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Abstract—This paper is concerned with the fuzzy-model-based
non-fragile control problem for discrete-time nonlinear singu-
larly perturbed systems with stochastic jumping parameters.
The stochastic parameters are generated from the semi-Markov
process. The memory property of the transition probabilities
among subsystems is fully considered in the investigated systems.
Consequently, the restriction that the transition probabilities are
memoryless in widely used discrete-time Markov jump model
can be removed. Based on the T-S fuzzy model approach and
semi-Markov Kernel concept, several criteria ensuring δ-error
mean square stability of the underlying closed-loop system
are established. With the help of those criteria, the designed
procedures which could well deal with the fragility problem in the
implementation of the proposed fuzzy-model-based controller are
presented. A technique is developed to estimate the permissible
maximum value of singularly perturbed parameter for discrete-
time nonlinear semi-Markov jump singularly perturbed systems.
Finally, the validity of the established theoretical results is
illustrated by a numerical example and a modified tunnel diode
circuit model.

Index Terms—Singularly perturbed systems, non-fragile fuzzy
control, slow state variables feedback, semi-Markov jump sys-
tems.

I. INTRODUCTION

S INGULARLY perturbed systems (SPSs) denote a class of
dynamic systems displaying multiple-time scales (MTS)

features. As a suitable modeling paradigm, SPSs are strongly
capable of analyzing the dynamics behaviors of many physical
systems with some parasitic parameters, such as transients
in voltage regulators or machine reactances in power system
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models, time constants of actuators in industrial control sys-
tems, a small number of an enzyme in biochemical models,
fast neutrons in nuclear reactor models [1]. It is readily
explained why numerous research works have contributed to
the study of linear and nonlinear SPSs. On the whole, most of
the existing related results focus on the analysis and control
of linear SPSs, an urgent question, therefore, is that how to
extend such results to nonlinear SPSs. Realizing such a fact,
some recent works have investigated the analysis and design
of nonlinear SPSs by bond graph model approach [2], Euler’s
methodology [3], T-S fuzzy model approach [4]–[11] and so
on.

As an important approach investigating the study of nonlin-
ear SPSs, the fuzzy rule-based model approach has attracted
increasing attention. The main reason lies much in its unique
merits in solving nonlinear system identification and control
problems. It has been recognized that such an approach could
be successfully applied to represent many nonlinear dynamics
[12]–[23]. In general, the underlying nonlinear singularly
perturbed system is decomposed into many local linear SPSs in
different regions. In this regard, by blending these local linear
SPSs associated to the fixed nonlinear fuzzy membership
functions, the approximating of the SPSs is accomplished,
and the corresponding overall fuzzy model is presented. Along
with this mechanism, many control issues of nonlinear SPSs
have been addressed including, just to name a few, fuzzy
H∞ output feedback control [4], [24], static output feedback
H∞ controller design [5], robust sliding-mode control [6],
multiobjective control [7], identification and trajectory tracking
control [11] and filtering problem [25], [26].

As noted in [27]–[31], the abrupt changes of the parameter
and structure can occur in many SPSs owing to the unavoid-
able phenomena. A typical example is power systems subject
to component and interconnection failures. It is the main
reason why many scholars focus on the SPSs with jumping
parameters, where the jumping among different parameters in
subsystems is assumed to be governed by a Markov process.
In this context, for instance, the stability analysis for a class of
stochastic hybrid nonlinear systems with singular perturbation
was established in [32]; the stabilization problem for Markov
jump SPSs was studied in [33], [34]; the stabilization bound by
using the noise control method was addressed in [35]. It should
be pointed out that [32], [33], [35] are very effective for linear
Markov jump SPSs. By using T-S fuzzy model approach, [28]
investigated the filtering problem of Markov jump nonlinear
SPSs in continuous-time domains. However, they could not be
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easily extended to the discrete-time nonlinear Markov jump
SPSs.

What’s more, there are two shortcomings in some existing
methods about Markov jump SPSs. On the one hand, they
ignore the fragility problem according to an implicit assump-
tion that the controller may be exactly implemented. Such
an assumption, sometimes, is unavailable owing to the fact
that uncertainties or inaccuracies may occur when a designed
controller is implemented [36], [37]. On the other hand,
it is widely acknowledged that the transition probabilities
(TPs) play a significant role in determining the behavior and
performance of Markov jump SPSs. The mentioned-above
Markov jump SPSs are required to be subject to ideal, time-
invariant and memoryless TPs. In this case, the sojourn time in
Markov jump SPSs obey to geometric/exponential distribution
in discrete-/continuous-time domains. In fact, such a memory-
less restriction is not satisfied in many practical systems, one
can refer to [38] for more details. In a more practical way,
TPs should be considered to be time-varying with the memory
property, and accordingly the necessity of semi-Markov jump
SPSs with memory TPs is self-evident. Regrettably, inclusion
of memory TPs in the study of nonlinear Markov jump SPSs
has not been taken into account so far. As a consequence, there
are still interesting questions requiring further investigation for
the fuzzy-model-based control of discrete-time nonlinear SPSs
as follows:

1) Is it possible to develop an analysis method to such
a comprehensive system model, i.e., nonlinear discrete-time
semi-Markov jump SPSs, where memory TPs are fully consid-
ered and the restriction that the sojourn time must obey to
geometric distribution could be removed?

2) How can we design a fuzzy-model-based control strategy
when only applying slow state variables and how to assess
the effect of the singular perturbation parameter (SPP) upon
the system performance?

3) How to cope with the fragility problem in the implemen-
tation of the proposed fuzzy-model-based controller and how
to develop a technique to estimate the permissible maximum
value of SPP for nonlinear discrete-time semi-Markov jump
SPSs?

Although it has been recognized that seeking solutions to
these problems is fairly necessary in the study of nonlinear
discrete-time semi-Markov jump SPSs, no attempts have been
made up to now. Therefore, this paper aims to shorten this
gap, and the results are applied to the control of a modified
tunnel diode circuit model [8].

In view of the above consideration, the fuzzy-model-based
resilient control problem is addressed as the first attempt for
discrete-time nonlinear semi-Markov jump SPSs in this work.
The availability of the obtained results is finally illustrated
by applying a numerical example and the control issue of a
modified tunnel diode circuit model [8] as a practical example.
The contributions of this paper are that: 1) Different from some
previous works, a comprehensive system model, that is, non-
linear semi-Markov jump SPSs is investigated in this work. In
particular, the memory property of the TPs is adequately taken
into account. As such, the sojourn time is not requested to obey
necessarily geometric distribution. 2) A fuzzy-model-based

control strategy is established for nonlinear semi-Markov Jump
SPSs only applying slow state variables by means of the
T-S fuzzy model approach and semi-Markov Kernel (SMK)
concept, and the fragility problem in the implementation of the
proposed fuzzy-model-based controller is solved by designing
a resilient controller. 3) The effect of the SPP upon the system
performance is fully addressed, and a technique based on the
convex optimization technique is developed to estimate the
upper bound of SPP.

Notation. Throughout this paper, Rn and Rn×m : the n-
dimensional Euclidean space and the set of all n × m real
matrices, respectively; In and 0n: n× n-dimensional identity
and zero matrix, respectively; 0n×m: n × m zero matrix;
M > (<)0: the matrix M is positive (negative) definite;
MT and M−1: the transpose and inverse of the matrix M ,
respectively; Sym {M}: M +MT ; (Υ,F ,P): a probability
space where Υ is the sample space; F is the ηl-algebra of
subsets of sample space; P is the probability measure on

F .
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matrices under consideration are with compatible dimensions.

II. PROBLEM FORMULATION

Consider a probability space (Υ,F ,P), the nonlinear
discrete-time slow sampling SPSs (Σ) with semi-Markov jump
parameters can be described as follows:

Plant Rules p: IF ξ1 (k) is ϑp1, and ξ2 (k) is ϑp1, and . . . ,
and ξg (k) is ϑpg , THEN

ζ1 (k + 1) = A11p (η (k)) ζ1 (k) + ϵrA12p (η (k)) ζ2 (k)

+B1p (η (k))u (k) ,

ζ2 (k + 1) = A21p (η (k)) ζ1 (k) + ϵrA22p (η (k)) ζ2 (k)

+B2p (η (k))u (k) ,
(1)

where p ∈ W1, {1, 2, . . . , w} and w is the number of
IF-THEN rules of system; ζ1 (k) ∈ Rns , ζ2 (k) ∈ Rnf ,
u (k) ∈ Rnc are, respectively, the slow state vector, the
fast state vector and the control input; ϵr > 0 is the
SPP; matrixes A11p (η (k)) ∈ Rns×ns , A12p (η (k)) ∈
Rns×nf , A21p (η (k)) ∈ Rnf×ns , A22p (η (k)) ∈ Rnf×nf ,
B1p (η (k)) ∈ Rns×nc and B2p (η (k)) ∈ Rnf×nc are
known real matrices, where {η (k)}, which denotes the
mode of system at time k and takes values in a finite set
W2, {1, 2, · · · , h} , is a semi-Markov chain and its evolution
is generated by a SMK Π̆ (τ) = [π̆ij (τ)], i, j ∈ W2 with

π̆ij (τ),Pr
{
ℑ
(
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)
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∣∣ℑ (
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)
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=

Pr
{
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k̄
)
= i

}
Pr

{
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)
= i

}
×
Pr

{
ℑ
(
k̄ + 1

)
= j,Dk̄+1 = τ,ℑ

(
k̄
)
= i

}
Pr

{
ℑ
(
k̄ + 1

)
= j,ℑ

(
k̄
)
= i

}
= ϑijϕij (τ) , (2)

where k̄ stands for the time when system at k̄-th jump;
ℑ
(
k̄
)

denotes the system’s mode at k̄-th jump; Dk̄+1 denotes
the sojourn time between system at k̄-th jump and the next
jump; ϑij , Pr

{
ℑ
(
k̄ + 1

)
= j

∣∣ℑ (
k̄
)
= i

}
with ϑii = 0
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and ϕij (τ) , Pr
{
Dk̄+1 = τ

∣∣ℑ (
k̄ + 1

)
= j,ℑ

(
k̄
)
= i

}
.

The cumulative density function of sojourn time for mode
i is defined as F (i, τ) = Pr

{
Dk̄+1 6 τ

∣∣ η(k̄) = i
}

=∑τ
r=1

∑
j∈W2

π̆ij (r), and without loss of generality, we sup-
pose that F (i, 0) = ϕij (0) = 0. To simplify the notation,
for each η (k) = i ∈ W2, we denote A11p,i,A11p (η (k)),
A12p,i , A12p (η (k)), A21p,i , A21p (η (k)), A22p,i ,
A22p (η (k)), B1p,i , B1p (η (k)) and B2p,i , B2p (η (k)).

Let ζ (k) =
[
ζT1 (k) ζT2 (k)

]T
, a compact presentation

of the system (1) can be written as follows:

ζ (k + 1) =
w∑

p=1

hp (ξ (k)) [Ap,iEϵζ (k) +Bp,iu (k)] , (3)

where

Ap,i ,
[
A11p,i A12p,i

A21p,i A22p,i

]
, Bp,i ,

[
B1p,i

B2p,i

]
,

Eϵ , diag
{
Ins

, ϵrInf

}
.

Remark 1: It is worth pointing out that due to programming
errors, fixed word length and round-off error numerical compu-
tation etc., there may exist inaccuracies or uncertainties during
the controller implementation, which may result in the closed-
loop system instability. Therefore, the designed controller
should be insensitive to these inaccuracies or uncertainties.
Taking this into account, in this paper, the following resilient
slow state feedback controller is considered:

Control Rules p: IF ξ1 (k) is ϑp1, and ξ2 (k) is ϑp1, and
. . . , and ξg (k) is ϑpg , THEN

u (k) = [Kp (η (k)) + ∆Kp (η (k))] ζ1 (k)

= (Kp,i +∆Kp,i) ζ (k) , (4)

where Kp,i ,
[
Kp,i 0nc×nf

]
; Kp,i , Kp (η (k)) ∈

Rnc×ns are the controller gains to be determined; ∆Kp,i ,[
∆Kp,i 0nc×nf

]
; ∆Kp,i , ∆Kp (η (k)) ∈ Rnc×ns stand

for gain variations of the controller which are assumed to be
of the following form:

∆Kp,i =Mp,iOp,i (k)Np,i,

where Mp,i ∈ Rnc×no1 , Np,i ∈ Rno2×ns are known real
matrixes and Op,i (k) ∈ Rno1×no2 is an unknown time-varying
matrix function satisfying

OT
p,i (k)Op,i (k) 6 I.

Substituting (4) into (3) and denoting x (k) ,[
ζT1 (k) ϵζT2 (k)

]T
, one can get the closed-loop system

x (k + 1) = Ξpq,i (k, h)x (k) , (5)

where

Ξpq,i (k, h) ,
w∑

p=1

w∑
q=1

hp (ξ (k))hq (ξ (k))Apq,i,

Apq,i , Eϵ [Ap,i +Bp,i (Kq,i +∆Kq,i)] .

To proceed further, we firstly introduce the following nec-
essary definition and lemmas.

Definition 1: [38] Given a positive integer upper bound of
sojourn time T i

max > 1, ∀i ∈ W2, the corresponding closed-
loop system (5) is indicated to be δ-error mean square stable
(δ-MSS) with

δ ,
∑
i∈W2

∣∣ln (F (
i, T i

max

))∣∣ ,
if the condition in the following form holds for any initial state
x (0) ∈ Rns+nf , ∀i ∈ W2:

lim
k→∞

E
{
∥x (k)∥2

}∣∣∣
x0,η0,Dk̄+16T i

max|η(k̄)=i

= 0.

Lemma 1: [38] Consider a discrete-time stochastic switch-
ing system x (k + 1) = f (x (k) , η (k)), in which η (k) and
x (k) denote the system mode index and state, respectively.
Furthermore, the switching instants are represented by k0, k1,
k2, · · · , ks, · · · , with k0 = 0. The system is δ-MSS, if there
exist three class K∞ functions (ρ1, ρ2, ρ3) and a group of C1

functions V (x (k) , η (k)) such that for any initial condition
x0 ∈ Rns+nf , η (k) ∈ W2 and a fixed finite ψi > 0,
∀ηs,η (ks) = i, ηs+1,η (ks+1) = j ∈ W2, the following
conditions are satisfied

ρ1 ∥x (k)∥ 6V (x (k) , i) 6 ρ2 ∥x (k)∥ , (6)
V (x (k) , i) 6ψiV (x (ks) , i) , k ∈ (ks, ks+1) , (7)

−ρ3 ∥x (k)∥ >E
{
V (x (ks+1) , j)|x0,η0,Ds+16T i

max|ηs=i

}
− V (x (ks) , i) . (8)

Lemma 2: Given a finite constant ψi > 0 and a positive
integer T i

max, then the slow state feedback controller (4) can
guarantee that the system (5) is δ-MSS, if there exist matrices
Gα,i ∈ R(ns+nf )×(ns+nf ) > 0, ∀α ∈ W1, ∀i ∈ W2 with
Gα,i (τ) ,

∑
j∈W2

πij (τ)Gα,j/
∑T i

max
τ=1

∑
j∈W2

πij (τ) such
that the following conditions hold for ∀α, β ∈ W1, ∀i ∈ W2,
∀t ∈

{
1, 2, · · · , T i

max − 1
}

, ∀τ ∈
{
1, 2, · · · , T i

max

}
ΞT
i (ks, h, t)Gα,iΞi (ks, h, t)− ψiGβ,i < 0, (9)

T i
max∑
τ=1

ΞT
i (ks, h, τ)Gα,i (τ) Ξi (ks, h, τ)−Gβ,i < 0,(10)

with

Ξi (ks, h, t),Ξpq,i (ks + t− 1, h) . . .Ξyz,i (ks, h)︸ ︷︷ ︸
t

,

∀p, q, . . . , y, z ∈ W1.

Proof: See Appendix A.
Lemma 3: Given a finite constant ψi > 0 and a

positive integer T i
max, then the slow state feedback con-

troller (4) can guarantee that the system (5) is δ-MSS,
if there exist matrices Θα,i (t,κ) ∈ R(ns+nf )×(ns+nf ),
∀α ∈ W1, ∀i ∈ W2, ∀t ∈

{
1, 2, · · · , T i

max − 1
}

,
∀κ ∈ {0, 1, · · · , t− 1} with Θα,i , Θα,i (t, t) > 0,
Φα,i (τ, ϱ) ∈ R(ns+nf )×(ns+nf ), ∀α ∈ W1, ∀i ∈ W2, ∀τ ∈{
1, 2, · · · , T i

max

}
, ∀ϱ ∈ {0, 1, · · · , τ − 1} with Φα,i (τ, τ) ,∑

j∈W2
πij (τ)Θα,j/

∑T i
max

τ=1

∑
j∈W2

πij (τ) such that the fol-
lowing conditions hold for ∀α, β ∈ W1, ∀i ∈ W2,
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∀t ∈
{
1, 2, · · · , T i

max − 1
}

, ∀κ ∈ {1, 2, · · · , t− 1}, ∀τ ∈{
1, 2, · · · , T i

max

}
, ∀ϱ ∈ {1, 2, · · · , τ − 1}

0 > ΞT
pq,i (ks, h)Θα,i (t,κ + 1)Ξpq,i (ks, h)

−Θα,i (t,κ) , (11)
0 > Θα,i (t, 0)− ψiΘβ,i, (12)
0 > ΞT

pq,i (ks, h)Φα,i (τ, ϱ+ 1)ΞT
pq,i (ks, h)

−Φα,i (τ, ϱ) , (13)

0 >

T i
max∑
τ=1

Φi (τ, 0)−Θβ,i. (14)

Proof: From (11), one can derive that for all Ξi (ks, h, l),
l ∈ [0, t− 1]

0 > ΞT
i (ks, h, l)

[
ΞT
pq,i (ks, h)Θα,i (t,κ + 1)

×Ξpq,i (ks, h)−Θα,i (t,κ)] Ξi (ks, h, l) , (15)

which implies that

ΞT
i (ks, h, t)Θα,i (t, t) Ξi (ks, h, t)−Θα,i (t, 0) < 0.

Then let Gα,i = Θα,i (t, t) , Θα,i, Gβ,i = Θβ,i (t, t) , Θβ,i

and combining (12), it is easy to find that (9) is guaranteed.
Similarly, one can obtain (10) from (13)-(14). This completes
the proof.

Lemma 4: [8] For given a scalar ϵM > 0 and matrices
Λl (l = 1, 2, 3), if the following conditions hold simultane-
ously

Λ1 > 0,

Λ3 < 0,

ϵ2MΛ1 + ϵMΛ2 + Λ3 < 0,

then the following condition holds for ∀ϵr ∈ [0, ϵM ]

ϵ2rΛ1 + ϵrΛ2 + Λ3 < 0.

Lemma 5: [37] Given matrices zl (l = 1, 2, 3) with appro-
priate dimensions, then

z1 +z2O (k)z3 +zT
3 O

T (k)zT
2 < 0,

holds with O (k) satisfying O (k)OT (k) 6 I , if and only if
there exists a positive scalar ε > 0 such that

z1 + ε−1z2zT
2 + εzT

3 z3 < 0.

III. MAIN RESULTS

In this section, we will present the methods to evaluate the
upper bound of SPP ϵM and obtain the controller gains.

Theorem 1: Given finite constants ψi > 0, ϵM > 0,
positive integer T i

max and matrices J1α,i, J2α,i, J3α,i, if there
exist constants ε1, ε2, matrices Fi ∈ R(ns+nf )×(ns+nf ),
symmetric matrices Uαi (t,κ) ∈ R(ns+nf )×(ns+nf ), ∀α ∈
W1, ∀i ∈ W2, ∀t ∈

{
1, 2, · · · , T i

max − 1
}

, ∀κ ∈
{0, 1, · · · , t− 1} with I3Uαi (t,κ) IT

3 > 0, Uαi > 0
and Uαi (τ, ϱ) ∈ R(ns+nf )×(ns+nf ), ∀α ∈ W1, ∀i ∈
W2, ∀τ ∈

{
1, 2, · · · , T i

max

}
, ∀ϱ ∈ {0, 1, · · · , τ − 1} with

I4
∑T i

max
τ=1 Uαi (τ, ϱ) IT

4 > 0 such that the following inequal-
ities hold for ∀p, q, α, β ∈ W1, p < q, ∀i ∈ W2,

∀t ∈
{
1, 2, · · · , T i

max − 1
}

, ∀κ ∈ {0, 1, · · · , t− 1}, ∀τ ∈{
1, · · · , T i

max

}
, ∀ϱ ∈ {0, 1, · · · , τ − 2} and κ1, κ2 ∈ {1, 2}[

Ψκ1,κ2

1αpp,i (χ1, χ2) Ψ2p,i

⋆ −ε1I

]
< 0, (16)[

Ψκ1,κ2

3αpq,i (χ1, χ2) Ψ4pq,i

⋆ Ψ5

]
< 0, (17)[

Ω3
β,i (t) I

I Ω4,κ2

α,i (χ1)

]
< 0, (18)[

Υl
1αpp,i Υ2αpp,i

⋆ Υ3

]
< 0, (19)[

Υl
1αpq,i +Υl

1αqp,i Υ4αpq,i

⋆ Υ5

]
< 0, (20)

where

χ1 , (κ2 − 1) τ − (κ2 − 2) t, χ2 , (κ2 − 1) ϱ− (κ2 − 2)κ,

Ψκ1,κ2

1αpp,i (χ1, χ2) ,
[

Ωκ1,κ2

1αpp,i (χ1, χ2) Ω2p,i

⋆ −ε1I

]
,

Ψ2p,i ,
[

Ψ21p,i

0

]
, Ψ21p,i ,

[
0

ε1Bp,iMp,i

]
,

Ψκ1,κ2

3αpq,i (χ1, χ2) ,
[

Ψκ1,κ2

31αpq,i (χ1, χ2) Ω2q,i

⋆ −ε2I

]
,

Ψκ1,κ2

31αpq,i (χ1, χ2) , Ωκ1,κ2

1αpq,i (χ1, χ2) + Ωκ1,κ2

1αqp,i (χ1, χ2) ,

Ψ4pq,i ,

 0 FT
i IT

3 Np,i 0

ε2Bp,iMq,i 0 ε1Bq,iMp,i

0 0 0

 ,
Ψ5 , diag {−ε2I,−ε1I,−ε1I} ,Ω2p,i ,

[
Np,iI3Fi 0

]T
,

Ω1,1
1αpq,i (t,κ) ,

[
Γ1,1
α,i (t,κ) Γ1,2

pq,i

⋆ Γ1,3
α,i (t,κ)

]
,

Ω1,2
1αpq,i (τ, ϱ) ,

[
Γ2,1
α,i (τ, ϱ) Γ1,2

pq,i

⋆ Γ2,3
α,i (τ, ϱ)

]
,

Ω2,1
1αpq,i (t,κ) ,

[
Γ3,1
α,i (t,κ) Γ1,2

pq,i

⋆ Γ1,3
α,i (t,κ)

]
,

Ω2,2
1αpq,i (τ, ϱ) ,

[
Γ4,1
α,i (τ, ϱ) Γ1,2

pq,i

⋆ Γ2,3
α,i (τ, ϱ)

]
,

Ω3
β,i (t) , J3β,iUβ,iJ

T
3β,i − Sym {J3β,i} ,

Ω4,1
α,i (t) , −ψiUα,i (t, 0) , Ω

4,2
α,i (τ) , −

T i
max∑
τ=1

Uα,i (τ, 0) ,

Γ1,1
α,i (t,κ) , J1α,iI1Uα,i (t,κ) I1JT

1α,i − Sym
{
FT
i J

T
1α,i

}
,

Γ2,1
α,i (τ, ϱ) , J2α,iI1Uα,i (τ, ϱ) I1JT

2α,i − Sym
{
FT
i J

T
2α,i

}
,

Γ1,2
pq,i , FT

i AT
p,i + FT

i KT
q,iB

T
p,i,

Γ1,3
α,i (t,κ) , −Uα,i (t,κ + 1) ,Γ2,3

α,i (τ, ϱ) , −Uα,i (τ, ϱ+ 1) ,

Γ3,1
α,i (t,κ) , Γ1,1

α,i + Sym
{
ϵMJ1α,iI1Uα,i (t,κ) I2JT

1α,i

}
+ ϵ2MJ1α,iI2Uα,i (t,κ) I2JT

1α,i,
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Γ4,1
α,i (τ, ϱ) , Γ2,1

m,i + Sym
{
ϵMJ2α,iI1Uα,i (τ, ϱ) I2JT

2α,i

}
+ ϵ2MJ2α,iI2Uα,i (τ, ϱ) I2JT

2α,i,

Υl
1αpq,i ,

[
Υl

α,i Γ1,2
pq,iŨi (τ)

⋆ Ũ

]
,

Υ2αpq,i ,

 FT
i I3NT

q,i 0

0 ε1

(
Ũi (τ)

)T

Bp,iMq,i

 ,
Υ3 , diag {−ε1,−ε1} , Υ4αpq,i ,

[
Υ1

4αpq,i Υ2
4αpq,i

]
,

Υ5 , diag {−ε2,−ε2, ε1,−ε1} ,
Υ1

α,i , J3α,iI1Uα,iI1J3α,i − Sym
{
FT
i J

T
3α,i

}
,

Υ2
α,i , Υ1

α,i + Sym
{
ϵMJ3α,iI1Uα,iI2JT

3α,i

}
,

+ ϵ2MJ3α,iI2Uα,iI2JT
3α,i,

Υ1
4αpq,i ,

 FT
i I3NT

q,i 0

0 ε2

(
Ũi (τ)

)T

Bp,iMq,i

 ,
Υ2

4αpq,i ,

 FT
i I3NT

p,i 0

0 ε1

(
Ũi (τ)

)T

Bq,iMp,i

 ,
U0i ,

T i
max∑
τ=1

∑
j∈W2

πij (τ) , Ũ , diag {−Uα1,−Uα2, · · · ,−Uαh} ,

Ũi (τ) ,
[ √

πi1(τ)
U0i

I
√

πi2(τ)
U0i

I · · ·
√

πih(τ)
U0i

I
]
,

I1 , diag
{
Ins

, 0nf

}
, I2 , diag

{
0ns

, Inf

}
,

I3 ,
[
Ins

0ns×nf

]
, I4 ,

[
0nf×ns

Inf

]
.

Then for ∀ϵr ∈ [0, ϵM ], the closed-loop system (5) is σ-MSS.
Proof: See Appendix B.

Based on Theorem 1, we give a method to obtain the
controller gains. For presentation convenience, we let

S ,
[
S1 S2

S3 S4

]
, n̄ , ns − nf , (21)

S1 , Imin{ns,nf}, S2 , 0min{ns,nf}×max{0,−n̄},

S3 , 0max{0,n̄}×min{ns,nf}, S4 , 0max{0,n̄}×max{0,−n̄}.

Theorem 2: Given finite constants ψi > 0, c1, c2,
positive integer T i

max and matrices J1α,i, J2α,i, J3α,i,
S, if there exist constants ε1, ε2, matrices K̃p,i ∈

Rnu×ns , Fi ,
[
c1F11i c2F11iS

F21i F22i

]
with F11i ∈

Rns×ns , F21i ∈ Rnf×ns , F22i ∈ Rnf×nf , symmet-
ric matrices Uαi (t,κ) ∈ R(ns+nf )×(ns+nf ), ∀α ∈
W1, ∀i ∈ W2, ∀t ∈

{
1, 2, · · · , T i

max − 1
}

, ∀κ ∈
{0, 1, · · · , t− 1} with I3Uαi (t,κ) IT

3 > 0, Uαi (t, t) > 0
and Uαi (τ, ϱ) ∈ R(ns+nf )×(ns+nf ), ∀α ∈ W1, ∀i ∈ W2,
∀τ ∈

{
1, 2, · · · , T i

max

}
, ∀ϱ ∈ {0, 1, 2, · · · , τ − 1} with

I4
∑T i

max
τ=1 Uαi (τ, ϱ) IT

4 > 0 such that (18) and the following
inequalities hold for ∀p, q, α, β ∈ W1, p < q, ∀i ∈ W2,
∀t ∈

{
1, 2, · · · , T i

max − 1
}

, ∀κ ∈ {0, 1, · · · , t− 1}, ∀τ ∈{
1, · · · , T i

max

}
, ∀ϱ ∈ {0, 1, · · · , τ − 2}, and κ2 ∈ {1, 2}[
Ψ̄1,κ2

1αpq,i (χ1, χ2) Ψ2p,i

⋆ −ε1I

]
< 0, (22)

[
Ψ̄1,κ2

3αpq,i (χ1, χ2) Ψ4pq,i

⋆ Ψ5

]
< 0, (23)[

Ῡ1
1αpp,i Υ2αpp,i

⋆ Υ3

]
< 0, (24)[

Ῡl
1αpq,i + Ῡl

1αqp,i Υ4αpq,i

⋆ Υ5

]
< 0, (25)

where

Ψ̄1,κ2

1αpq,i (χ1, χ2) ,
[

Ω̄1,κ2

1αpq,i (χ1, χ2) Ω2p,i

⋆ −ε1I

]
,

Ψ̄1,κ2

3αpq,i (χ1, χ2) ,
[

Ψ̄1,κ2

31αpq,i (χ1, χ2) Ω2q,i

⋆ −ε2I

]
,

Ψ̄1,κ2

31αpq,i (χ1, χ2) , Ω̄1,κ2

1αpq,i (χ1, χ2) + Ω̄1,κ2

1αqp,i (χ1, χ2) ,

Ω̄1,1
1αpq,i (t,κ) ,

[
Γ1,1
α,i (t,κ) Γ̄1,2

pq,i

⋆ Γ1,3
α,i (t,κ)

]
,

Ω̄1,2
1αpq,i (τ, ϱ) ,

[
Γ2,1
α,i (τ, ϱ) Γ̄1,2

pq,i

⋆ Γ2,3
α,i (τ, ϱ)

]
,

Ῡ1
1αpq,i ,

[
Υ1

α,i Γ̄1,2
pq,iŨi (τ)

⋆ Ũ

]
,

Γ̄1,2
pq,i , FT

i AT
p,i + c1IT

3 K̃
T
q,iB

T
p,i + c2IT

4 S
T K̃T

q,iB
T
p,i,

and the other parameters are defined in Theorem 1. Then there
exists a sufficient small constant ϵM > 0 such that for ∀ϵr ∈
[0, ϵM ], the system (5) is σ-MSS with

Kq,i = K̃q,iF
−1
11i .

Proof: Let Fi ,
[
c1F11i c2F11iS

F21i F22i

]
, S ,[

S1 S2

S3 S4

]
and K̃q,i = Kq,iF11i, then, from Theorem 1,

we can easy to derive that Theorem 2 is true. So the proof is
omitted here.

Remark 2: Although Theorem 2 provides an approach to
acquire the controller, it is independent of ϵM , which implies
that the obtained controller by using Theorem 2 can not
be directly applied since that it can not guarantee that the
practical SPP ϵr meets ϵr ∈ (0, ϵM max], where ϵM max is
the permissible maximum value of SPP under the obtained
controller by using Theorem 2. Once the ϵM is very small,
the obtained controller by using Theorem 2 cannot guarantee
the corresponding closed-loop system (5) is δ-MSS. Therefore,
on the one hand, we need give a solution to obtain available
controller based on Theorem 2, which is shown in Fig.
1. On the other hand, an alternative design method with
less conservativeness should be proposed. Thus, we give the
following theorem.

Theorem 3: Given finite constants ψi > 0, ϵM >
0, c1, c2, positive integer T i

max and matrices J1α,i,
J2α,i, J3α,i, S, if there exist constants ε1, ε2, matri-

ces K̃p,i ∈ Rnu×ns , Fi =

[
c1F11i c2F11iS

F21i F22i

]
with
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Kq,i

MM

Mr Mr

i

i i i ic c T J J SJ

Fig. 1. Steps to obtain the available controller by using Theorem 2.

F11i ∈ Rns×ns , F21i ∈ Rnf×ns , F22i ∈ Rnf×nf , sym-
metric matrices Uαi (t,κ) ∈ R(ns+nf )×(ns+nf ), ∀α ∈
W1, ∀i ∈ W2, ∀t ∈

{
1, 2, · · · , T i

max − 1
}

, ∀κ ∈
{0, 1, · · · , t− 1} with I3Uαi (t,κ) IT

3 > 0, Uαi (t, t) > 0
and Uαi (τ, ϱ) ∈ R(ns+nf )×(ns+nf ), ∀α ∈ W1, ∀i ∈ W2,
∀τ ∈

{
1, 2, · · · , T i

max

}
, ∀ϱ ∈ {0, 1, 2, · · · , τ − 1} with

I4
∑T i

max
τ=1 Uαi (τ, ϱ) IT

4 > 0 such that (18) and the following
inequalities hold for ∀p, q, α, β ∈ W1, p < q, ∀i ∈ W2,
∀t ∈

{
1, 2, · · · , T i

max − 1
}

, ∀κ ∈ {0, 1, · · · , t− 1}, ∀τ ∈{
1, · · · , T i

max

}
, ∀ϱ ∈ {0, 1, · · · , τ − 2} and κ1, κ2 ∈ {1, 2}[
Ψ̄κ1,κ2

1αpq,i (χ1, χ2) Ψ2p,i

⋆ −ε1I

]
< 0, (26)[

Ψ̄κ1,κ2

3αpq,i (χ1, χ2) Ψ4pq,i

⋆ Ψ5

]
< 0, (27)[

Ῡl
1αpp,i Υ2αpp,i

⋆ Υ3

]
< 0, (28)[

Ῡl
1αpq,i + Ῡl

1αqp,i Υ4αpq,i

⋆ Υ5

]
< 0, (29)

where

Ψ̄κ1,κ2

1αpq,i (χ1, χ2) ,
[

Ω̄κ1,κ2

1αpq,i (χ1, χ2) Ω2p,i

⋆ −ε1I

]
,

Ψ̄κ1,κ2

3αpq,i (χ1, χ2) ,
[

Ψ̄κ1,κ2

31αpq,i (χ1, χ2) Ω2q,i

⋆ −ε2I

]
,

Ψ̄κ1,κ2

31αpq,i (χ1, χ2) , Ω̄κ1,κ2

1αpq,i (χ1, χ2) + Ω̄κ1,κ2

1αqp,i (χ1, χ2) ,

Ω̄2,1
1αpq,i (t,κ) ,

[
Γ3,1
α,i (t,κ) Γ̄1,2

pq,i

⋆ Γ1,3
α,i (t,κ)

]
,

Kq,i

i

i i i ic c T J J SJ
M rM r

Fig. 2. Steps to obtain the available controller by using Theorem 3.

Ω̄2,2
1αpq,i (τ, ϱ) ,

[
Γ4,1
α,i (τ, ϱ) Γ̄1,2

pq,i

⋆ Γ2,3
α,i (τ, ϱ)

]
,

Ῡl
1αpq,i ,

[
Υl

α,i Γ̄1,2
pq,iŨi (τ)

⋆ Ũ

]
,

and the other parameters have same expressions as those in
Theorem 1 and Theorem 2. Then for ∀ϵr ∈ [0, ϵM ], the closed-
loop system (Σ̆) with

Kq,i = K̃q,iF
−1
11i

is σ-MSS.
Proof: The proof can be also easily obtained from The-

orem 1 and omitted here.
Theorem 3 presents an alternative approach to obtain the

controller and the detailed steps are shown in Fig. 2. Moreover,
the permissible maximum value of SPP ϵM can be derived by
the Algorithm 1.

Remark 3: From Fig. 1 and Fig. 2, it is readily observed
that the controller design method presented in Theorem 3 is
more convenient than the controller design method provided in
Theorem 2. Additionally, compared with the controller design
method provided in Theorem 2, the design method presented
in Theorem 3 can be used to obtain the larger permissible max-
imum value of SPP, which will be demonstrated in Example
1 in Section IV.

Remark 4: To obtain the slow state feedback con-
troller gains, [8] introduced extra slack variables Sil =[
S11 0

Sil
21 Sil

22

]
. However, it should be noted that the element

of Sil at the top right is chosen as zero matrix which leads to
certain conservativeness. In Theorem 2 and Theorem 3, an im-
proved matrix decoupling approach is proposed by introducing

extra slack variables as Fi ,
[
c1F11i c2F11iS

F21i F22i

]
where c1,

c2 are constants and the expression of S is presented in (41).
The key differences between the matrix decoupling approach
in this work and [8] are: (I) the element of the introduced
extra slack variables at the top right in this work is no longer
zero matrix; (II) two adjustable constants (i.e. c1 and c2) are
introduced. The existence of the two adjustable constants is
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Algorithm 1: Calculate ϵMmax based on Theorem 3

Input: ψi, c1, c2, T i
max, J1α,i, J2α,i, J3α,i, S, ∆ϵ

(computational accuracy), ϵstart = 0 and ϵend
(large enough to make the LMI conditions
(18), (26), (27) inconsistent)

Output: ϵMmax

1 if ϵend − ϵstart > ∆ϵ then
2 ϵM = (ϵend − ϵstart)∗0.5;
3 if (18), (26), (27) hold with ϵM then
4 ϵstart = ϵM ;
5 else
6 ϵend = ϵM ;
7 end
8 Go back to 1;
9 else

10 if (18), (26), (27) hold with ϵend then
11 ϵMmax

= ϵend;
12 else
13 ϵMmax

= ϵstart;
14 end
15 end
16 return ϵMmax ;

beneficial to get the gains of the controller and optimize the
system performance, which will be verified in Example 1 in
Section IV.

IV. NUMERICAL EXAMPLES

In this section, two examples are used to illustrate the supe-
riority of the proposed method. In Example 1, we first verify
that the proposed controller design method is effective. Then,
we prove the viewpoint proposed in Remark 3, i.e., compared
with the controller design method provided in Theorem 2, the
controller design method presented in Theorem 3 can be used
to obtain the larger permissible maximum value of SPP. Next,
we also discuss the relationship between gain variations of
the controller, c1, c2 and the maximum permissible SPP in
Example 1 and obtain some conclusions. In Example 2, a
tunnel diode circuit modified from [8] is used to show the
practicability of our proposed method.

Example 1: Consider the nonlinear semi-Markov jump
discrete-time slow sampling SPSs (Σ) with two modes, two
fuzzy rules and the following parameters:

A1,1 =

[
0.8 −1.6

1.7 0.18

]
, A1,2 =

[
0.5 1.3

0.5 2.1

]
,

A2,1 =

[
1.2 −0.7

1.5 −1.2

]
, A2,2 =

[
1.3 −0.4

3.5 0.8

]
,

B1,1 =
[
0.1 0.2

]T
, B1,2 =

[
0.1 1.0

]T
,

B2,1 =
[
0.3 0.2

]T
, B2,2 =

[
0.1 1.0

]T
,

M1,1 = M1,2 =M2,1 =M2,2 = ρ̄,

N1,1 = N1,2 = N2,1 = N2,2 = 0.33,
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Fig. 3. State responses of open-loop system (100 realizations).
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Fig. 4. State responses of closed-loop system (100 realizations).

where the SPP ϵr = 0.05. Let ϑ12 = ϑ21 = 1, and ϕ11 (τ) =
ϕ22 (τ) = 0, ϕ12 (τ) = 0.6τ ·0.410−τ ·10!

(10−τ)!·τ ! , ϕ21 (τ) = 0.4τ−1 ·
0.4τ

1.3

, one can calculate the SMK by (2).
Firstly, let ρ̄ = 0.12, T 1

max = 4, T 2
max = 2, and x (0) =[

−0.8 0.6
]T

, Fig. 3 shows the 100 realizations of the
open-loop system’s states responses. From Fig. 3, it is clear
that the open-loop system is not σ-MSS. Fig. 4 shows the 100
realizations of the states response of the closed-loop system
under the controller gains:

K1,1 =− 6.5670, K1,2 = −0.7619,

K1,2 =− 4.7476, K2,2 = −3.5552,

which is obtained from Theorem 3 with ψ1 = ψ2 = 2, ϵM =
0.3, T 1

max = 4, T 2
max = 2, c1 = 1, c2 = 0.1, J1α,i = J2α,i =

J3α,i = diag {1, 1}, ∀α ∈ {1, 2}, ∀i ∈ {1, 2}. From Fig. 4,
we can observe that the designed controller is effective.

Secondly, we verify that the controller design method
presented in Theorem 3 can be used to obtain the larger
permissible maximum value of SPP than the design approach
presented in Theorem 2. Applying Theorem 2 and Theorem
3 with ψ1 = ψ2 = 2, T 1

max = 4, T 2
max = 2, c1 = 1,

c2 = 0.1, J1α,i = J2α,i = J3α,i = diag {1, 1}, ∀α ∈ {1, 2},
∀i ∈ {1, 2}, respectively, the corresponding controller gains
and maximum permissible SPP ϵM max for different ρ̄ can be
calculated. The corresponding computed results of Theorem 2
and Theorem 3 are listed in Table I and Table II, respectively.

From the Table I and II, one can readily observe that the
maximum permissible SPP ϵM max obtained by Theorem 3
is larger than that given by Theorem 2, which means that
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TABLE I
CONTROLLER GAINS AND MAXIMUM PERMISSIBLE SPP ϵMmax BY USING

THEOREM 2 FOR DIFFERENT ρ̄

Controller gains (K1,1;K1,2;K2,1;K2,2) ϵM max

ρ̄ = 0 (−9.0486;−0.8288;−5.4564;−3.6291) 0.3573
ρ̄ = 0.5 (−8.7163;−0.5840;−5.4305;−3.6032) 0.3091
ρ̄ = 1.0 (−8.5082;−0.6104;−5.2123;−3.6248) 0.2473
ρ̄ = 1.5 (−8.0176;−0.7569;−4.8553;−3.8132) 0.1676

TABLE II
CONTROLLER GAINS AND MAXIMUM PERMISSIBLE SPP ϵMmax BY USING

THEOREM 3 FOR DIFFERENT ρ̄

Controller gains (K1,1;K1,2;K2,1;K2,2) ϵM max

ρ̄ = 0 (−8.7565;−0.4791;−6.1949;−3.5559) 0.3894
ρ̄ = 0.5 (−9.4413;−0.5868;−5.7666;−3.6372) 0.3160
ρ̄ = 1.0 (−9.6489;−0.6711;−5.3700;−3.7124) 0.2562
ρ̄ = 1.5 (−8.7052;−0.8141;−4.8498;−3.8857) 0.1712

TABLE III
MAXIMUM PERMISSIBLE SPP ϵ̄max FOR DIFFERENT ρ̄ AND c1 , c2

ϵM max ρ̄ = 0 ρ̄ = 0.5 ρ̄ = 1.0 ρ̄ = 1.5

c1 = 1, c2 = 0 0.4529 0.3723 0.2915 0.2271
c1 = 0.8, c2 = −0.1 0.3894 0.3160 0.2562 0.1712

the controller design method presented in Theorem 3 has less
conservativeness than Theorem 2.

Next, we investigate the relationship between gain variations
of the controller, c1, c2 and the maximum permissible SPP. Let
ψ1 = ψ2 = 2, T 1

max = 4, T 2
max = 2, J1α,i = J2α,i = J3α,i =

diag {1, 1}, ∀α ∈ {1, 2}, ∀i ∈ {1, 2}. Then applying Theorem
3, we can obtain Table III.

From Table III, we can see that with ρ̄ increasing, i.e.,
the gain variations are more fierce, the obtained permissible
maximum value of SPP is decreasing, which means that
the gain variations have a bad influence on the permissible
maximum value of SPP. It indirectly shows the importance
of taking the gain variations of the controller into account
when designing the controller. Besides, one can also observe
that the values of c1, c2 play an important role to optimize
the maximum permissible SPP ϵM max, which is indirectly
verified that compared with the matrix decoupling approach
established in [8], an improved one is proposed in this work.

Example 2: In this example, a tunnel diode circuit modified
from [8], which is shown in Fig. 5, is employed to illustrate
the effectiveness of the proposed method. iD (t) and VD (t)
are the diode current and diode voltage, respectively, and they
satisfy that

iD (t) = −0.2VD (t)− 0.05V 3
D (t) .

C and εL are the capacitor and inductance, respectively;
R1, R2 and R3 are resistances; VC (t) and iC (t) are the
capacitor voltage and capacitor current, respectively; VL (t)
and iL (t) are the inductance voltage and inductance current,
respectively; u (t) is the input voltage; the switch S (t), in this
paper, follows a semi-Markov chain. Let x1 (t) = VC (t) and

VDVC

VL

iD

iC

iL

VR
R1 R2 R3

iR

L
e

( )u t

( )S t

C

Fig. 5. Tunnel diode circuit.

x2 (t) = iL (t), then we can get that{
Cẋ1 (t) = 0.2x1 (t) + 0.05x31 (t) + x2 (t) ,

εLẋ2 (t) = −x1 (t)−Rix2 (t) + u (t) , i = 1, 2, 3.
(30)

Choosing C = 0.1F , εL = 10−3H , R1 = 90Ω, R2 = 120Ω
and R3 = 150Ω, (30) can be rewritten as{

ẋ1 (t) =
0.2
C x1 (t) +

0.05
C x31 (t) +

1
Cx2 (t) ,

εrẋ2 (t) = −0.1x1 (t)− 0.1Rix2 (t) + 0.1u (t) ,
(31)

where i = 1, 2, 3, εr = 10−4 is the SPP. Then, let x (t) =[
x1 (t) x2 (t)

]T
and as noted in [8], assuming |x (t)| 6 3,

we can obtain the following T-S fuzzy model of (31):

Ēϵẋ (t) =
2∑

p=1

hp (t) [Ap,ix (t) +Bp,iu (t)] , (32)

where

A1,1 =

[
0.2
C

1
C

−0.1 −0.1R1

]
, A2,1 =

[
0.69
C

1
C

−0.1 −0.1R1

]
,

A1,2 =

[
0.2
C

1
C

−0.1 −0.1R2

]
, A2,2 =

[
0.69
C

1
C

−0.1 −0.1R2

]
,

A1,3 =

[
0.2
C

1
C

−0.1 −0.1R3

]
, A2,3 =

[
0.69
C

1
C

−0.1 −0.1R3

]
,

B1,1 = B1,2 = B1,3 = B2,1 = B2,2 = B2,3 =
[
0 0.1

]T
,

Ēϵ = diag {1, εr} , h1 (t) = 1− x2
1(t)
9 , h2 (t) = 1− h1 (t) .

Then, choosing a sampling time Ts = 0.2s, we can get the
discrete time model of (32) as follows:

x (k + 1) =
2∑

p=1

hp (k)
[
Āp,iĒϵx (k) + B̄p,iu (k)

]
,

where

Ā1,1 =

[
1.4590 1.6211

−0.0162 −0.0180

]
, B̄1,1 =

[
0.1528

0.0565

]
,

Ā1,2 =

[
1.4672 1.2226

−0.0122 −0.0102

]
, B̄1,2 =

[
0.1166

0.0442

]
,
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Fig. 6. State responses of closed-loop system in Example 2 (100 realizations).

Ā1,3 =

[
1.4721 0.9814

−0.0098 −0.0065

]
, B̄1,3 =

[
0.0943

0.0362

]
,

Ā2,1 =

[
3.8876 4.3192

−0.0432 −0.0480

]
, B̄2,1 =

[
0.2526

0.0498

]
,

Ā2,2 =

[
3.9092 3.2575

−0.0326 −0.0271

]
, B̄2,2 =

[
0.1933

0.0403

]
,

Ā2,3 =

[
3.9223 2.6147

−0.0261 −0.0174

]
, B̄2,3 =

[
0.1565

0.0337

]
.

The SMK can be computed by (2) with the following param-
eters, which borrowed from [38]:

[ϑij ] =

 0 0.7 0.3

0.4 0 0.6

0.5 0.5 0

 , [ϕij (τ)] =
 0 Φ12 Φ13

Φ21 0 Φ23

Φ31 Φ32 0

 ,
where

Φ12 = 0.6τ ·0.410−τ ·10!
(10−τ)!·τ ! , Φ13 = 0.4τ ·0.610−τ ·10!

(10−τ)!·τ ! ,

Φ21 = 0.9(τ−1)2 − 0.9τ
2

, Φ23 = 510·10!
(10−τ)!·τ ! ,

Φ31 = 0.4(τ−1)1.3 − 0.4τ
1.3

, Φ32 = 0.3(τ−1)0.8 − 0.3τ
0.8

.

The real matrixes Mp,i and Np,i (p ∈ {1, 2} , i ∈ {1, 2, 3}) are
assumed as follows:

Mp,i = 0.12, Np,i = 0.33.

Then applying Theorem 3 with ψ1 = 5.5, ψ2 = 5.7, ψ3 =
5.3, ϵM = 0.1, T 1

max = 4, T 2
max = 3, T 3

max = 2, c1 = 1,
c2 = −0.1, J1α,i = J2α,i = J3α,i = diag {1, 1}, ∀α ∈ {1, 2},
∀i ∈ {1, 2, 3}, the controller gains can be calculated as

K1,1 = −9.1659, K1,2 = −12.5624, K1,3 = −16.0073,

K2,1 = −13.0108, K2,2 = −18.0432, K2,3 = −23.9448.

Fig. 6 shows the 100 realizations of the states response of
the closed-loop system under the calculated controller gains.
From Fig. 6, we can observe that the designed controller is
effective.

V. CONCLUSIONS

The fuzzy-model-based non-fragile control problem has
been addressed for discrete-time nonlinear SPSs with stochas-
tic jump parameters. A semi-Markov process has been em-
ployed to describe the stochastic jump parameters. Compared

with the extensively used Markov jump model, the semi-
Markov jump model is more general since that it is not
required to be subject to ideal, time-invariant and memo-
ryless transition probabilities. By employing the T-S fuzzy
model approach and SMK concept, some δ-error mean square
stability analysis criteria have been established and the re-
silient controller has been designed to solve the fragility
problem when implementing fuzzy-model-based controller for
nonlinear discrete-time semi-Markov jump SPSs. Moreover,
an algorithm has been proposed to estimate the permissible
maximum value of SPP. A numerical example and a modified
tunnel diode circuit have been employed to illustrate the
validity of the established theoretical results finally. Future
work will be devoted to address the adaptive control problem
for nonlinear discrete-time semi-Markov jump SPSs.

APPENDIX

A. Proof of Lemma 2

Proof: Pay attention to the multiple Lyapunov function
as follows

V (x (k) , ηs) = xT (k)
∑

α∈W1

hα (k)Gα,ix (k)

∣∣∣∣∣
ηs=i

,

∀i ∈ W2.

Then, one can obtain that

ρ1 (∥x (k)∥) 6 V (x (k) , ηs) 6 ρ2 (∥x (k)∥) , (33)

where

ρ2 (∥x (k)∥) , sup
α∈W1,i∈W2

{λmax (Gα,i)} ∥x (k)∥2 ,

ρ1 (∥x (k)∥) , inf
α∈W1,i∈W2

{λmin (Gα,i)} ∥x (k)∥2 ,

which guarantees the condition (6) in Lemma 1.
Moreover, if the system’s mode does not jump
at k which means ηs = i, k ∈ (ks, ks+1), i.e.,
k ∈

{
ks + t,∀t ∈

{
1, 2, · · · , T i

max − 1
}}

, then we have

V (x (k) , ηs)− ψiV (x (ks) , ηs)

6
∑

α∈W1

∑
β∈W1

hα (ξ (ks + t− 1))hβ (ξ (ks))
{
xT (ks)[

ΞT
i (ks, h, t)Gα,iΞi (ks, h, t)− ψiGβ,i

]
x (ks)

}
.

In light of (9), one can see that

V (x (k) , ηs)− ψiV (x (ks) , ηs) < 0. (34)

In addition, denoting τ as the sojourn time at the switching
instant, for ηs = i, ηs+1 = j, ∀i ̸= j ∈ W2, it follows that

E [V (x (ks+1) , ηs+1)]|x(0),r0,Ds+16T i
max|ηs=i

−V (x (ks) , ηs)

6
∑

α∈W1

∑
β∈W1

hα (ξ (ks + τ))hβ (ξ (ks))
{
xT (ks)

×

T i
max∑
τ=1

ΞT
i (ks, h, τ)Gα,i (τ) Ξi (ks, h, τ)−Gβ,i


×x (ks)}
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6 −ρ3 (∥x (k)∥) , (35)

where

ρ3 (∥x (k)∥) , inf
α,β∈W1,i∈W2

−λmax

T i
max∑
τ=1

ΞT
i (ks, h, τ)

×Gα,i (τ) Ξi (ks, h, τ)−Gβ,i]} ∥x (k)∥2 .

From (33)-(35) and Lemma 1, one could find that the δ-error
mean-square stability of the corresponding closed-loop system
(5) is ensured. This completes the proof.

B. Proof of Theorem 1

Proof: Firstly, when κ1 = 1, κ2 = 1, using Schur
complement to (16), the following holds

Ω1,1
1αpq,i (t,κ) + ε−1

1 Ω2p,iΩ
T
2p,i + ε−1

1 Ψ21p,iΨ
T
21p,i < 0, (36)

which combining with Lemma 5 can derive that

Ω1,1
1αpq,i (t,κ) +

[
0 FT

i ∆KT
p,iB

T
p,i

⋆ 0

]
< 0.

Since Γ1,1
α,i (t,κ) > −FT

i (I1Uα,i (t,κ) I1)−1
FT
i ,∑w

p=1 hp (ks) = 1 and hp (ks) > 0 for ∀p ∈ W1, one
can obtain that

w∑
p=1

h2p (ks)

[
Γ1,1
α,i (t,κ) Γ1,2

pp,i + FT
i ∆KT

p,iB
T
p,i

⋆ Γ1,3
α,i (t,κ)

]
< 0.

(37)
Similarly, considering that

∑w
q=1 hq (ks) = 1, and hq (ks) > 0

for ∀q ∈ W1, when κ1 = 1, κ2 = 1, from (17), we can get
the following condition holds for ∀p < q, α ∈ W1, ∀i ∈ W2

w∑
p=1

w∑
q=1

hp (ks)hq (ks)

{[
Γ1,1
α,i (t,κ) Γ1,2

pq,i + FT
i ∆KT

q,iB
T
p,i

⋆ Γ1,3
α,i (t,κ)

]

+

[
Γ1,1
α,i (t,κ) Γ1,2

qp,i + FT
i ∆KT

p,iB
T
p,i

⋆ Γ1,3
α,i (t,κ)

]}
< 0,

which combining with (37) implies that[
Γ1,1
α,i (t,κ) Ξ̂pq,i (ks, h)

⋆ Γ1,3
α,i (t,κ)

]
< 0,

∀p, q, α ∈ W1,∀i ∈ W2,

(38)

where

Ξ̂pq,i (ks, h) ,
w∑

p=1

w∑
q=1

hp (ks)hq (ks)
{
Γ1,2
pq,i + FT

i ∆KT
q,iB

T
p,i

}
.

Additionally, when κ1 = 2, κ2 = 1, from (16) and (17), we
can get

0 > ϵ2M

[
J1α,iI2Uα,i (t,κ) I2JT

1α,i 0

⋆ 0

]

+ϵM

[
Sym

{
J1α,iI1Uα,i (t,κ) I2JT

1α,i

}
0

⋆ 0

]

+

[
Γ1,1
α,i (t,κ) Ξ̂pq,i (ks, h)

⋆ Γ1,3
α,i (t,κ)

]
,

∀p, q, α ∈ W1,∀i ∈ W2.

Thus, according to Lemma 4, for ∀ϵr ∈ [0, ϵM ]

0 > ϵ2r

[
J1α,iI2Uα,i (t,κ) I2JT

1α,i 0

⋆ 0

]

+ϵr

[
Sym

{
J1α,iI1Uα,i (t,κ) I2JT

1α,i

}
0

⋆ 0

]

+

[
Γ1,1
α,i (t,κ) Ξ̂pq,i (ks, h)

⋆ Γ1,3
α,i (t,κ)

]
,

∀p, q, α ∈ W1,∀i ∈ W2,

i.e. J1α,iEϵUα,i (t,κ)EϵJ
T
1α,i

−Sym
{
FT
i J

T
1α,i

} Ξ̂pq,i (ks, h)

⋆ Γ1,3
α,i (t,κ)

 < 0,

∀p, q, α ∈ W1,∀i ∈ W2.
(39)

Since J1α,iEϵUα,i (t,κ)EϵJ
T
1α,i − Sym

{
FT
i J

T
1α,i

}
>

−FT
i (EϵUα,i (t,κ)Eϵ)

−1
Fi, one can obtain that[

−FT
i (EϵUα,i (t,κ)Eϵ)

−1
Fi Ξ̂pq,i (ks, h)

⋆ Γ1,3
α,i (t,κ)

]
< 0,

∀p, q, α ∈ W1,∀i ∈ W2.
(40)

Let Uα,i (t,κ) = (EϵΘα,i (t,κ)Eϵ)
−1, from (40) one can

easily get that[
−FT

i Θα,i (t,κ)Fi Ξ̂pq,i (ks, h)

⋆ − (EϵΘα,i (t,κ + 1)Eϵ)
−1

]
< 0,

∀p, q, α ∈ W1,∀i ∈ W2.
(41)

Pre- and post- multiply (41) by diag
{
F−T
i , I

}
and

diag
{
F−1
i , I

}
, respectively, then using Schur complement, one

can see that the (11) in Lemma 3 is guaranteed.
Moreover, when κ2 = 1, using Schur complement to (18),

it results in that

Ω3
β,i (t)− [ψiUα,i (t, 0)]

−1
< 0.

Since Ω3
β,i (t) > −U−1

β,i , we can get

−U−1
β,i − [ψiUα,i (t, 0)]

−1
< 0.

Let Uβ,i = (EϵΘβ,iEϵ)
−1 and Uα,i (t, 0) =

(EϵΘα,i (t, 0)Eϵ)
−1, it is easy to see that (12) in Lemma 3

is guaranteed. In a similar way, we can prove that once the
(16), (17) with κ1 = 1, 2, κ2 = 2, (18) with κ2 = 2 and
(19), (20) with l = 1, 2, are satisfied simultaneously, then
conditions (13) and (14) hold. This completes the proof.
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