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ABSTRACT Belief reliability is a new reliability metric based on the uncertainty theory, which aims to
measure system performance incorporating the influences from design margin, aleatory uncertainty, and
epistemic uncertainty. A key point in belief reliability is to determine the belief reliability distribution based
on the actual conditions, which, however, could be difficult when available information is limited. This paper
proposes an optimal model to determine the belief reliability distribution based on the maximum entropy
principle when kth moments of what can be obtained. An estimation method using linear interpolation and
a genetic algorithm is subsequently applied to the optimal model. When only the expected value and the
variance are available, the optimal results are in accordance with the maximum entropy principle. It could
be observed in the sensitivity analysis that the accuracy of the optimal results is a decreasing function of the
width of variances and an increasing function of the number of interpolation points. Therefore, researchers
could adapt to different widths of variances and requirements of accuracy by adjusting the number of
interpolation points. It could be concluded that this new method to acquire belief reliability distribution
is important in the application of belief reliability.

INDEX TERMS Belief reliability distribution, maximum entropy principle, uncertain variable, uncertain
distribution.

I. INTRODUCTION
With urgent requirements for the accuracy of the prod-
ucts reliability assessment, the treatment of uncertainties
has attracted much attention. Generally, uncertainties can be
classified into two types, aleatory uncertainty and epistemic
uncertainty. Aleatory uncertainty describes the uncertainty
inherent in the physical behavior of the system, and epistemic
uncertainty is attributable to the lack of data and informa-
tion. Probabilistic method can successfully deal with the
aleatory uncertainty however it has obvious drawbacks on the
treatment of epistemic uncertainty. In 2007, Liu [1] founded
uncertainty theory to deal with human’s subjective uncer-
tainty by belief degree mathematically and in 2010, Liu [2]
perfected it based on normality, duality, subadditivity and
product axioms. Based on uncertainty theory, Zeng et al. [3]
defined belief reliability as the uncertainty measure of the
system to perform specific functions within given time
under given operating conditions. Zeng et al. [4] devel-
oped an evaluation method for component belief reliability,

which incorporates the impacts from design margin, aleatory
uncertainty and epistemic uncertainty. The issue of quan-
tifying the effect from epistemic uncertainty is addressed
using a method, which is established based on the per-
formance of engineering activities related to reduce epis-
temic uncertainties [5], [6]. However, it is still challenging
to widely employ belief reliability in reliability engineer-
ing due to the scant methods to acquire belief reliability
distributions.

Belief reliability distribution is inherently the uncertainty
distribution applied in belief reliability. Researchers have
explored several methods to get uncertainty distributions.
Liu [2] designed uncertain statistics as a methodology for col-
lecting and interpreting experts’ experimental data by uncer-
tainty theory and then proposed a questionnaire survey for
collecting expert’s experimental data. Chen and Ralescu [7]
employed uncertain statistics to estimate the travel dis-
tance between Beijing and Tianjin and proposed B-spline
interpolation to fit a continuous uncertainty distribution.

VOLUME 6, 2018
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1577

https://orcid.org/0000-0002-0819-2647


T. Zu et al.: Belief Reliability Distribution Based on Maximum Entropy Principle

Gao and Yao [8] designed a procedure of the Delphi
method for determining the uncertainty distribution. Both the
B-spline interpolation and the Delphi method can adapt
to the cases where uncertainty distributions are unknown.
When the form of an uncertainty distribution is certain,
Liu [2] utilized the principle of the least squares to esti-
mate the parameters of the uncertainty distribution and
Wang and Peng [9] proposed a method of moments for calcu-
lating the unknown parameters of the uncertainty distribution.

However, in practice, only partial information about an
uncertain variable is available and there are infinite numbers
of uncertainty distributions that are in accordance with the
given information. In such cases, the existing methods cannot
determine its uncertainty distribution.

The entropy is a measurement of the degree of uncertainty.
For random cases, Jaynes [10] suggested choosing the dis-
tribution which has the maximum entropy. In uncertainty
theory, Liu [11] proposed the definition of uncertainty
entropy resulting from information deficiency to provide a
quantitative measurement for the degree of uncertainty of
uncertain variables. Chen and Dai [12] proved the maximum
entropy principle when the expected value and the variance
are finite. This paper will investigate the maximum entropy
method and propose an optimal model to estimate belief reli-
ability distribution based on the maximum entropy principle
when k-th moments can be obtained.

The paper is structured as follows. Some basic con-
cepts on uncertainty theory will be introduced in Section 2.
Subsequently, basic definitions on belief reliability and belief
reliability distribution will be provided and a model based on
the maximum entropy principle will be proposed to estimate
belief reliability distribution in Section 3. The estimation to
the proposed model will be discussed with linear interpola-
tion and genetic algorithm (GA) in Section 4. The proposed
model will be verified in Section 5 and a sensitivity analysis
will be conducted on the number of interpolation points and
thewidth of variances in the same section. The conclusions on
belief reliability distribution based on the maximum entropy
principle will be discussed in Section 6.

II. PRELIMINARIES
Uncertainty theory was founded by Liu [1] in 2007 and
refined by Liu [2] in 2010. Following that, uncertain
process [13], uncertain differential equations [13], uncer-
tain calculus [11] and uncertain programming [14] were
proposed. Uncertainty theory has been successfully applied
in various areas, including finance [15], reliability [8] and
graph [16]. Some basic concepts in uncertainty theory will
be stated in this section.

Let 0 be a nonempty set, and let L be a σ -algebra over 0.
Each element 3 in 0 is called an event. Liu [1] defined an
uncertain measure by the following axioms:
Axiom 1 (Normality Axiom): M{0} = 1 for the universal

set 0.
Axiom 2 (Duality Axiom): M{3} +M{3C

} = 1 for any
event 3.

Axiom 3 (Subadditivity Axiom): For every countable
sequence of events 31,32, · · · , we have

M
{
∞⋃
i=1

3i

}
≤

∞∑
i=1

M{3i}, (1)

where
∞⋃
i=1

3i is the union of 3i, i = 1, 2, · · · .

Furthermore, Liu [11] defined a product uncertain measure
by the fourth axiom:

M
{
∞∏
i=1

3i

}
=

∞∧
i=1

Mi{3i} (2)

where Li are σ -algebras over 0i, 3i are arbitrarily chosen

events from Li for i = 1, 2, · · · , respectively, and
∞∏
i=1

3i is

the intersection of 3i, i = 1, 2, · · · .
Definition 1 (See Liu [1]): Let 0 be a nonempty set, let

L be a σ -algebra over 0, and letM be an uncertain measure.
Then the triplet (0,L,M) is called an uncertainty space.
Definition 2 (See Liu [1]): An uncertain variable is a

measurable function ξ from an uncertainty space (0,L,M)
to the set of real numbers, γ is the element in 0, i.e., for any
Borel set B of real numbers, we have

{ξ ∈ B} = {γ ∈ 0|g(γ ) ∈ B} ∈ L. (3)

Definition 3 (See Liu [1]): The uncertainty distribution 8
of an uncertain variable ξ is defined by

8(x) = M{ξ ≤ x} (4)

for any real number x.
Example 1: An uncertain variable ξ is called normal vari-

able if it has a normal uncertainty distribution

8(x) =
(
1+ exp

(
π (µ− x)
√
3σ

))−1
, x ∈ R (5)

denoted by N (µ, σ ) where µ and σ are real numbers
with σ > 0.
Definition 4 (See Liu [1]): Let ξ be an uncertain variable

with regular uncertainty distribution 8(x). Then the inverse
function 8−1(·) is called the inverse uncertainty distribution
of ξ .
Example 2: The inverse uncertainty distribution of normal

uncertain variable N (µ, σ ) is

8−1x (α) = µ+
σ
√
3

π
ln

α

1− α
, (6)

where α is the belief degree.

III. BELIEF RELIABILITY AND ITS DISTRIBUTION MODEL
A. BASIC DEFINITIONS AND EXAMPLES
Definition 5 (Belief Reliability): Let a product state variable ξ
be an uncertain variable, and 4 be the feasible domain of
a product state. Then the belief reliability is defined as the
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uncertain measure that the product state is within the feasible
domain, i.e.,

RB =M{ξ ∈ 4}. (7)

In Definition 5, the state variable ξ describes the product’s
behavior, while the feasible domain 4 is a reflection of
failure criteria. In reliability engineering, since the product’s
behavior and the failure criteria usually vary with time [17],
both ξ and 4 can be relevant to time t . In this case, the belief
reliability metric will be a function of t , denoted by RB(t).
Example 3: The state variable ξ can represent the product

failure time T which describes system failure behaviors. The
product is regarded be reliable at time t if the failure time
is larger than t . Thus, the belief reliability of the product at
time t can be obtained by letting 4 = [t,+∞), i.e. 4 is
relevant to t and RB(t) can be calculated by

RB(t) =M{T > t}. (8)

Example 4: The state variable ξ can also represent the
performance margin m of a product, which describes sys-
tem operation behaviors. m describes the distance between a
performance parameter and the associated failure threshold.
Therefore, 4 should be (0,+∞) and the belief reliability of
the product can be written as

RB =M{m > 0}. (9)

If we consider the degradation process of the performance
margin, i.e., ξ is relevant to t , RB(t) will be

RB(t) =M{m(t) > 0}. (10)

Definition 6 (Belief Reliability Distribution): Assume that
a product state variable ξ is an uncertain variable, then the
uncertainty distribution of ξ is defined as Belief Reliability
Distribution.
Example 5:When the state variable ξ represents the prod-

uct failure time T . Then the uncertainty distribution 8 of T
is belief reliability distribution.
Example 6:When the state variable ξ represents the prod-

uct performance margin m. Then belief reliability distribu-
tion 9 will be the uncertain measure of m, denoted as

9(x) =M{m ≤ x}. (11)

B. BELIEF RELIABILITY DISTRIBUTION MODEL
The entropy measures the degree of uncertainty while uncer-
tainty entropy serves as a quantitative measurement of the
degree of uncertainty of uncertain variables. When only par-
tial information is accessible, such as k-th moments, there
are infinite numbers of uncertainty distributions that are con-
sistent with the provided information. Here we employ the
maximum entropy principle to ascertain the belief reliability
distribution.

Relative symbols and notations are introduced briefly as
follows:
ξ : an uncertain variable,
8(x): an uncertainty distribution of ξ ,

µk : the k-th moment of uncertain variable ξ , k =

1, 2, 3, · · · .
Definition 7 (See Liu [11]): Suppose that ξ is an uncertain

variable with uncertainty distribution 8. Then its entropy is
determined by

H [ξ ] =
∫
+∞

−∞

S(8(x))dx (12)

where S(t) = −tlnt − (1− t)ln(1− t).
Definition 8: (See Liu and Chen [18]): Let ξ be an uncer-

tain variable with uncertainty distribution 8, and let k be a
positive integer. Then the k-th moment of ξ is

E[ξ k ] =
∫
+∞

−∞

xkd8(x). (13)

The optimal model is written as:
max H [ξ ] =

∫
+∞

−∞

S(8(x))dx

s.t.
∫
+∞

−∞

xkd8(x) = µk , for k = 1, 2, 3, · · ·
(14)

More specifically,
max H [ξ ] = −

∫
+∞

−∞

8(x)ln(8(x))

+ (1−8(x))ln(1−8(x))dx

s.t.
∫
+∞

−∞

xkd8(x) = µk , for k = 1, 2, 3, · · ·

(15)

IV. ESTIMATION TO BELIEF RELIABILITY
DISTRIBUTION MODEL
This section discusses the estimation to the optimal model,
which approximates belief reliability distribution based on
the maximum entropy principle. Since the form of the belief
reliability distribution is unknown, it is intuitive to apply the
discretization method to obtain the approximate solution of
the distribution. To obtain these discrete data, GA method
is adopted to find the global optimum solution with the
constraints on k-th moments. Subsequently, the linear inter-
polation method is used in this paper to estimate the belief
reliability distribution.

Belief reliability distribution is discretized into the form of
a piecewise linear function as shown in Eq.(16).

8(x) =


0 if x < x1

αi +
(αi+1 − αi)(x − xi)

xi+1 − xi
if xi < x < xi+1

1 if x > xN .
(16)

Then the Eq.(13) can be written as follows:

µk = E[ξ k ] =
N−1∑
i=1

(αi+1 − αi)(x
k+1
i+1 − x

k+1
i )

(k + 1)(xi+1 − xi)
,

k = 1, 2, · · · . (17)
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When the belief degrees satisfy:

α(i) = (2i− 1)/2N , i = 1, 2, · · · ,N (18)

Eq.(12) can be written as:

H = N ×
N−1∑
i=1

p(i)× (xi+1 − xi) (19)

where p(i) is calculated by the Eq.(20).

p(i) = −0.5(α(i+ 1)2ln(α(i+ 1))− α(i)2ln(α(i)))

+ 0.25(α(i+ 1)2 − α(i)2)

− 0.5((1− α(i))2ln((1− α(i)))

− (1− α(i+ 1))2ln((1− α(i+ 1))))

+ 0.25((1− α(i))2 − (1− α(i))2) (20)

Thus, the optimal model (15) is a non-linear programming
problem as follows:

max H [ξ ] = N ×
N−1∑
i=1

p(i)× (xi+1 − xi)

s.t.
N−1∑
i=1

(αi+1 − αi)(x
k+1
i+1 − x

k+1
i )

(k + 1)(xi+1 − xi)
− µk = 0,

k = 1, 2, · · ·

x1 < x2 < · · · < xN

(21)

where p(i) is calculated by Eq.(20).
Then genetic algorithm is applied to solve this non-linear

programming problem. Finally, the approximation to the
belief reliability distribution can be obtained by linear inter-
polation methods.

In summary, the estimation to the belief reliability distribu-
tion model can be divided into five steps, which is concisely
illustrated in the Fig.1.

V. MODEL VERIFICATION AND SENSITIVITY ANALYSIS
This section will briefly introduce the maximum entropy
principle proved by Chen and Dai [12] and then verify the
proposed optimal model based on this principle. Moreover,
a sensitivity analysis is conducted on the effect of the width
of variances and the number of interpolation points.

A. MODEL VERIFICATION
In uncertainty theory, Chen and Dai [12] proved a theorem
called maximum entropy principle when the expected value
and variance are known.
Theorem 1 (Maximum Entropy Principle): Let ξ be

an uncertain variable with finite expected value µ and
variance σ 2. Then

H [ξ ] ≤
πσ
√
3

(22)

and the equality holds if is a normal uncertain variable with
expected value e and variance σ 2 , i.e. N (µ, σ ).

FIGURE 1. Flow chart of the estimation to the belief reliability
distribution model.

FIGURE 2. Optimal results and the standard model at
µ = 5, σ2 = 25,N = 500.

According to the maximum entropy principle theorem,
belief reliability distributions based on maximum entropy
principle are determined when the 1st and 2nd moments are
known.

When the expected value µ = 5, the variance σ 2
= 25

and the number of interpolation points N = 500, the optimal
results and the standard model are shown in Fig.2. The red
line represents the standard model, normal uncertainty dis-
tribution N (5, 5), and the blue one shows the estimation to
the proposed optimal model. As demonstrated in the Fig.2,
there is not a great difference between the optimal results
and the ideal results, which leads to the conclusion that the
estimation by using linear interpolation and GA is effec-
tive to the optimal model. Fig.3 shows that absolute errors
between the optimal results and standard model. As shown
in Fig.3, the absolute errors are no more than 0.015, which
also shows there is not a great difference between the optimal
results and the ideal results. It could be concluded from the
Fig.2 and Fig.3 that the optimal results are consistent with
the standard model and the proposed estimating approach is
effective to determine belief reliability distribution based on
the maximum entropy principle.
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FIGURE 3. Absolute errors between optimal results and standard model
at µ = 5, σ2 = 25,N = 500.

FIGURE 4. Absolute errors between optimal results and standard model
at µ = 5,N = 500.

B. SENSITIVITY ANALYSIS
As illustrated in Eq.(22), uncertainty entropy H is associated
with variances. A sensitivity analysis on the width of vari-
ances is conducted to investigate the relationship between the
width of variances and the optimal results.

In Fig.4, the four curves show the fluctuation of the abso-
lute errors between optimal results and standard model at
µ = 5,N = 500 with variances at 1,9,49,81, respectively.
As can be seen from the figure, there is an increasing tendency
of the degree of the fluctuations with the width of variances
raising. In other words, it could be implied that the accuracy
of the optimal results decreases as the variances increase
when the expected value and the number of interpolation
points keep the same.

Moreover, the number of interpolation points N also has
a significant influence on the optimal results. A sensitivity
analysis on the number of interpolation points is conducted to
explore the connection between the number of interpolation
points and the optimal results.

FIGURE 5. Optimal results and the standard model at at
µ = 5, σ2 = 25,N = 5 : 5 : 50.

Fig.5 shows the number of interpolation points from 5 to 50
with the step length 5 when the expected value µ = 5

FIGURE 6. Optimal results and the standard model at
µ = 5, σ2 = 25,N = 55 : 5 : 100.

and the variance σ 2
= 25 and Fig.6 shows the number of

interpolation points from 55 to 100 with the step length 5
when the expected value and the variance keep the same.
As shown in Fig.5, the fitting results of linear part are growing
better as the number of interpolation is increasing. As shown
in Fig.6, the fitting results of non-linear part are approaching
the standard model as the number of interpolation points is
growing. It could be inferred that the larger the number of
interpolation points is, the better the optimal results are.

From the above analysis, it could be observed that the
accuracy of the optimal results is a decreasing function of the
width of variances and an increasing function of the number
of interpolation points.

VI. DISCUSSIONS AND CONCLUSIONS
This paper specified the definition of belief reliability and
belief reliability distribution, extended the application of
maximum entropy principle in uncertainty theory, and pro-
posed an optimal model based onmaximum entropy principle
to estimate belief reliability distribution and an approach
to estimate the optimal model using linear interpolation
and genetic algorithm. According to the theorem proved by
Chen and Dai [12], the proposed estimating method is effec-
tive to determine the belief reliability distribution. The esti-
mating results are sensitive to the width of the variances and
the number of interpolation points. Based on the results of the
sensitivity analysis, when the number of interpolation points
keeps still, the accuracy of the optimal results decreases as
the width of the variance increases. In addition, the accuracy
of the optimal results is an increasing function of the number
of interpolation points when the width of the variance keeps
the same. In actual situations, it is possible to obtain more
accurate optimal results when we increase the number of
interpolation points. Besides, the number of interpolation
points also reflects the data density of belief degree according
to Eq. (18). Therefore, when we only concentrate on belief
degree around 0.5, we could adopt a small number of inter-
polation points to get satisfying optimal results. By contrast,
when we focus on belief degree near to 0 or 1, we have
to adopt a large number of interpolation points to obtain
reasonable optimal results.
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The proposed optimal model to estimate belief reliability
distribution based on the maximum entropy principle can be
applicable to the cases when k-th moments of an uncertain
state variable are available, which is important in the devel-
opment of belief reliability. Moreover, the proposed approach
also provides a new approach to obtain uncertainty distribu-
tions in uncertainty theory.

The estimating approach applied is a simple but
time-consuming one to obtain optimal results. Therefore,
the alternative of the estimation deserves further investiga-
tion. Moreover, this paper only considers k-th moments as
the constraints of the optimal model. More information could
be included in the optimal model to adapt to diverse cases.

REFERENCES
[1] B. Liu, Uncertainty Theory. Berlin, Germany: Springer, 2007.
[2] B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling

Human Uncertainty. Berlin, Germany: Springer, 2010.
[3] Z. Zeng, M.Wen, and R. Kang, ‘‘Belief reliability: A newmetrics for prod-

ucts’ reliability,’’ Fuzzy Optim. Decision Making, vol. 12, no. 1, pp. 15–27,
Mar. 2013.

[4] Z. Zeng, R. Kang, M. Wen, and Y. Chen, ‘‘Measuring reliability during
product development considering aleatory and epistemic uncertainty,’’ in
Proc. Annu. Rel. Maintainability Symp. (RAMS), Jan. 2015, pp. 1–6.

[5] X. Jiang, Z. Zeng, R. Kang, and Y. Chen, ‘‘ANaïve Bayes basedmethod for
evaluation of electronic product reliability simulation tests,’’ (in Chinese),
Electron. Sci. Technol., vol. 2, no. 1, pp. 49–54, 2015.

[6] M. Fan, Z. Zeng, and R. Kang, ‘‘An approach to measure reliability based
on belief reliability,’’ (in Chinese), Syst. Eng. Electron., vol. 37, no. 11,
pp. 2648–2653, 2015.

[7] X. Chen and D. Ralescu, ‘‘B-spline method of uncertain statistics with
applications to estimate travel distance,’’ J. Uncertain Syst., vol. 6, no. 4,
pp. 256–262, 2012.

[8] R. Gao and K. Yao, ‘‘Importance index of components in uncertain random
systems,’’ J. Uncertainty Anal. Appl., vol. 4, no. 1, p. 7, 2016.

[9] X. Wang and Z. Peng, ‘‘Method of moments for estimating uncertainty
distributions,’’ J. Uncertainty Anal. Appl., vol. 2, no. 1, p. 5, 2014.

[10] E. T. Jaynes, ‘‘Information theory and statistical mechanics,’’ Phys. Rev.,
vol. 106, no. 4, pp. 620–630, 1957.

[11] B. Liu, ‘‘Some research problems in uncertainty theory,’’ J. Uncertain
Syst., vol. 3, no. 1, pp. 3–10, 2009.

[12] X. Chen and W. Dai, ‘‘Maximum entropy principle for uncertain vari-
ables,’’ Int. J. Fuzzy Syst., vol. 13, no. 3, pp. 232–236, 2011.

[13] B. Liu, ‘‘Fuzzy process, hybrid process and uncertain process,’’ J. Uncer-
tain Syst., vol. 2, no. 1, pp. 3–16, 2008.

[14] B. Liu, Theory and Practice of Uncertain Programming. Berlin, Germany:
Springer, 2009.

[15] J. Peng and K. Yao, ‘‘A new option pricing model for stocks in uncertainty
markets,’’ Int. J. Oper. Res, vol. 8, no. 2, pp. 18–26, 2010.

[16] X. Gao and Y. Gao, ‘‘Connectedness index of uncertain graph,’’ Int. J.
Uncertainty, Fuzziness Knowl.-Based Syst., vol. 21, no. 1, pp. 127–137,
2013.

[17] D. Zhang, X. Han, C. Jiang, J. Liu, and Q. Li, ‘‘Time-dependent reliability
analysis through response surface method,’’ J. Mech. Des., vol. 139, no. 4,
p. 041404, 2017.

[18] B. Liu andX. Chen, ‘‘Uncertainmultiobjective programming and uncertain
goal programming,’’ J. Uncertainty Anal. Appl., vol. 3, no. 1, p. 10, 2015.

TIANPEI ZU received the B.S. degree from
Beihang University in 2016, where she is cur-
rently pursuing the Ph.D. degreewith the School of
Reliability and Systems Engineering, Beihang
University. Her research focuses on theory of
belief reliability and uncertainty quantification.

RUI KANG received the bachelor’s and mas-
ter’s degrees in electrical engineering from
BeihangUniversity in 1987 and 1990, respectively.
He is currently a Distinguished Professor with
the School of Reliability and Systems Engineer-
ing, Beihang University, Beijing, China. He is
a famous Reliability Expert in Chinese industry.
He has developed six courses and authored eight
books and over 150 research papers. His main
research interests include reliability and resilience

for complex system and modeling epistemic uncertainty in reliability and
maintainability. He is currently serving as the Associate Editor of the
IEEE TRANSACTIONS ON RELIABILITY, and is the Founder of China Prognostics
and Health Management Society. He received several awards from the
Chinese government for his outstanding scientific contributions, including
the Changjiang Chair Professor received from the Chinese Ministry of
Education.

MEILIN WEN received the Ph.D. degree in math-
ematics from Tsinghua University, Beijing, China,
in 2008. She is currently an Associate Professor
with the School of Reliability and Systems Engi-
neering, Beihang University. She has authored a
monograph on data envelopment analysis and over
30 papers. Her main research interests include
belief reliability theory, uncertainty theory and its
applications, data envelopment analysis, and opti-
mization method under uncertain environment.

QINGYUAN ZHANG received the B.S. degree
from Beihang University in 2015, where he is cur-
rently pursuing the Ph.D. degreewith the School of
Reliability and Systems Engineering. His research
focuses on theory of belief reliability and uncer-
tainty quantification.

1582 VOLUME 6, 2018


	INTRODUCTION
	PRELIMINARIES
	BELIEF RELIABILITY AND ITS DISTRIBUTION MODEL
	BASIC DEFINITIONS AND EXAMPLES
	BELIEF RELIABILITY DISTRIBUTION MODEL

	ESTIMATION TO BELIEF RELIABILITY DISTRIBUTION MODEL
	MODEL VERIFICATION AND SENSITIVITY ANALYSIS
	MODEL VERIFICATION
	SENSITIVITY ANALYSIS

	DISCUSSIONS AND CONCLUSIONS
	REFERENCES
	Biographies
	TIANPEI ZU
	RUI KANG
	MEILIN WEN
	QINGYUAN ZHANG


