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A Kirchhoff micro-plate model is presented based on the modified strain gradient elasticity theory to
capture size effects, in contrast with the classical plate theory. The analysis is general and can be reduced
to the modified couple stress plate model or classical plate model once two or all material length scale
parameters in the theory are set zero respectively. Governing equation and boundary conditions of an
isotropic rectangular micro-plate are derived using minimum potential energy principle. Various
boundary conditions including simply supported and clamped edges are covered by the analysis. The
extended Kantorovich method (EKM) which is an accurate approximate closed-form solution is applied
to solve the resulting sixth order boundary value problem. Application of EKM to the partial differential
equation (PDE) yields two ordinary differential equations (ODEs) in the independent x and y coordinates.
The resulted ODEs are solved in an iterative manner. Exact closed-form solutions are presented for both
ODEs in all of the iteration. It is shown that the method provides accurate predictions with very fast
convergence. Numerical results reveal that the differences between the deflection predicted by the
modified strain gradient model, the couple stress model and the classical model are large when the plate
thickness is small and comparable to the material length scale parameters. However, the differences
decrease with increasing the plate thickness. Validation of the presented EKM solution shows good
agreement with available literature.

� 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

It has been experimentally demonstrated that the micro scale
structures are size-dependent. For example, it has been observed in
somemetals which are deformed plastically (Guo et al., 2005; Poole
et al., 1996). In the micro-torsion test, Fleck et al. (1992) observed
that the torsional hardening of thin copper wires increases when
the wires diameter decreases. Also researchers have proven size-
dependent behavior in some polymers. For instance, Chong and
Lam (1999) observed strong size-dependency in epoxy and Lam
et al. (2003) investigated size-dependency in epoxy polymeric
beams and their results show a significant enhancement of nor-
malized bending rigidity as the thickness of the beam decreases. In
the micro-bending test of polypropylene micro-cantilevers,
McFarland and Colton (2005) showed a significant difference be-
tween their results and values predicted by the classical theory of
beam. The aforementioned experimental works reveal that the
intrinsic behavior of some materials is size-dependent and the
oodi).

son SAS. All rights reserved.
classical theory cannot predict reliable results due to lack of ma-
terial length scale parameters while the size of structures is at
micron-scale. Consequently, some higher-order theories have been
proposed to take into account the size effect in which constitutive
equations involve length scale parameters as well as classical
Lame’s constants.

One of the higher-order continuum theories is classical couple
stress theory proposed by some investigators such as Toupin
(1962), Mindlin and Tiersten (1962) and Koiter (1964). The theory
introduces two material length scale parameters for an isotropic
elastic material. The classical couple stress theory has been
employed in some static and dynamic problems (Zhou and Li, 2001;
Kang and Xi, 2007). Yang et al. (2002) suggested a modified couple
stress theory in which a higher-order equilibrium equation, i.e. the
equilibrium equation of couple of couples, is considered. As a result,
the couple stress tensor should be symmetric and only symmetric
part of rotation gradient tensor contributes to storage of elastic
energy. Therefore, one material length scale parameter associated
with the symmetric rotation gradient tensor is only included in
constitutive equations in addition to two classical constants. The
theory has been applied to study static and dynamic behavior of
size-dependent BernoullieEuler and Timoshenko beam models by
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some researchers such as Park and Gao (2006), Kong et al. (2008),
Ma et al. (2008), Asghari et al. (2010, 2011) and Reddy (2011). In the
analysis of plates employing the modified couple stress theory,
Tsiatas (2009) derived the governing equation of Kirchhoff plate
with the most general form of boundary conditions and
Jomehzadeh et al. (2011) studied the size-dependent vibration
analysis of Kirchhoff plate.

Another higher-order continuum theory has been developed by
Mindlin (1965) inwhich strain energy is considered as a function of
first and second-order gradients of strain tensor. In a normal case,
the theory involving only first-order gradient of strain tensor in-
troduces five new constants as well as Lame’s constants for an
isotropic linear elastic material (Mindlin and Eshel,1968). Altan and
Aifantis (1992) proposed a simplified strain gradient theory
involving only one new constant. Lazopoulos (2004) formulated
a geometrically nonlinear size-dependent plate based on the sim-
plified strain gradient elasticity theory. Fleck and Hutchinson (1993,
1997 and 2001) reformulated the Mindlin’s theory and called it the
strain gradient theory. Lam et al. (2003) utilizing the higher-order
equilibrium equation suggested by Yang et al. (2002) modified
the strain gradient elasticity theory. The theory involves three
material length scale parameters corresponding to the dilatation
gradient tensor, the deviatoric stretch gradient tensor and the
symmetric rotation gradient tensor. The higher-order stresses are
defined as the work-conjugate to the higher-order deformation
metrics. It should be noted that the modified strain gradient elas-
ticity theory can be reduced to the modified couple stress theory if
two of the three material length scale parameters are taken to be
zero. In other words, the modified couple stress theory is a special
case of the modified strain gradient elasticity theory. The modified
strain gradient elasticity has been utilized to investigate the static
and dynamic response of size-dependent BernoullieEuler and
Timoshenko beam models by some researchers such as Kong et al.
(2009) and Wang et al. (2010). Buckling of axially loaded micro-
scaled beams based on both of the modified couple stress theory
and the modified strain gradient elasticity theory has been studied
by Akgoz and Civalek (2011). Based on the simplified form of the
Mindlin’s strain gradient theory, a variational analysis of both
rectangular and circular plated has been carried out by Papargyri-
Beskou et al. (2010). Moreover, a new formulation based on the
modified strain gradient elasticity theory has been developed by
Wang et al. (2011) for simply supported plates. However, two
misconceptions have occurred in the study concerning stresse
strain relation and also extracting boundary conditions. It should
be noted that the proper boundary conditions, which are derived in
the presented work, are not satisfied by the double Fourier’ series
assumed in the Eq. (33) of the paper (Wang et al., 2011) for the
static and dynamic analysis. Therefore the obtained results in both
of the static and dynamic analysis would not be correct, naturally.

On the other hand, in the categories of numerical procedures, the
Extended Kantorovich Method (EKM) has been first introduced by
Kerr (1969) using the idea of the Kantorovich method to obtain
highly accurate closed-form solution for torsion of prismatic bars
with rectangular cross-section. Since then, EKMhasbeen extensively
used inmany applications. For instance, one is referred to eigenvalue
problems (Kerr, 1969), buckling (Yuan and Jin, 1998) and free vibra-
tions (Dalaei and Kerr, 1996) of thin rectangular plates, bending of
thick rectangular isotropic (Aghdam et al., 1996; Yuan et al., 1998)
and orthotropic (Aghdam and Falahatgar, 2003) plates, free-edge
strength analysis (Kim et al., 2000), vibration of variable thickness
plates (Shufrin andEisenberger, 2006) andbucklingof symmetrically
laminated plates (Ungbhakorn and Singhatanadgid, 2006). Although
the extended Kantorovich method is based on the variational prin-
ciple, it has been shown that initial guess functions are not required
to satisfy the boundary conditions (Kerr and Alexander, 1961; Dalaei
and Kerr, 1995; Aghdam et al., 1996). Utilizing the proposed method
reduces the problem of solving a partial differential equation to a set
of ordinary differential equations in the x and y directions. Iterative
scheme of the method forces the solution to satisfy all boundary
conditions. These two featuresmake the EKMmore appropriate than
the traditional weighted residual methods such as Galerkin or Ritz
method. Furthermore, the strain gradient platemodels are described
by a sixth order differential equation. Thus, the FEM conformity re-
quirements demand elements of C2 continuity which makes FEM
method tedious and impractical for the problem.

The object of the present work is to provide a solution for
bending analysis of a rectangular micro scale Kirchhoff plate using
the modified strain gradient elasticity theory and variational
principle. For this purpose, a highly accuratemethod, i.e. the EKM is
adopted to solve the energy based derived six order PDE together
with the appropriate boundary conditions. The outline of this paper
is organized as follows. In Section 2, the variational formulation of
the micro scale Kirchhoff plate based on the strain gradient elas-
ticity theory is in detail deduced using the minimum potential
energy principle. Then governing equation and boundary condi-
tions are obtained simultaneously. In Section 3, the extended
Kantorovich method is implemented. Subsequently, in Section4 the
static bending problem for both simply supported and clamped
boundary conditions is solved and numerical results of the current
Kirchhoff plate model are compared with both of the classical and
modified couple stress model. Validation of the presented EKM is
also carried out via the available literature. Finally, some conclu-
sions are summarized in Section 5.
2. Governing equation of micro plate

The strain gradient elasticity theory introduces dilatation gra-
dient tensor and the deviatoric stretch gradient tensor as well as
the symmetric rotation gradient. The strain energy U for an iso-
tropic linear elastic material occupying region V based on the
modified strain gradient elasticity theory is written as (Lam et al.,
2003)

U ¼ 1
2

Z
V

�
sijεij þ pigi þ sð1Þijk h

ð1Þ
ijk þmijc

S
ij

�
dv (1)

where

εij ¼
1
2
�
ui;j þ uj;i

�
(2)

gi ¼ εmm;i (3)

hð1Þijk ¼ hSijk �
1
5

�
dijh

S
mmk þ djkh

S
mmi þ dkih

S
mmj

�
(4)

cSij ¼
1
4
�
eimnun;mj þ ejmnun;mi

�
(5)

in which comma indicates partial derivative and ui is the dis-
placement vector, εij is the strain tensor, gi is the dilatation gradient

vector, hð1Þijk is the deviatoric stretch gradient tensor, cSij is the

symmetric rotation gradient tensor, dij is the Kronocker delta, eijk is
the permutation symbol and hSijk is the symmetric part of second-

order displacement gradient tensor defined by

hSijk ¼ 1
3

�
ui;jk þ uj;ki þ uk;ij

�
(6)
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Both of the tensors hð1Þijk and cSij are symmetric with respect to all
of the subscripts elucidated by

hð1Þijk ¼ hð1Þjik ¼ hð1Þikj ¼ hð1Þkji ; cSij ¼ cSji

The Cauchy (classical) stress tensor, sij, and the higher-order

stresses, pi, s
ð1Þ
ijk and mij are the work-conjugate to the deformation

measures εij, gi, h
ð1Þ
ijk and cSij, respectively and are given by con-

stitutive relations as follows

sij ¼ ldijεmm þ 2mεij (7)

pi ¼ 2m l20gi (8)

sð1Þijk ¼ 2m l21h
ð1Þ
ijk (9)

mij ¼ 2m l22c
S
ij (10)

where l and m are Lame’s constants, and l0, l1, l2 are additional
independent material length scale parameters corresponding to
dilatation gradients, deviatoric stretch gradients and rotation
gradients, respectively. The parameters for specific materials can be
measured by several typical experiments such as micro-bend test,
micro-torsion test and specially micro/nano indentation test (Lam
et al., 2003; Yang et al., 2002; Fleck and Hutchinson, 1993;
McFarland and Colton, 2005; Stolken and Evans, 1998).

An initially flat plate made of homogeneous linearly elastic
material with length a, width b and thickness h is shown in Fig. 1.
The xey plane coincides with the undeformed mid-plane occupy-
ing the two dimensional domainU bounded by the curve Gwhich is
piecewise smooth. According to the classical plate theory, the dis-
placement field is expressed as (Reddy, 2004)

uxðx; y; zÞ ¼ �zw;x

uyðx; y; zÞ ¼ �zw;y

uz ¼ wðx; yÞ
(11)

where ux, uy, and uz represent the x, y and z components of the
displacement vector, respectively.

Using the displacement field given by Eq. (11), the strain tensor
components which are non-zero can be written as

εxx ¼ �zw;xx

εyy ¼ �zw;yy

εxy ¼ �zw;xy

(12)

Other deformation measures including the dilatation gradient,
the deviatoric stretch gradient and the symmetric rotation gradient
can be obtained by substituting the displacement field (11) into Eqs.
(3)e(5). For keeping brevity, the results are presented in Appendix
A. The next step is to calculate the stresses including classical stress
and higher-order stresses. After the appropriate replacement of the
Lame’s constants bymodulus of elasticity E and the Poisson’s ratio n
Fig. 1. Geometry of the plate.
in Eq. (7), the non-zero stresses can be given by (Timoshenko and
Goodier, 1970)

sxx ¼ E
1� n2

�
εxx þ nεyy

� ¼ � Ez
1� n2

�
w;xx þ nw;yy

�
syy ¼ E

1� n2
�
nεxx þ εyy

� ¼ � Ez
1� n2

�
nw;xx þw;yy

�
sxy ¼ E

1þ n
εxy ¼ � Ez

1þ n
w;xy

(13)

Wang et al. (2011) used three-dimensional general stressestrain
relations instead of above two dimensional (2D) equations, which
led to different results. Several references can be referred applying
the plane stressestrain relations to analysis of classical plate in the
category of the higher-order elasticity theories (Tsiatas, 2009;
Reddy and Kim, 2012; Ramezani, 2012). Keeping in mind that in the
development of the higher-order elasticity theories such as couple
stress, modified couple stress and the present modified strain
gradient theories, all of the higher-order theories could be reduced
to classical elasticity once one or more material length scale pa-
rameters are taken to be zero whereas Eq. (24) of the paper (Wang
et al., 2011) cannot change to classical Kirchhoff’s plate biharmonic
equation by imposing l0 ¼ l1 ¼ l2 ¼ 0. It can be evidence that 2D
above stressestrain relation must be used to achieve proper plate
equation. Higher-order stresses can be calculated in a similar
manner by utilizing Eqs. (8)e(10) and results are presented in
Appendix A. Thus the first variation of the strain energy density
given by Eq. (1) can be rewritten as

dU ¼
Z
V

�
sxxdεxxþ2sxydεxyþsyydεyyþpxdgxþpydgy

þpzdgzþsð1Þxxxdh
ð1Þ
xxxþ3sð1Þxxydh

ð1Þ
xxyþ3sð1Þxxzdh

ð1Þ
xxz

þ3sð1Þxyydh
ð1Þ
xyyþsð1Þyyydh

ð1Þ
yyyþ3sð1Þyyzdh

ð1Þ
yyzþ3sð1Þxzzdh

ð1Þ
xzz

þ3sð1Þyzzdh
ð1Þ
yzzþsð1Þzzzdh

ð1Þ
zzzþ6sð1Þxyzdh

ð1Þ
xyzþmxxdc

S
xx

þ2mxydc
S
xyþmyydc

S
yy

�
dV

¼
Z
U

�
Mxxdw;xxþMxydw;xyþMyydw;yyþNxxxdw;xxx

þNxxydw;xxyþNxyydw;xyyþNyyydw;yyy
�
dU

(14)

in which new parameters are defined as

Mxx ¼
Zh2

�
h
2

�
� pz � 4sð1Þxxz þ sð1Þyyz þ sð1Þzzz �mxy

�
dz�

Zh2

�
h
2

sxxz dz

Mxy ¼
Zh2

�
h
2

�
� 10sð1Þxyz þmxx �myy

�
dz� 2

Zh2

�
h
2

sxyz dz

Myy ¼
Zh2

�
h
2

�
� pz þ sð1Þxxz � 4sð1Þyyz þ sð1Þzzz þmxy

�
dz�

Zh2

�
h
2

syyz dz
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Nxxx ¼ 1
5

Zh2

�
h
2

�
� 5px � 2sð1Þxxx þ 3sð1Þxyy þ 3sð1Þxzz

�
z dz

Nxxy ¼ 1
5

Zh2

�
h
2

�
� 5py � 12sð1Þxxy þ 3sð1Þyyy þ 3sð1Þyzz

�
z dz

Nxyy ¼ 1
5

Zh2

�
h
2

�
� 5px � 12sð1Þxyy þ 3sð1Þxxx þ 3sð1Þxzz

�
z dz

Nyyy ¼ 1
5

Zh2

�
h
2

�
� 5py � 2sð1Þyyy þ 3sð1Þxxy þ 3sð1Þyzz

�
z dz (15)

Above-mentioned expressions are elucidated in terms of
deflection in Appendix A. Using the divergence theorem leads to

dU ¼
Z
U

�
Mxx;xx þMxy;xy þMyy;yy � Nxxx;xxx � Nxxy;xxy � Nxyy;xyy

� Nyyy;yyy
�
dwdUþ

I
G

� ��Mxx;x �Mxy;y þ Nxxx;xx

þ Nxxy;xy
�
nx þ

��Myy;y þ Nxyy;xy þ Nyyy;yy
�
ny
�
dwds

þ
I
G

� �
Mxx � Nxxx;x � Nxxy;y

�
nx þMxyny

�
dw;xds

þ
I
G

�
Myy � Nxyy;x � Nyyy;y

�
nydw;ydsþ

I
G

�
Nxxxnx

þ Nxxyny
�
dw;xxdsþ

I
G

�
Nxyynx þ Nyyyny

�
dw;yyds

(16)

The first variations of thework done by external forces including
distributed load q(x,y)takes the following form

dW ¼
Z
U

qdw dU (17)

The minimum potential energy principle is written as

dP ¼ dU � dW ¼ 0 (18)

By substituting the results for both strain energy density and
work done by external forces in minimum potential energy prin-
ciple and also using fundamental lemma of calculus of variation,
the governing differential equation is obtained as

Mxx;xxþMxy;xyþMyy;yy�Nxxx;xxx�Nxxy;xxy�Nxyy;xyy�Nyyy;yyy ¼ q

(19)

By using Appendix A, One can after lengthy but straightforward
manipulations derive the governing differential equation in term of
deflection in the following form
DV4w� KV6w ¼ q (20)
in which constants D and K are

D ¼ Eh3

12
�
1� n2

�þmh
�
2l20þ

8
15

l21þ l22

	
; K ¼ mh3

 
l20
6
þ l21
15

!
(21)

It is observed that Eq. (20) leads to the Kirchhoff plate governing
equation using the modified couple stress theory (Tsiatas, 2009) or
the classical theory for l0 ¼ l1 ¼ 0andl0 ¼ l1 ¼ l2 ¼ 0, respectively.
The boundary conditions are simplified for two special cases

- case (i): simply supported

w ¼ 0;
v3w
vx3

¼ 0; D
v2w
vx2

� K
v4w
vx4

¼ 0 x ¼ 0; a
w ¼ 0;
v3w
vy3

¼ 0; D
v2w
vy2

� K
v4w
vy4

¼ 0 y ¼ 0; b

(22)

- case (ii): clamped

w ¼ 0;
vw
vx

¼ 0;
v3w
vx3

¼ 0 x ¼ 0; a
w ¼ 0;
vw
vy

¼ 0;
v3w
vy3

¼ 0 y ¼ 0; b

(23)

The above-derived boundary conditions are meaningful resul-
ted by classical material behavior of supports which are different
from those obtained by Wang et al. (2011) Indeed, boundary con-
ditions given by Eq. (27) of the paper (Wang et al., 2011) have been
simplified incorrectly for simply supported plate referred by
Appendix B.

3. Implementation of the EKM

According to the general procedure of extended Kantorovich
method, deflection should be considered as multiplication of single
term separable functions as

wðx; yÞ ¼ jðxÞ hðyÞ (24)

in which j(x) and h(y) are unknown functions of x and y to be
determined. The boundary conditions in Eqs. (22) and (23) in terms
of separable functions can be written as

- case (i)

j ¼ 0;
d3j
dx3

¼ 0; D
d2j
dx2

� K
d4j
dx4

¼ 0 x ¼ 0; a (25)
h ¼ 0;
d3h
dy3

¼ 0; D
d2h
dy2

� K
d4h
dy4

¼ 0 y ¼ 0;b (26)

- case (ii)

j ¼ 0;
dj
dx

¼ 0;
d3j
dx3

¼ 0 x ¼ 0; a (27)
h ¼ 0;
dh
dy

¼ 0;
d3h
dy3

¼ 0 y ¼ 0; b (28)

In view of Eq. (24), the governing differenti28 al equation given
by Eq. (20) can be rewritten in terms of separable functions as
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D

 
h
d4jþ 2

d2j d2hþ j
d4h

!

dx4 dx2 dy2 dy4

� K

 
h
d6j
dx6

þ 3
d4j
dx4

d2h
dy2

þ 3
d2j
dx2

d4h
dy4

þ j
d6h
dy6

!
¼ q

(29)

According to the general procedure of the weighted residual
methods, Eq. (29) should be multiplied by an appropriate weight-
ing function assumed to be h(y) (Aghdam and Falahatgar, 2003).
Considering an initial guess for h(y) and integrating of Eq. (29)
multiplied by weighting function over the length of plate in the y
direction yield to the first ODE as

� KA0
d6j
dx6

þ ðDA0 � 3KA1Þ
d4j
dx4

þ ð2DA1 � 3KA2Þ
d2j
dx2

þ ðDA2 � KA3Þj ¼ C1

(30)

where constants are defined as the following form

Am ¼
Zb
0

h
d2mh
dy2m

dy; C1 ¼
Zb
0

hq dy; ðm ¼ 0;1;2;3Þ (31)

By solving the resulted ordinary differential equation given by
Eq. (30) as well as boundary conditions (25) or (27), the first
approximation for function j(x) can be achieved. Applying a similar
manipulation in the x direction, i.e. multiplying each sides of Eq.
(29) by the obtained approximation function j(x) and integrating
the resulted equation over the length of the plate in the x direction,
results in the second ODE in term of h as

� KB0
d6h
dy6

þ ðDB0 � 3KB1Þ
d4h
dy4

þ ð2DB1 � 3KB2Þ
d2h
dy2

þ ðDB2 � KB3Þh ¼ C2

(32)

where constants are defined as

Bm ¼
Za
0

j
d2mj
dx2m

dx; C2 ¼
Za
0

jq dx; ðm ¼ 0;1;2;3Þ (33)

Again, solving the ODE resulted in Eq. (32) together with the
boundary conditions (26) or (28) yields the first approximation for
h(y) and thefirst iteration is completed. In second iteration, constants
of the Eq. (30) can be obtained using new function h(y) and the
procedure should be continued until the convergence is achieved.

Closed-form solutions can be presented for both ODEs given by
Eqs. (30) and (32) in all iterations. The closed-form solutions for
a uniformly distributed load are combinations of homogenous and
particular solution as

jðxÞ ¼
X6
i¼1

Gie
aixþ C1

DA2�KA3
; hðyÞ ¼

X6
i¼1

Hie
biyþ C2

DB2�KB3
(34)

in which Gi and Hi(i ¼ 1, 2, ., 6)are constants of the integration
determined by applying boundary conditions.
Fig. 2. Convergence rate of separable function jðxÞ for boundary condition (a) case (i)
and (b) case (ii).
4. Results and discussion

Using the procedure outlined in the previous section, highly
accurate closed-form solutions are presented for bending of
a modified strain gradient plate model. The first step is to assume
a function for hðyÞ as an initial guess function. The initial guess is
arbitrary and is given by
hðyÞ ¼ sin
�py
b

�
(35)
It should be noted that the weighting function is not needed to
satisfy all of boundary conditions (Kerr and Alexander, 1961; Dalaei
and Kerr, 1995; Aghdam et al., 1996). Using initial guess in Eq. (35)
and the expressions given in Eq. (31), all constants of the Eq. (30) are
obtained. Solving resulted ODE in conjunctionwith related boundary
conditions lead to determination of the constants of Eq. (32). As
a consequence, the newexpression for hðyÞ can be obtained by solving
Eq. (32) together with corresponding boundary conditions. The pro-
cedure is continued until convergence of the results is achieved.

For illustration purpose, the plate considered here is assumed to
be made of epoxy with the following properties: E ¼ 1.44 GPa,
v ¼ 0.38, l ¼ 17.6 mm (Lam et al., 2003). Geometric properties of the
plate are: a ¼ b ¼ 50 h, and the external loading is assumed to be
uniformly distributed as q ¼ 1 kN/m2.

Convergence rate of the separable function jðxÞ and hðyÞ, from
which deflection of plate can be determined, are shown in Figs. 2
and 3. The plate thickness is assumed to be h ¼ l. Moreover, the
identity of all three material length scale parameters is applied, i.e.
l0 ¼ l1 ¼ l2 ¼ l. Each figure includes two diagrams for both
boundary conditions of the case (i) and (ii). The Figures clearly
elucidate that the method converges rapidly such that three to four
iterations are enough to get a highly accurate closed-form solution.
Figs. 2b and 3b prove that the initial guess function is not required
to satisfy boundary conditions. Indeed, despite the fact that the
initial guess function does not satisfy the clamped boundary con-
ditions, the first iteration depicts a remarkable satisfaction of the
boundary conditions. For problems described by differential
equation of sixth or higher-order, such as the presented model, the
aforementioned advantages make the method more interesting in
comparison to the other numerical methods.

Fig. 4 including two diagrams a and b depicts the deflection
profile at the line y ¼ b=2 of the plate for threedifferent plate aspect



Fig. 3. Convergence rate of separable function hðyÞ for boundary condition (a) case (i)
and (b) case (ii).

Table 1
The maximum values of the plate deflection.

Boundary condition wmax/h

r ¼ 1 r ¼ 1.5 r ¼ 2

Case (i) 0:0127 0:0242 0:0318
Case (ii) 0:004 0:0069 0:008

w
/h

x/h
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ratios r ¼ a=b. The plate thickness is taken to be h ¼ l in the anal-
ysis and all three material length scale parameters are identical, i.e.
l0 ¼ l1 ¼ l2 ¼ l. Diagram a shows the results for simply supported
and diagram b presents those of clamped micro plate. As can be
w
/h

x/rh

w
/h

x/rh

Fig. 4. The effect of aspect ratio of the plate on the deflection at the line y ¼ b=2 for
boundary condition (a) case (i) and (b) case (ii).
concluded from the figures, more value of aspect ratio leads to
increase the deflection for both boundary conditions of case (i) and
(ii). Thus, the same as classical plate theory, the modified strain
gradient platemodel predicts bending rigidity of the plate decreases
while the aspect ratio increases. For a quantitative comparison, the
maximumvalues of the plate deflection are also tabulated in Table 1.

The effect of material length scale parameters is investigated in
Fig. 5 including diagram a, b and c considering a simply supported
plate. In each diagram, one of the material length scale parameters
is changed, while two other parameters are assumed to be
w
/h

x/h

w
/h

x/h

Fig. 5. The effects of the model constants on the deflection profile at the liney ¼ b=2
of the micro plate for case (i) boundary condition including the effect of (a) dilatation
gradient constant, (b) deviatoric gradient constant and (c) symmetric rotation gradient
constant.
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constant. The results show the variation of parameters corre-
sponding to the dilatation gradient (a ¼ l0=l), stretch deviatoric
gradient (b ¼ l1=l) and symmetric rotation gradient (d ¼ l2=l),
respectively. Similarly, Fig. 6 shows the results for a micro plate
with clamped boundary condition. From both Figs. 5 and 6, it
should be noted that the parameter associated with the dilatation
gradient has the most effect on the deflection, while the parameter
associated with the stretch deviatoric gradient has the least effect
on the deflection.

In Fig. 7a and b, a comparison is carried out between the
modified strain gradient model and its two reduced forms, i.e. the
modified couple stress model and the classical model for different
values of thickness including both proposed cases of boundary
conditions. Fig. 7a shows the results for simply supported boundary
condition and those of clamped boundary condition are depicted in
Fig. 7b. One can observe from both diagrams of the figure that the
deflection of the micro plate predicted by the presented model is
smaller than both of the modified couple stress and the classical
w
/h

x/h

w
/h

x/h

w
/h

x/h

Fig. 6. The effects of the model constants on the deflection profile at the liney ¼ b=2
of the micro plate for case (ii) boundary condition including the effect of (a) dilatation
gradient constant, (b) deviatoric gradient constant and (c) symmetric rotation gradient
constant.

h/
w

m
a

h/l

Fig. 7. Comparison of three different models versus thickness of the micro plate for
boundary condition (a) case (i) and (b) case (ii).
models. The fact describes that the bending rigidity of the plate
increases in the present model in comparison to two other models.
Indeed, the modified strain gradient elasticity theory involves the
dilatation gradient vector and the deviatoric stretch gradient tensor
in addition to the symmetric rotation gradient tensor considered in
the modified couple stress theory. Concluding from the Fig. 7a and
b, one can distinguish the size-dependency effects of the model. A
large difference of deflections related to the three different models
appears when the plate thickness h is small and comparable to the
material length scale parameters. However, the differences
decrease while thickness of the plate increases. The figures also
show the differences are negligible when the plate thicknesses are
larger than ten times of the length scale parameters. The recent
results follow good agreement with the experimental studies
which reveal that the size-dependent phenomena exist only for
small enough structures (Lam et al., 2003; McFarland and Colton,
2005).

It worth emphasizing that the micro-plate solution based on the
modified strain gradient theory is not available in the literature and
the presented model can be reduced to the modified couple stress
and the classical theories by setting zero for the l0; l1 and l0; l1; l2
length scale parameters, respectively. Therefore, for validation of
the presented EKM solution, a comparison is carried out with the
results given by Tsiatas (2009) inwhich themethod of fundamental
solutions (a boundary-type meshless method) has been used to
solve governing equation of the micro plate based on the modified
couple stress and classical theories. Geometric and material prop-
erties of the plate are (Tsiatas, 2009)

q ¼ 1 n ¼ 0:30
a ¼ b ¼ 1 D ¼ 1 l=h ¼ 0:4

(36)

Fig. 8a depicts the plate deflection for both the modified couple
stress and the classical platemodel with boundary condition of case
(i), and Fig. 8b shows those of the plate with boundary condition of
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Fig. 8. Comparison of the resulted EKM solution with the meshless method (Tsiatas,
2009) for boundary condition (a) case (i) and (b) case (ii).
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case (ii). As one can see, the results show good agreement between
the EKM solution and the numerical method.
5. Conclusion

A micro scale Kirchhoff plate formulation is presented based on
the modified strain gradient elasticity theory involving three ma-
terial length scale parameters capturing the size effects. The gov-
erning equations in conjunction with the well-proposed form of
boundary conditions are obtained using minimum potential energy
principle. The capability of extended Kantorovich method is
applied in solving resulted PDE in comparison with the other
conventional numerical methods. The results are obtained for
simply supported and clamped boundary conditions. A comparison
of the study is carried out with two other plate models including
the modified couple stress plate model and the classical plate
model. The numerical results show that the differences between
deflections predicted by three models are significant while the
plate thickness is small and comparable to the material length scale
parameters. However, the differences decrease when plate thick-
ness increases.
Appendix A

The deformation measures are presented below which can be
deduced in the following forms.

The dilatation gradient vector:

gx ¼ �z
v

vx

�
V2w

�

gy ¼ �z
v

vy

�
V2w

�
gz ¼ �V2w

(37)
The deviatoric stretch gradient tensor:

hð1Þxxx ¼ z
5

 
� 2

v3w
vx3

þ 3
v3w
vxvy2

!

hð1Þxxy ¼ hð1Þxyx ¼ hð1Þyxx ¼ z
5

 
� 4

v3w
vx2vy

þ v3w
vy3

!

hð1Þxxz ¼ hð1Þxzx ¼ hð1Þzxx ¼ 1
15

 
� 4

v2w
vx2

þ v2w
vy2

!

h
ð1Þ
xyy ¼ h

ð1Þ
yxy ¼ h

ð1Þ
yyx ¼ z

5

 
v3w
vx3

� 4
v3w
vxvy2

!

hð1Þyyy ¼ z
5

 
3

v3w
vx2vy

� 2
v3w
vy3

!

hð1Þyyz ¼ hð1Þzyy ¼ hð1Þyzy ¼ 1
15

 
v2w
vx2

� 4
v2w
vy2

!

hð1Þxzz ¼ hð1Þzxz ¼ hð1Þzzx ¼ z
5

v

vx

�
V2w

�

hð1Þyzz ¼ hð1Þzyz ¼ hð1Þzzy ¼ z
5

v

vy

�
V2w

�

hð1Þzzz ¼ 1
5
V2w

h
ð1Þ
xyz ¼ h

ð1Þ
yzx ¼ h

ð1Þ
zxy ¼ h

ð1Þ
zyx ¼ h

ð1Þ
yxz ¼ h

ð1Þ
xzy ¼ �1

3
v2w
vxvy

(38)

The symmetric rotation gradient tensor:

cSxx ¼ v2w
vxvy

cSyy ¼ �v2w
vxvy

cSxy ¼ 1
2

 
v2w
vy2

� v2w
vx2

!
(39)

Based on the aforementioned deformation measures, one can
obtain following results

Mxx ¼ mh
�

h2

6ð1� nÞ þ 2l20 þ
8
3
l21 þ l22

	
w;xx

þ mh
�

nh2

6ð1� nÞ þ 2l20 �
2
3
l21 � l22

	
w;yy

Mxy ¼ mh
�
1
3
h2 þ 20

3
l21 þ 4l22

	
w;xy

Myy ¼ mh
�

nh2

6ð1� nÞ þ 2l20 �
2
3
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þ mh
�
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8
3
l21 � l22

	
w;yy
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6

�
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5
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6

�
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3
5
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6

�
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12
5
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6

�
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3
5
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3
5
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�
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3
5
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2
5
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(40)
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Appendix B

Boundary conditions extracted by Wang et al. (2011), which are
given by Eq. (27) of their paper, are

BX1ða; yÞ dwða; yÞ � BX1ð0; yÞ dwð0; yÞ ¼ 0 (41)

BX2ða; yÞ dwXða; yÞ � BX2ð0; yÞ dwXð0; yÞ ¼ 0 (42)

BX3ða; yÞ dwXXða; yÞ � BX3ð0; yÞ dwXXð0; yÞ ¼ 0 (43)

BY1ðx; bÞ dwðx; bÞ � BY1ðx;0Þ dwðx;0Þ ¼ 0 (44)

BY2ðx; bÞ dwYðx;bÞ � BY2ðx;0Þ dwY ðx;0Þ ¼ 0 (45)

BY3ðx; bÞ dwYYðx; bÞ � BY3ðx;0Þ dwYY ðx;0Þ ¼ 0 (46)

in which
BX1ðx;yÞ ¼ �2P1
v3w
vx3

�ðP2þ2P3Þ
v3w
vxvy2

þ2P4
v5w
vx5

þð2P5þ2P6Þ
v5w

vx3vy2
þð2P5þP6Þ

v5w
vxvy4

BX2ðx;yÞ ¼ 2P1
v2w
vx2

þP2
v2w
vy2

�2P4
v4w
vx4

�ð2P5þP6Þ
v4w

vx2vy2
�P6

v4w
vy4

BX3ðx;yÞ ¼ 2P4
v3w
vx3

þP6
v3w
vxvy2

BY1ðx;yÞ ¼ �2P1
v3w
vy3

�ðP2þ2P3Þ
v3w
vx2vy

þ2P4
v5w
vy5

þð2P5þ2P6Þ
v5w

vx2vy3
þð2P5þP6Þ

v5w
vx4vy

BY2ðx;yÞ ¼ 2P1
v2w
vy2

þP2
v2w
vx2

�2P4
v4w
vy4

�ð2P5þP6Þ
v4w

vx2vy2
�P6

v4w
vx4

BY3ðx;yÞ ¼ 2P4
v3w
vy3

þP6
v3w
vx2vy

(47)
According to the fundamental lemma of the calculus of varia-
tions used to extract boundary conditions, each term in Eqs. (41)e
(46) must be zero because any term is independent from each
other. Deflection w is constant and identical to zero at all edges of
the simply supported rectangular plate. Therefore, variation of the
deflection is also zero at all edges x ¼ 0; a and y ¼ 0; b. Con-
sequently, one can obtain the following equality from Eqs. (41)
and (44)

w ¼ 0; x ¼ 0; a (48)

w ¼ 0; y ¼ 0;b (49)

In Eqs. (42), (43), (45) and (46), the coefficients Bij (i ¼ X, Y and
j ¼ 1, 2, 3) must vanish because none of the corresponding varia-
tion terms equal zero at the edges. The deflectionw is constant and
zero at all point of the edges x ¼ 0; a. Hence, the slope in the y
direction, vw=vy is also zero along the edges x ¼ 0; a. Assuming
the continuity condition for the deflection functions and all of the
partial derivatives, one can interchange the place of derivatives
such as

v3w
vyvx2

¼ v

vy
v2

vx2
ðwÞ ¼ v2

vx2
v

vy
ðwÞ ¼ v2

vx2

�
vw
vy

	

Consequently, any term contains differentiation with respect to
y direction on the boundary x ¼ 0; a vanishes. Therefore, by setting
zero value for each term in the Eqs (42) and (43), the boundary
conditions on the edges x ¼ 0; a can be simplified as follows

2P1
v2w
vx2

� 2P4
v4w
vx4

¼ 0 (50)

2P4
v3w
vx3

¼ 0 (51)

In a similar manner, vw=vx is zero at the edges y ¼ 0; b.
Accordingly, on the edges y ¼ 0; b, Eqs. (45) and (46) lead to

2P1
v2w
vy2

� 2P4
v4w
vy4

¼ 0 (52)

2P4
v3w
vy3

¼ 0 (53)
Eqs. (48) and (49) as well as Eqs. (50)e(53) represent complete
form of the boundary conditions for a simply supported rectangular
plate. The set of Eqs. (48)e(53) ensures the required 2� 6 boundary
conditions. Theses equations are listed below for each edges in the x
and y directions, separately

x ¼ 0; a

w ¼ 0; P1
v2w
vx2

� P4
v4w
vx4

¼ 0;
v3w
vx3

¼ 0

y ¼ 0;b

w ¼ 0; P1
v2w
vy2

� P4
v4w
vy4

¼ 0;
v3w
vy3

¼ 0

(54)
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