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a b s t r a c t 

Attack and anomaly detection in the Internet of Things (IoT) infrastructure is a rising 

concern in the domain of IoT. With the increased use of IoT infrastructure in every do- 

main, threats and attacks in these infrastructures are also growing commensurately. De- 

nial of Service, Data Type Probing, Malicious Control, Malicious Operation, Scan, Spying 

and Wrong Setup are such attacks and anomalies which can cause an IoT system failure. 

In this paper, performances of several machine learning models have been compared to 

predict attacks and anomalies on the IoT systems accurately. The machine learning (ML) 

algorithms that have been used here are Logistic Regression (LR), Support Vector Machine 

(SVM), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN). The 

evaluation metrics used in the comparison of performance are accuracy, precision, recall, 

f1 score, and area under the Receiver Operating Characteristic Curve. The system obtained 

99.4% test accuracy for Decision Tree, Random Forest, and ANN. Though these techniques 

have the same accuracy, other metrics prove that Random Forest performs comparatively 

better. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the increasing demand and growth in the Internet of Things (IoT) automated network system, the IoT models are

getting complicated day by day [1,2] . People are being accustomed to data-driven infrastructure, and this is leading the

research more on to Machine Learning based applications alongside IoT. IoT and Machine Learning based techniques are

used in every domain of human life at present. In medicine, interpretation of ECG, disease detection using X-Ray, pattern

finding in genomic data, an automated pathological system for cancer detection, brain signal modeling all these complex

tasks requires the introduction of machine learning approaches [3] . The application of machine learning approaches can

also cover the aerospace domain. D’Angelo et al. [4] applied content-based image retrieval technique and machine learning

techniques on electrical impedance plane generated from eddy current testing. Eddy current testing is a complex task used

in aircraft industries for finding out defects. Besides machine learning, IoT services are also applied to these domains. The

growing complexity in IoT infrastructures is raising unwanted vulnerability to their systems. In IoT devices security breach

and anomaly has become common phenomena nowadays. 
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IoT devices use a wireless medium to broadcast data which makes them an easier target for an attack [5] . Normal com-

munication attack in the local network is limited to local nodes or small local domain, but attack in IoT system expands

over a larger area and has devastating effects on IoT sites [6] . 

Thenceforth, a secured IoT infrastructure is necessary for the protection from cybercrimes. The security measures that

have been used become vulnerable with the vulnerability of IoT devices. For some stakeholders and entrepreneurs, data

is the money for their business. For the government and some private agency, some data are classified and confidential.

Vulnerability in IoT nodes makes a backdoor for an attacker to gather confidential data from any important organization [7] .

There are some trivial methods to solve the problems as mentioned above. In signature based [8] method, attacks and

anomaly are previously stored in a database. Moreover, this system is checked at particular time intervals against the

database. However, this methodology generates overhead in processing, and it is vulnerable to unknown threats. The ad-

vantage of data analysis based technique is that it works faster than other methodologies and it can overcome the problem

raised from unknown threats. Hence, in this paper data analysis based techniques are used. 

The primary goal of the system is to develop a smart, secured and reliable IoT based infrastructure which can detect

its vulnerability, have a secure firewall against all cyber attacks and recover itself automatically. Here, Machine Learning

based solution is proposed which can detect and protect the system when it is in the abnormal state. For this task, several

machine learning classifiers have been exploited. Another key aspect of this paper is that making the realization of the fact

that a simple model like Decision Tree or Random Forest can be compared with a complex network like ANN for anomaly

detection. 

Further analysis and comparison with other works will be briefly described in the following sections. Section 2 provides

a description of other research works on IoT attack and anomaly detection. The description of the dataset, different kinds of

attacks and anomalies, learning models and system frameworks are detailed in Section 3 . Section 4 explains our experimen-

tal setup, result from analysis and comparison with other state of the art methods. Finally, limitation, conclusion and future

scopes are presented in Section 5 . 

2. Literature review 

There have been several similar works done in IoT fields. Still, researchers are working in this area. Pahl et al. [1] have

mainly developed a detector and firewall for an anomaly of IoT microservices in IoT site. Clustering methods like K-Means

and BIRCH have been implemented [9] for different microservices in this work. In clustering, different clusters were grouped

in the same if the center is in the three times of standard deviation distance. The clustering model has been updated using

an online learning technique. With the algorithms implemented, the overall accuracy obtained by the system is 96.3%. 

A detailed description of a smart home system where security breaches were detected by deep learning method Dense

Random Neural Network (DRNN) [10] have been introduced in [11] . They have mainly described Denial of Service attack and

Denial of Sleep attack in a simple IoT site. 

Liu et al. [5] proposed a detector for On and Off attack by a malicious network node in industrial IoT site. By On and Off

attack they meant that IoT network could be attacked by a malicious node when it is in an active state or On state. Further-

more, the IoT network behaves normal when its malicious node is in the inactive or off state. The system was developed

using a light probe routing mechanism with the calculation of trust estimation of each neighbor node for the detection of

an anomaly. 

Diro et al. [8] discussed the detection of attack using fog-to-things architecture. The authors of the paper gave a com-

parison study of a deep and a shallow neural network using open source dataset. This work’s primary focus was to detect

four classes of attack and anomaly. For four class the system got the accuracy of 98.27% for deep neural network model and

accuracy of 96.75% for shallow neural network model. 

Usmonov et al. [12] described the recent security problem when developing embedded technologies for the IoT. Preserv-

ing data transfer between the physical, logical and virtual components of the IoT system was also challenging. For these

problems, the use of digital watermarks was proposed by the authors of this work. 

Anthi et al. [13] represented an intrusion detection system for the IoT. Toward this purpose, several ML classifiers have

been used for successfully identifying network scanning probing and simple forms of Denial of Service (DoS) attacks. To

generate the data set, network traffic is taken for four subsequent days using the software Wireshark. For applying ML

classifiers, the software Weka was used. 

Ukil et al. [14] discussed the detection of anomalies in healthcare analytics based on IoT. A model of cardiac anomaly

detection through a smartphone was also introduced in this paper. For the anomaly detection in healthcare; IoT sensors,

medical image analysis, biomedical signal analysis, big data mining, and predictive analytics were used. 

Pajouh et al. [6] presented a model for intrusion detection based on a two-layer dimension reduction and two-tier clas-

sification module. This model was also designed to identify malicious activities such as User to Root (U2R) and Remote to

Local (R2L) attacks. For dimension reduction, component analysis and linear discriminate analysis have been used. NSL-KDD

dataset was used to carry out the whole experiment. For detecting suspicious behaviors with the two-tier classification

module, Naive Bayes and Certainty Factor version of K-Nearest Neighbor were applied. 

D’Angelo et al. [15] applied Uncertainty-managing Batch Relevance-based Artificial Intelligence (U-BRAIN) on binary NSL-

KDD dataset and Real Traffic Data (from Fredrico II University of Napoli). The U-Brain is a dynamic model operated on

multiple machines which can handle missing data. The NSL-KDD dataset contains 41 features. From 41 features 6 features
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Fig. 1. Overall framework for attack and anomaly detection in IoT. 

 

 

 

 

 

 

 

 

 

 

were selected using J-48 based classification algorithm. The accuracy values were 94.1% for NSL-KDD and 97.4% (10-fold

training mean) for Real Traffic Data. 

Kozik et al. [16] presented classification based attack detection service utilizing cloud architecture. An Extreme Learning

Machines (ELM), scalable in Apache Spark cloud framework is employed on the artificial Netflow formatted data in this pa-

per. An IoT network yielded these Netflow formatted data. The work is focused on three significant scenarios in IoT systems:

scanning, command and control and infected host. Best accuracy values were found for these scenarios are 0.99, 0.76 and

0.95, respectively. 

3. Materials and methods 

The overall framework is a combination of several independent processes. Fig. 1 depicts the overall framework of the

system. The first process of this framework is the dataset collection and dataset observation. In this process, the dataset

was collected and observed meticulously to find out the types of data. Besides, data preprocessing was implemented on the

dataset. Data preprocessing consists of cleaning of data, visualization of data, feature engineering and vectorization steps.

These steps converted the data into feature vectors. These feature vectors were then split into 80–20 ratio into training
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Table 1 

Frequency distribution of considered attacks. 

Attacks Frequency % of Total % of Anomalous 

Count Data Data 

Denial of Service 5780 01.61% 57.70% 

Data Type Probing 342 00.09% 03.41% 

Malicious Control 889 00.24% 08.87% 

Malicious Operation 805 00.22% 08.03% 

Scan 1547 00.43% 15.44% 

Spying 532 00.14% 05.31% 

Wrong Setup 122 00.03% 01.21% 

Table 2 

Features description. 

SL Features Data type Example 

1 Source ID Nominal WashingMachine1, Battery2 etc. 

2 Source Address Nominal \ agent6 \ washingmachine1 etc. 

3 Source Type Nominal Illustrated in Fig. 2 (a) 

4 Source Location Nominal Illustrated in Fig. 2 (c) 

5 Destination Service Address Nominal \ agent8 \ lightcontroller12 etc. 

6 Destination Service Type Nominal Illustrated in Fig. 2 (b) 

7 Destination Location Nominal Illustrated in Fig. 2 (d) 

8 Accessed Node Address Nominal \ agent13 \ doorLock9 etc. 

9 Accessed Node Type Nominal Illustrated in Fig. 2 (e) 

10 Operation Nominal Illustrated in Fig. 2 (f) 

11 Value Continuous 0, 5.32, 19.03 etc. 

12 Timestamp Discrete 1520 03160 0 0 0 0 to 15201179990 0 0 

13 Normality Nominal Described in Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and testing set. The training set was used in Learning Algorithm, and a final model was developed using an optimization

technique. Different classifiers used in this work employed different optimization techniques. Logistic Regression used coor-

dinate descent [17] . SVM and ANN used conventional gradient descent technique. The optimizer is not used in the case of

DT and RF because these are non-parametric models. The final model was evaluated against the testing set using different

evaluation metrics. 

3.1. Dataset collection and description 

The open source dataset was collected from kaggle [18] provided by Pahl et al. [1] . They have created a virtual IoT en-

vironment using Distributed Smart Space Orchestration System (DS2OS) for producing synthetic data. Their architecture is a

collection of micro-services which communicates with each other using the Message Queuing Telemetry Transport (MQTT)

protocol. In the dataset, there are 357,952 samples and 13 features. The dataset has 347,935 Normal data and 10,017 anoma-

lous data and contains eight classes which were classified. Features “Accessed Node Type” and “Value” have 148 and 2050

missing data, respectively. 

Table 1 gives a detailed picture of the distribution of different attacks and anomaly through the whole data. Descriptions

of 13 features are given in Table 2 . All of the features in the described dataset are object type except the timestamp which

is an int64 type. Besides these the frequency distribution of several features is illustrated in Fig. 2 . 

1. Denial of Service (DoS): the DoS attack is caused by having too many unwanted traffic in a single source or receiver. The

attacker sends too many ambiguous packets to flood out the target and make its services unavailable to other services

[11] . In the dataset, 5780 samples are containing a DoS attack. 

2. Data Type Probing (D.P): in this case, a malicious node writes different data type than intended data type [1] . In the

dataset, there are 342 samples of Data Type Probing. 

3. Malicious Control (M.C): with software vulnerabilities sometimes the attacker can gain a valid session key or somehow

capture network traffic. In this way, malicious one can control the whole system [19,20] . The Dataset contains 889 sam-

ples of Malicious Control. 

4. Malicious Operation (M.O): Malicious Operations are generally caused by malware. Malware means decoy activity which

distracts the original operation. Device’s performances can negatively be affected by this malicious operation [21] . 805

samples of the dataset contain Malicious Operation. 

5. Scan(SC): sometimes the data is acquired through hardware by scanning the system, and in this process sometimes the

data can get corrupted [22] . In the dataset, 1547 samples were containing Scan. 

6. Spying (SP): by Spying, the attacker exploits the vulnerabilities of the system, and they use a backdoor channel to break

into the system and discovers important information [8] . In some cases, they manipulate data causing great hamper to

the whole system. The dataset contains 532 samples of Spying. 
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Fig. 2. Frequencies of (a) Source Type (b) Destination Type (c) Source Location (d) Destination Location (e) Accessed Node (f) Operation [lc = Light Con- 

troller, ss = Sensor Service, bs = Battery Service, ws = Washing Service, ts = Thermostat, ms = Movement Sensor, ds = Door Lock Service, sp = Smart 

Phone, gg = Garage, bp = Bedroom Parents, et = Entrance, lr = Living Room, sr = Showerroom, kt = Kitchen, dr = Dining Room, wr = Water Room, bd = 

Bedroom, bt = Bathroom, bc = Bedroom Children, r1–r10 = room1 to room10, tt = Text, nb = Number, bl = Boolean, mc = Malicious, cp = Composed, rd 

= Read, rs = Register Service, wr = Write, ls = Lock Sub Tree]. 

 

 

 

 

 

7. Wrong Setup (W.S): the data may also get disrupted by the wrong system setup [23] . The dataset contains 122 samples

of the Wrong Setup. 

8. Normal(NL): if the data is entirely correct and accurate, then the data is called normal data. Out of the 357,952 samples,

347,935 samples are of a normal class. 

3.2. Data preprocessing 

Any machine learning research requires exploratory data analysis and data observation. The first task in this research was

to make the dataset feed-able to any classifier. So for this reason, the first step was to handle the missing data. In the dataset,

“Accessed Node Type” column and “Value” column contain missing values due to anomaly raised in data transferring. From



6 M. Hasan, Md. M. Islam and Md. I.I. Zarif et al. / Internet of Things 7 (2019) 10 0 059 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

these two features, “Accessed Node Type” feature has categorical values on the other hand “Value” feature has continuous

values. “Accessed Node Type” feature has 148 rows containing ‘NaN’ value depicted as Not a Number, and the corresponding

class or label of that row are found to be anomalous. As the “Accessed Node Type” feature is categorical and removing these

148 rows might cause loss of valuable data, so the ‘NaN’ value in “Accessed Node Type” is replaced with the ‘Malicious’

value. Similarly, “Value” column also contains some unexpected data which are not continuous values. These unexpected

values are transformed into meaningful continuous values that assist the classifiers to have better accuracy. Unexpected

values “False”, “True”, “Twenty” and “none” in the “Value” feature are replaced by meaningful values “0.0”, “1.0”, “20.0” and

“0.0”, respectively. 

For feature selection, no machine learning approach has been taken here like Pahl et al. [1] because this will not have any

significant impact on data analysis. Besides this timestamp column from the dataset has been removed as it has a minimal

correlation to the dataset’s predictor variable normality. 

In feature engineering steps, it is necessary to determine the features type in the dataset at first. The dataset contains

Categorical and Numerical data. Categorical Data can be further classified into Ordinal and Nominal Values respectively

while Numerical dataset into Discrete and Continuous Values. Table 2 depicts the column types. So from Table 2 , it can

be claimed that all columns except “Value” column and “Timestamp” column are categorical nominal variable. Moreover, 

“Value” column and “Timestamp” column are continuous numerical variable. The “Timestamp” column is not considered 

here as it was removed from the dataset. 

Next vital task is to converting nominal categorical data into vectors. Categorical data can be converted into vectors in

many ways. Label Encoding and One Hot Encoding is prevalent among them. In this research label encoding technique have

been used to convert the data into a feature vector. Most of the features in this dataset contain nominal categorical value

and many unique values. If one hot encoding were applied to these features, the number of features would have increased

with a significant number, and the resulting dataset would have lots of dimensions. On the other case, by label encoding, the

number of features were the same. Thus the dimension of the dataset was not increased. Besides these, one hot encoded

features would have sparse features which are harder to fit in machine learning algorithm and takes a lot of processing

time. Hence, label encoding is applied to the dataset. 

3.3. Theoretical considerations 

For data analysis part, several machine learning algorithms were used. Following are the lists of algorithms with their

description. 

3.3.1. Logistic Regression (LR) 

Logistic Regression (LR) is a discriminative model which depends on the quality of the dataset. Given the features X =
X 1 , X 2 , X 3 , . . . , X n ( where, X 1 − X n = Dist inct f eat ures ), weights W = W 1 , W 2 , W 3 , . . . , W n , bias b = b 1 , b 2 , . . . , b n and Classes C =
c 1 , c 2 , . . . , c n (in our case, we have eight classes) the equation for estimation of posterior is given in following (1) [24] . 

Predicted Value: p(y = C | X;W,b) = 

1 

1 + exp(−W 

transpose X − b) 
(1) 

3.3.2. Support Vector Machine (SVM) 

Support Vector Machine is another discriminative model like LR. It is a supervised learning model for analyzing the data

used for classification, regression, and outliers detection [25,26] . SVM is most applicable in the case of Non-Linear data.

Given Input x , Class or Label c and LaGrange multipliers α; weight vector � can be calculated by following equation: 

� = 

m ∑ 

i =1 

αi c i x i (2) 

The target of the SVM is to optimize the following equation: 

Maximize αi 

m ∑ 

i =1 

αi −
m ∑ 

i =1 

m ∑ 

j=1 

αi α j c i c j < x i x j > (3) 

In Eq. (3) , < x i , x j > is a vector which can be obtained by different kernels like polynomial kernel, Radial Basis Function

kernel and Sigmoid Kernel [27] . 

3.3.3. Decision Tree (DT) 

Decision Tree allows each node to weigh possible actions against one another based on their benefits, costs, and proba-

bilities. Overall, it is a map of the possible outcomes of a series of related choices [28] . A DT generally starts with a single

node and then it branches into possible outcomes. Each of these outcomes lead to additional nodes, which branch off into

other instances. So from there, it became a tree-like shape; in other words, a flowchart-like structure. Considering a binary

tree Fig. 3 where a parent node is split into two children node a left child and a right child. Parent node, left child and

right child contains data P , LC , RC , respectively [29] . Given, features x , impurity measure I(data), the number of samples
d d d 



M. Hasan, Md. M. Islam and Md. I.I. Zarif et al. / Internet of Things 7 (2019) 10 0 059 7 

Fig. 3. Decision Tree Splitting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in parent node P n , the number of samples in left child LC n and the number of samples in right child RC n ; DT’s target is to

maximize following Information Gain in Eq. (4) . 

Information Gain(P d ,x) = I(P d ) −
LC n 

P n 
I(LC d ) −

RC n 

P n 
I(RC d ) (4)

Impurity Measure I(data) can be calculated in three techniques Gini Index I G , Entropy I H and Classification Error I E . Following

Eqs. (5)–(7) shows the calculation of different Impurity Measures. 

I H (n ) = −
c ∑ 

i =1 

p(c| n ) log 2 p(c| n ) (5)

I G (n ) = 1 −
c ∑ 

i =1 

p(c| n ) 2 (6)

I E (n ) = 1 − max { p(c| n ) } (7)

where, c denotes classes or labels, n denotes any node and p ( c | n ) denotes the ratio of c with respect to n. 

3.3.4. Random Forest (RF) 

As the name implies, the random forest algorithm creates the forest with many decision trees. It is a supervised classi-

fication algorithm. It is an attractive classifier due to the high execution speed [30] . Many decision trees ensemble together

to form a random forest, and it predicts by averaging the predictions of each component tree. It usually has much better

predictive accuracy than a single decision tree. In general, the more trees in the forest the more robust the forest looks. 

3.3.5. Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) is a machine learning technique which is the skeleton of different deep learning algo-

rithms. We can train the ANN model using raw data. Compared to other classifiers it has a large number of parameters for

tuning which makes it a complex structure. It also takes a long time to optimize error than other techniques. For this reason,

Neural Network algorithm instances are trained in Graphics Processing Unit using CUDA programming. Each single Neuron

Node of ANN is trained with feature set X = X 1 , X 2 , X 3 , . . . , X n ( where, X 1 − X n = Dist inct f eat ures ). The features are multiplied

by some random weights, W = W 1 , W 2 , W 3 , . . . , W n and added with bias values, b = b 1 , b 2 , . . . , b n . The v alues are then given

as input in non-linear activation function [8] . Activation functions can be of several types. Following Eqs. (8)–(11) are some

activation functions. In the equations, (i) means a single sample. 

Sigmoid Function: σ (z) or a (z) = 

1 

1 + e −z 
(8)

Tanh Function: a (z) = 

e z − e −z 

e z + e −z 
(9)

Rectified Linear Unit (RELU): a (z) = max (0 , z) (10)

Leaky RELU: a (z) = max (0 . 001 ∗ z, z) (11)
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After applying Non-Linear function, a softmax function is applied to get initial predicted value which is shown in Eq. (12) .

Predicted Value: ˆ y ( i ) = σ
(
W 

transpose X 

( i ) + b 
)

(12) 

Lastly from the true value and the predicted value, the loss function is calculated and weights of the whole neural network

architecture is modified using the backpropagation technique, gradient descent and error got from the loss function. The

equation of loss function is given in the following equation: 

L 
(

ˆ y ( i ) , y ( i ) 
)

= −
(
y ( i ) log 

(
ˆ y ( i ) 

)
+ 

(
1 − y ( i ) 

)
log 

(
1 − ˆ y ( i ) 

))
(13) 

3.4. Evaluation criteria 

The following metrics were calculated for evaluating the performance of the developed system. Using these metrics, one

can decide which technique is best suited for this work. 

3.4.1. Confusion matrix 

The confusion matrix is used to visualize the performance of a technique. It is a table that is often used to describe

the performance of a classification model on a set of test data for which the true values are known. It allows for easy

identification of confusion between classes. Most of the time, almost all performance measures are computed from it. A

confusion matrix is a summary of prediction results on a classification problem [31] . A definition of True Positive (TP), False

Positive (FP), False Negative (FN) and True Negative (TN) for multiple classes can be given from confusion matrix. Let C i be

any class out of the eight classes. Following are the definitions of TP, FP, FN, and TN for C i : 

• TP(C i ) = All the instances of C i that are classified as C i . 

• FP(C i ) = All the non C i instances that are classified as C i . 

• FN(C i ) = All the C i instances that are not classified as C i . 

• TN(C i ) = All the non C i instances that are not classified as C i . 

3.4.2. Accuracy 

A model’s accuracy is only a subset of the model’s performance. Accuracy is one of the metrics for evaluating classifica-

tion models. Eq. (14) depicts single class accuracy measurement. 

Accuracy = 

True Positive + True Negative 

True Positive + True Negative + False Positive + False Negative 
(14) 

3.4.3. Precision 

Precision means the positive predictive value. It is a measure of the number of true positives the model claims compared

to the number of positives it claims. The precision value for a single class is given in the following equation: 

Precision = 

True Positive 

True Positive + False Positive 
(15) 

3.4.4. Recall 

The recall is known as the actual positive rate which means the number of positives in the model claims compared to

the actual number of positives there are throughout the data. The recall value for a single class is given in the following

equation: 

Recall = 

True Positive 

True Positive + False Negative 
(16) 

3.4.5. F1 score 

The F1 score can also measure a model’s performance. It is a weighted average of the precision and recall of a model.

The F1 Score value for a single class is given in Eq. (17) . 

F1 Score = 

2 ∗ True Positive 

2 ∗ True Positive + False Positive + False Negative 
(17) 

3.4.6. Receiver operating characteristic curve 

It is a commonly used graph that summarizes the performance of a classifier over all possible thresholds. It is gener-

ated by plotting the True Positive Rate against the False Positive Rate as the value of the threshold is varied for assigning

observations to a given class [31] . The calculation of True Positive Rate and False Positive Rate are given in the following

equations: 
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Table 3 

Evaluation metrics of our study. 

Evaluation Classifiers 

Metrics LR SVM DT RF ANN 

Training Accuracy 0.983 0.982 0.994 0.994 0.994 

STD( + /-) 0.0012 0.0015 0.0 0 081 0.0 0 081 0.0013 

Precision 0.98 0.98 0.99 0.99 0.99 

Recall 0.98 0.98 0.99 0.99 0.99 

F1 Score 0.98 0.98 0.99 0.99 0.99 

Testing Accuracy 0.983 0.982 0.994 0.994 0.994 

STD( + /-) 0.0055 0.0064 0.016 0.014 0.021 

Precision 0.98 0.98 0.99 0.99 0.99 

Recall 0.98 0.98 0.99 0.99 0.99 

F1 Score 0.98 0.98 0.99 0.99 0.99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

False Positive Rate = 

Number of False Positive Samples 

Total Number of Samples 
(18)

True Positive Rate = Recall = 

Number of True Positive Samples 

Total Number of Samples 
(19)

The threshold value is the probability value for each predicted class. The ROC curve can be drawn using binary classes.

However, using one vs. rest method, it can be extended for multiple classes. The values of the true positive rate and false

positive rate for each class ranges from 0 to 1. 

4. Implementation and result analysis 

4.1. Experimental setup 

The experiment was done using HP (EliteDesk 800 G3 TWR) desktop where the operating system was Windows 10 En-

terprise 64-bit (10.0, Build 17134) (17134.rs4_release.180410–1804), Processor was Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz

(8 CPUs), 3.6GHz. The memory of the desktop was 16.384 GB RAM. NVIDIA GeForce GTX 1070 graphics card was used for

running the program. For data analogy, cleaning and feature engineering, Pandas framework and Numpy framework; for data

visualization, Matplotlib framework and Seaborn framework and lastly for data analysis, scikit-learn framework and Keras

framework were used. 

4.2. Result analysis 

In the Data Analysis subsection, it has been described that several machine learning techniques were applied to the

dataset. Five-fold cross-validation was performed on the dataset using each of these techniques. Fig. 4 (a) and (b) shows how

the accuracy results are converged after five-fold cross-validation. From the cross-validation, it can be inferred that RF and

ANN have performed best both in training and testing accuracy. DT performed with approximate similarity to RF and ANN in

the case of training. In the case of testing, the DT had most deviations than other techniques and performed poorly at first.

However in the last three folds, it performed similarly to RF and ANN. SVM and LR performed weakly than other techniques

in training. In the case of testing and in the first two fold, SVM and LR both performed better than other techniques and

logistic regression was best among them, but at the last three folds, they performed worse than others. Table 3 represents

different evaluation metrics for different techniques trained on the dataset. From Table 3 , it can be seen that DT and RF

have more accuracy, precision, recall, and F1 score values than other techniques. ANN also performed well in the case of

evaluation. However, DT and RF are a little more accurate than ANN. On the other case, LR and SVM also do well on our

dataset but not as good as other classifiers. 

Now considering the confusion matrices of each technique, the most optimized technique can be found. From the con-

fusion matrices in Fig. 5 it can be concluded that RF is the best technique for this work. RF classified every class correctly

except DoS and Normality classes. Out of 1178 samples of DoS, it misclassified 403 samples as Normal. Moreover, for Normal

class, it misclassified 18 samples as DoS out of 69,571 samples. Confusion matrix for DT is similar to RF except for the Nor-

mal class. In the case of Normal class, it misclassified 18 samples as DoS and two samples as spying out of 69,571 samples.

ANN performed similarly to DT. It only misclassified one more sample than DT. ANN correctly predicted every sample of

6 labels out of 8 labels. In the case of DoS, ANN misclassified 403 samples as Normal out of 1178 samples. While for the

Normal Label, ANN misclassified 18 samples as DoS, two samples as Spying and 1 sample as Malicious Control out of 69,571

samples. LR and SVM performed very poorly in this system. Fig. 5 shows the confusion matrix of LR. LR correctly classified

775 samples of DoS class but misclassified all the remaining 403 samples as Normal class. For Data Probing, it misclassified

63 samples as Normal out of 63 samples, for Malicious Control it misclassified 159 samples as Normal out of 169 samples,
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Fig. 4. (a) Training accuracy for different techniques for 5 fold cross validation (b) Testing accuracy for different techniques for 5 fold cross validation. 

 

 

 

 

 

 

for Malicious operation it misclassified 77 samples as Normal out of 155 samples, for scan it misclassified 5 samples as DoS

and 298 samples as Normal out of 305 samples, for spying it misclassified 120 samples as Normal out of 120 samples, for

the Wrong Setup it misclassified 28 samples as Normal out of 28 samples and lastly for Normal, it misclassified 34 samples

as DoS and 9 samples as Malicious Operation out of 69,571 samples. In the case of SVM, it correctly classified 775 sam-

ples of DoS class but misclassified 403 samples as Normal class. SVM misclassified all samples of data probing, spying and

the wrong setup as normal, for malicious control it misclassified 159 samples as Normal out of 169 samples, for malicious
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Fig. 5. Confusion Matrix of LR, SVM, DT, RF and ANN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

operation it misclassified 122 samples as Normal out of 155 samples, for scan it misclassified 2 samples as Malicious Op-

eration and 303 samples as Normal out of 305 samples and for Normal, it misclassified 34 samples as DoS out of 69,571

samples. 

Lastly, Fig. 6 depicts the Receiver Operating Characteristic (ROC) Curves of LR, SVM, DT, RF, and ANN respectively. From

area under the curves, it can be described that DT, RF, and ANN have higher accuracy because all of the area under the

curves for every class is approximately equivalent to value one. While in case of LR and SVM, only for DoS and Wrong Setup

the area under the curve is equivalent to one. 

4.3. Comparative study 

Pahl et al. [1] acquired 96.3% accuracy value for multiclass classification using K-Means and BIRCH Clustering. Liu et al.

[5] developed data packet based anomaly detector for a binary classification problem and focused on the energy consump-

tion of each node. Their identification rate of the malicious node is above 80%. Like the data source used in this research,

Diro et al. [8] , Pajouh et al. [6] and D’Angelo et al. [15] have used a dataset from another popular open source. The link

of the dataset is given in Table 4 . Diro et al. acquired 98.27% accuracy on multiclass classification problem using Neural

Network. Pajouh et al. obtained 84.82% identification rate and D’Angelo et al. obtained 94.1% testing accuracy for Binary

class classification. Brun et al. [11] have not described much about the dataset and their analysis results. They have detected

when the attack is occurring using time series data. 

Compared to other papers, our paper provides much detailed description of the dataset. It also provides a clear expla-

nation of the dataset preprocessing steps. The paper is focused on classifying multiple classes which is harder than binary

classification. Lastly, a clear description of the evaluation metric values for each classifier is given in this paper. 
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Fig. 6. ROC Curve of (a) Logistic Regression (b) Support Vector Machine (c) Decision Tree (d) Random Forest (e) Artificial Neural Network. 
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Table 4 

Comparative description of proposed IoT attack detection with state of art. 

Author Dataset Classification Mechanism Evaluation 

and Year Type Metric 

Pahl et al. Own Multiclass K-Means ACC = 96.3 

2018 [1] Synthetic BIRCH Clustering 

Liu et al. Own Binary Light Probe Routing I.R. = 0.80( > ) 

2018 [5] Synthetic 

Diro et al. NSL-KDD [32] Multiclass Neural Network ACC = 98.27 

2018 [8] 

Brun et al. Own Multiclass Random Dense Neural Network N/A 

2018 [11] 

Anthi et al. Own Binary Naive Bayes N/A 

2018 [13] Synthetic 

Pajouh et al. NSL-KDD [32] Two-tier Naive Bayes I.R. = 84.82 

2018 [6] K-Nearest Neighbor 

D’angelo et al. NSL-KDD [32] Binary U-BRAIN ACC = 94.1 

2015 [15] Real Traffic ACC = 97.4 

Data (Real Data) 

Our study DS2OS Multiclass Logistic Regression ACC = 98.3 

traffic Support Vector Machine ACC = 98.2 

traces [18] Decision Tree ACC = 99.4 

Random Forest ACC = 99.4 

Artificial Neural Network ACC = 99.4 

I.R. = Identification Rate, ACC = Accuracy, N/A = Not Appropriately Defined 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

Based on the full study it was found that one should use RF technique on these kinds of dataset for solving cyberattacks

on IoT network because RF predicted D.P, M.C, M.O, SC, SP, W.S attacks accurately compared to other approaches. In the

case of DoS and Normal, it also predicted more samples accurately than other techniques. Hence, relying on these estima-

tions, it can be concluded that RF is the best technique for this particular study. However, here only the classical machine

learning approaches are employed over the dataset, and comparative study is given. No new algorithm is devised on this

dataset. Hence, further study is needed for developing a robust detection algorithm. More analysis should be given on whole

framework designing. Besides, this work is based on virtual environment data. In the case of real-time data, there may raise

different problems. A more empirical study is needed on this problem focusing on real-time data. In the IoT network, micro-

services behave differently at different times which causes deviations in normal behavior in IoT services thus creating an

anomaly. Further study is needed to interpret these problems in a more in-depth way. In this study, RF performs compar-

atively better with the accuracy of 99.4%. However, it does not assure that in the case of the big data and other unknown

problems RF will perform this way. Hence, more study will be needed. 
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