full firmware update would require

the transmission of an entire image, which in the case of RIOT would be ∼60kB. This is a significant penalty in comparison

and would represent a challenge to the kind of iterative processes we have outlined. We acknowledge that partial firmware

updates could reduce this overhead but believe that the installation process would continue to be more complex and incur

a greater overhead. 

While our approach therefore introduces some overhead at the outset we believe it could significantly reduce cumulative

overheads across the entire lifecycle of a device, extending its life as well as delivering the already outlined benefits of agility

and convergence. 

8. Related work 

Building today’s IoT solutions is a challenging task because developers need to have extensive technical knowledge span-

ning embedded systems, networking and protocols. The resulting low level development and technical work not only makes

the creation of IoT applications slow, error-prone and cumbersome but also significantly restricts the pool of people who

can engage with IoT for solving real-world problems. As a result of these challenges, many researchers have been consid-

ering how to accelerate the creation of IoT applications. As we can see by reviewing the landscape, however, the primary

approach taken to date has focused on the creation of cloud-based functionality - as opposed to IoT-based - limiting their

utility in situations where a more federated approach is required. 

In our previous research we proposed a cloud-based architecture for composing value from the IoT [28] . In this model

our cloud platform made it possible to easily create systems that orchestrated IoT data outputs with other kinds of web and

on-premise resources. It was the limitations of this approach during real-world testing, however, that led to the research

outlined in this paper. 

In [42] , life cycles for IoT devices, services and applications are discussed. It gives hence an academic framework under

which different aspect of IoT development can be discussed but gives no practical implementation. 

Spacebrew [10] is an open software toolkit which enables outputs and inputs to be connected, creating an implicit ’flow’.

However, it is based on a publisher/subscriber which may be challenging for non-professional software developers. Equally

importantly Spacebrew cannot run functionality directly on devices, relying instead on intermediate computers that share

data from the devices to which they are connected (e.g. Arduino). 
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Paraimpu [6,23] is another software system proposed for simplifying the creation of systems which connect physical

objects, APIs and services, composing them together to create new applications. Again, however, the focus here is on con-

necting data from existing objects rather than adapting their behaviour through the deployment of business logic. 

Actinium [18] presents a web-like scripting approach for composing low-end devices, providing a RESTful, cloud- based

run-time container with dynamic installation, update, and removal of scripts. While the goal of Actinium is also to simplify

the development of converged systems, its approach focused on cloud-based scripts which do not change the behaviour of

the underlying devices themselves. 

Martins and Domingos [46] Discusses an approach similar to ours that uses the BPMN to model behaviour of wireless

sensor networks. They compile the BPMN edge device behaviour to the callas language and execute it on the callas virtual

machine. In contrast to that, we compile the BPMN process to javascript. According to [47] , the callas virtual machine is only

available for SunSpot devices whereas we expect that javascript interpreters will be available for a large number of different

devices. 

The WoTkit Processor, bundled with the WoTkit platform [15,16] , is another cloud-based tool for building applications

that use IoT resources. As with the other options, however, it focuses on aggregating sensor data within the cloud before

building cloud-based applications that leverage its value. 

Finally NodeRed [5] is a web-based tool for creating flows that connect hardware devices, APIs and cloud services, with

modelling offered via a browser-based flow editor. From the perspective of our research, NodeRED is the closest prior work

to our proposed solution, offering the ability to model and deploy functionality to the edge of the network. Node RED still

requires that flows are deployed to either the cloud or to general purpose computing devices with a traditional operating

system (such as the Raspberry Pi [7] ). For this reason NodeRED did not satisfy our requirement for behaviour deployment to

constrained devices. Furthermore, while partially addressing the issues of development simplification through a flow editor,

NodeRED did not address the wider issues of end- to-end process integration and device lifecycle management that are a

core part of our research. 

Several other platforms [17,19,25,31] have also been proposed to ease the development of IoT applications but in all

cases they do not cover the major features we propose, including integration of device registry, workflow editing, wireless

deployment and end-to-end orchestration. 

Besides these technical papers that discuss the creation of solutions for the IoT-domain, there are also a couple of pa-

pers that discuss new and emerging business models related to IoT [43–45] . We have shortly touched these topics at the

beginning of our paper but refer the interested reader to the mentioned papers that discuss these topics in more detail. 

9. Conclusion 

In this paper, we have examined one possible route to simplifying the development of new hyperconnected systems

that span both cloud and IoT infrastructures. To date the ease of development of IoT applications has lagged the cloud

significantly, lacking easy support for established concepts such as modelling, agile delivery and continuous deployment,

concepts which have transformed the development of more mainstream software. 

The work described in this paper aimed to address this gap by building development, deployment and management sup-

port for IoT devices based on established cloud practices. To this purpose we have created a cloud-IoT platform composed

of a set of components: a generic IoT device operating system (RIOT), an accompanying ‘psuedo-container’ for the execution

of business logic on low-end devices and a cloud-based development tool for rapid business-logic modelling and deploy-

ment, We have presented our test implementation in order to illustrate the workings of this platform and to help examine

the ways in which our work can enable our core aims of simplified development, flexible deployment, easy integration and

power optimization. 
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