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Abstract: The Fourier plane encryption algorithm is subjected to a
known-plaintext attack. The simulated annealing heuristic algorithm is used
to estimate the key, using a known plaintext-ciphertext pair, which decrypts
the ciphertext with arbitrarily low error. The strength of the algorithm
is tested by using this estimated key to decrypt a different ciphertext
which was also encrypted using the same original key. We assume that the
plaintext is amplitude-encoded real-valued image, and analyze only the
mathematical algorithm rather than a real optical system that can be more
secure. The Fourier plane encryption algorithm is found to be susceptible to
a known-plaintext heuristic attack.
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1. Introduction

Many image encryption algorithms have been proposed in recent years Refs. [1-9], to cite just
a few. Many of these algorithms can be implemented using optical techniques taking advantage
of both the natural two-dimensional (2D) imaging capabilities of optics and the parallelism
achievable with optical processing. Optical systems are also capable of encrypting real-world
3D objects [7, 9]. Optical encryption algorithms have yet toundergo the rigorous cryptanal-
ysis which all conventional cryptographic algorithms are subjected to. There are instances in
the literature when an optical encryption mechanism is shown to be robust to blind decryption
for selected keys in the key space. However, this is not sufficient to evaluate the strength of
an encryption algorithm. Two previous studies have alreadybeen performed on the strength
of optical encryption [10, 11], specifically on the well-known the Fourier plane encoding al-
gorithm [2] also analyzed in this paper. Carnicer et al. [10]and Frauel et al. [11] examined
exact solutions to pixels in the decryption key, with the former concentrating only on chosen-
plaintext attacks [12] (where the attacker had the advantage of being able to choose whatever
plaintext-ciphertext pair they want) and the latter considering both chosen-plaintext and known-
plaintext attacks [12]. In Ref [10], a Dirac delta function is used as the chosen plaintext to find
the Fourier plane key. The method proposed in Ref [11] is based on the principle that Fourier
plane encoding algorithm is linear. In this paper, we take the first steps of a cryptanalysis using
heuristics to estimate the decryption key and describe a known-plaintext attack on the Fourier
plane-encoding algorithm. The advantage of using a heuristic to estimate decryption key pixels
rather than an analytical technique to determine exact solutions for the pixels is that heuristics
can take considerable less time to run. Furthermore, since the data routinely encrypted by op-
tical encryption is image data, slight errors in the decrypted data can often be tolerated, and so
an exact solution is not generally required.

In a known-plaintext attack, discussed in this paper, a single arbitrary (unchosen) plaintext-
ciphertext pair and the encryption method are known by the attacker. Furthermore, we assume
that the plaintext is amplitude-encoded real-valued image. With this a priori information, our
approach is to use a simulated annealing (SA) algorithm [13]to find a key which decrypts
the ciphertext (encrypted image) with some chosen error threshold. We choose this error to
be sufficiently low so that the entire information in the input image can be recovered. The so
obtained key is used to decrypt a different“ unseen plaintext, encrypted using the same set of
original keys. The encryption algorithm is evaluated based: (i) on its ability (in terms of length
of time on a particular computing platform) to withstand theSA heuristic decryption attack
using the known-plaintext, and (ii) based on the resulting error in the decryption of an unseen
plaintext.

2. Fourier plane encoding algorithm

The Fourier plane algorithm encodes an input imagef to a stationary white noise by using two
statistically independent random phase codes in the input plane and Fourier plane. The image is
multiplied by the first random phase codeR1. A Fourier transform is performed on this product
and multiplied by the second random phase codeR2. A second Fourier transform gives the
encrypted image. The encoded imageψ can be expressed mathematically as

ψ = [ f (.)R1]∗ R̂2(.) (1)

whereX̂ denotes the Fourier transform of X, and∗ denotes a convolution. The intensity of the
approximated input imagẽf is decoded as
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whereR3 is the SA algorithm’s estimation of the complex conjugate ofR2. If we assume that
the input image is real-valued, then we are only interested in | f | and can effectively ignoreR1.
Therefore in our analysis, when we refer to the decryption key we mean maskR2.

3. Known-plaintext attack using SA algorithm

One way to test the strength of an encryption algorithm can bestated as follows: with particular
known a priori information, how difficult is it for an attacker to find the key to a ciphertext which
would make it possible to retrieve the plaintext? In known-plaintext cryptanalysis, the attacker
has a priori knowledge of the encryption mechanism as well asa plaintext and ciphertext pair.
If the attacker is able to find the key used for a given plaintext-ciphertext pair, then the security
of all the past and future ciphertexts, which used the same key, arecompromised.

Let us assume that the attacker tries to decrypt a ciphertextencrypted using Fourier plane
encoding by the blind decryption method. In this method, (s)he tries to decrypt the ciphertext
by randomly picking a key from the key space, and compares theresulting ‘decrypted’ plaintext
to the original plaintext.

The probability of finding the correct mask int searches would be approximatelytK−1 where
K is the size of the key space. For anN×N pixel encryption phase mask withm phase levels,
the key space is as large asK = mN×N. If one considers that some fractionr(ε) ∈ [0,1] of the
keys could give a decryption with some acceptable errorε, then the probability of finding one
of these (estimated) keys increases tot[r(ε)K]−1 for a particularε. If the attacker finds any
one of these estimated keys (s)he would decrypt the ciphertext with some error. The important
question, however, is whether or not this estimated decryption key can also be used to decrypt
another (unseen) image, encrypted with the same original encryption key. If a single unseen
image is decrypted, then one could consider the encryption key as having been broken. If no
unseen image can be found that is adequately decrypted, thenone could consider the encryption
algorithm as having withstood a SA heuristic decryption attack using that particular computing
platform for that amount of time.

We apply a SA algorithm [13] to find a phase mask which would approximately decrypt the
ciphertextψ(.) to give an estimated plaintext̃f (.) such that the normalized root mean squared
(NRMS) error is equal to or less than some thresholdε. The NRMS error is calculated as

NRMS=

√

√

√

√

∑N
i=1 ∑N

j=1 |Id(i, j)− I(i, j)|2

∑N
i=1 ∑N

j=1 |I(i, j)|2
(3)

whereId(.) =
∣

∣ f̃ (.)
∣

∣

2
andI(.) = | f (.)|2

Our SA algorithm involved the following steps:
Step 1: An initial guess for the random phase maskR3 is made by assigning the phase of
the Fourier transform of the encrypted imageψ(.) to every other pixels in both dimensions (i.e.
half the number of pixels) [14]. The other half was chosen randomly from a uniform probability
distribution in the range[0 2π). The step countern is initialized to zero and the error threshold
ε is set to the desired value. The initial temperatureT is chosen sufficiently high so that the
perturbation probability in Step 4 will be large.
Step 2: The cost valueE is calculated as the NRMS error between the decrypted image and the
original plaintext image.
Step 3: One pixel ofR3 is randomly selected and perturbed byαnπ whereαn is the scale
of perturbation [14] at thenth step, chosen as[B log(A+En)/C]p whereEn denotes the cost
function calculated at thenth step as in Step 2. The parametersA, B, C and p will have been
fixed at the beginning of the algorithm so thatα0 ≈ 1. p determines the rate of decrease ofα
.The new cost function,Enew, is calculated using the perturbed phase mask.
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Fig. 1.Time taken to estimate the key which would decrypt the encrypted image of A with an NRMS
error of 0.1. Results of 50 trials, 25 each for cases when plaintext is a 32×32 pixel image and 64×64
pixel image.

Step 4: The change in cost function due to the perturbation is calculated as∆E = Enew−E . The
newly perturbed mask is accepted if∆E < 0. Otherwise, the mask is accepted with a probability
p(∆E) = exp(−∆E/T) whereT is the temperature parameter.
Step 5: Steps 2, 3, and 4 are repeated until the system converges fora given temperatureT.
The system is considered to have converged if|∆E| is less than 5% of the initial value for each
iteration.
Step 6: The temperature is decreased according to the annealing scheduleT = T0/(1+n), and
the step numbern is incremented.
Steps 2 to 6 are repeated until the NRMS error between the decrypted image and the original
plaintext image is reduced to belowε.

4. Results and discussion

We started with an imageA and its encrypted ciphertextψA, encrypted using the Fourier plane
encoding algorithm. The SA algorithm was used to estimate the key that would decryptψA with
an error (NRMS error) of 0.1. The estimated keyR3 is used to decrypt a different ciphertextψB

corresponding to a plaintextB. The NRMS error in the decrypted image is measured. The error
in the estimated imageB is expected to be greater than that ofA. We performed 25 trials each
for two cases when imageA has 32×32 and 64×64 pixels. For each trial we chose a different
starting point for the SA algorithm. We used a Dell Optiplex GX280 Intel Pentium 4 CPU 2.8
GHz PC with 504 MB of RAM memory and MATLAB version 7 for our trials. The time taken
for the algorithm to converge to an NRMS error of 0.1 in the decrypted imageA for 25 trials
is shown in Fig. 1. The NRMS error in the decrypted imageB for 25 trials is shown in Fig. 2.
ImagesA andB are shown in Fig. 3(a) and Fig. 3(e), respectively.

The average time taken in 22 out of 25 trials when A is a 32×32 pixel image is 22 minutes.
The average error in decrypted imageB for these 22 trials is 0.44. However trials 9, 22, and 25
have an average of 144 minutes and their average error is 0.86. WhenA is a 64×64 pixel image,
the average time taken in 24 out of 25 trials is 343 minutes. The error in decrypted imageB
for these 24 trials is 0.4. The time taken for the remaining trails (trial 3 in Figs. 1 and 2) is 560
minutes and the corresponding error for the decrypted imageB is 0.87.

The plaintext imagesA and B are shown in Fig. 3(a) and (e), respectively. The real and
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Fig. 2.NRMS error to decrypt the encrypted image of B. The key used wasthe one found to decrypt
the encrypted image of A with NRMS error of 0.1. A and B are encrypted using the same set of keys.
Results of 50 trials, 25 each for cases when plaintext is a 32×32 pixel image and 64×64 pixel image.

imaginary parts of the complex-valued encrypted imageψA are shown in Fig. 3(b) and (c), re-
spectively. Figs. 3(f) and (g) show the real and imaginary part of the complex valued encrypted
imageψB. The decrypted image ofψA with an error of 0.1 is shown in Fig. 3(d) and that ofψB

with an error of 0.4 is shown in Fig. 3(h).
Of the 50 trials performed, we note that the SA algorithm converged to a solution in all cases,

within 560 minutes on our particular computing platform, and found a key to decryptψA with
an error of 0.1. Of these 50 trials, in 46 cases, the key successfully decrypts another unseen
encrypted imageψB with an error of 0.4 [that is still sufficient to read the information, see Fig.
3(h)]. Only in four cases, was the error in decryptingψB twice this value (approx. twice as
large) and thus we regard these cases as having failed to decrypt. The existence of these four
failed cases potentially adds to the security of the Fourierplane encryption technique and poses
a problem for any attacker. If an attacker cannot identify such failed cases, since plaintextB is
unseen, (s)he might never to able to tell, given a plaintext-ciphertext pair(A,ψA), whether or
not a key that correctly decryptsψB has been identified. However, we note that the algorithm
also takes much longer to converge in these four cases. This provides a clear indication as to
whether a key, which successfully decryptψB, has been found or not. Therefore our proposed
use of the SA technique is as follows:
Step (a). Given the plaintext-ciphertext pair(A,ψA) and an unseen ciphertextψB, run in parallel
s= 3 trials of the SA algorithm.
Step (b). As soon as the first of thes trials converges, accept that key and decryptψB.
With probability 0.9995 there will be at most two failed cases out of three trials, therefore with
this probability the above approach will, on average, successfully decryptψB within 3×343
minutes (given a 64×64 pixel image and our particular computing platform). We have assumed
that the probability of a failed case is 4/50 = 0.08, and that our statistical sample of 50 trials in
this paper is sufficient to determine this fact. Regardless of the sufficiency of our sample, if the
probability of a failed case is less than 0.5 (as it certainlyappears to be) running SA fors> 3
trials and picking the majority answer will increase even further the probability of successfully
attacking the Fourier plane encryption algorithm using theknown-plaintext SA heuristic attack.
We have found that the average time for attack isO(n2) where ’n’ is the number of pixels in the
plaintext and ciphertext.
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Fig. 3. (a) Images from the 64×64 pixel trials: (a) the plaintext A, (b) the real part and (c)the imagi-
nary part of the complex-valued encrypted image of A, (d) the decrypted image with an NRMS error
of 0.1, (e) the plaintext B, (f) the real part and (g) the imaginary part of the complex-valued encrypted
image of B, (h) the decrypted image B with an NRMS error of 0.4, and (i) the decrypted image B in
trial 3 with an NRMS error of 0.8.

5. Conclusion

We tested the strength of Fourier plane encryption algorithm with respect to a known-plaintext
attack. We used an SA algorithm to estimate the key that woulddecrypt a ciphertext corre-
sponding to a plaintext with a predetermined arbitrary low error. In 46 of the 50 trials, the so
estimated key decrypted a different unseen ciphertext encrypted using the same original key
with reasonably low error. The results from these experiments show that the Fourier plane en-
cryption algorithm is susceptible to a known-plaintext attack with a SA heuristic. In our analysis
we have assumed that the images to be encrypted are amplitude-encoded images. Furthermore,
our analysis is of a mathematical formulation of the encryption algorithm itself, and does not
take into account properties of the optical hardware that add to the security of the technique.
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