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ABSTRACT 
 

The use of remote sensing techniques to detect sources of pollution is a good tool to 
prevent possible environmental affections. In the case of heavy metals, the pollution 
coming from wrong agricultural practices are not able to be detected by remote sensing 
before the addition of pollutants. However, natural source of heavy metals, for instance, 
the presence of minerals in the soil surface may be important as a prevention technique to 
avoid heavy metal pollution. If the source of heavy metal is detected by remote sensing, 
the practices applied to the soil can be done according to those pollutants and avoiding 
the mobilization and transfer of heavy metal to other environmental compartments. 

A review of the role of remote sensing in soil heavy metals detection is presented. 
Principles of spectroscopy and basic mapping techniques applied in soil mapping are 
included. Finally, illustrative examples of studies that applied remote sensing techniques 
for mapping heavy metals in soil surface in Mediterranean environments were compiled. 
Remote sensing is revealed as a successful tool for mapping background levels of soil 
heavy metals and accurate delineation of polluted areas. 
 
 

INTRODUCTION 
 
The term pollution refers to the introduction by the man into de environment of chemicals 

or energy forms liable to endanger human health, harm to living resources and ecological 
systems, damage to the structures or amenity of interference with legitimate uses of the 
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environment (Holdgate 1979). Soil -the unconsolidated mineral or organic matter on the 
surface of the Earth that has been subjected to and show effects of genetic and environmental 
factors of: climate (including water and temperature effects), and macro- and 
microorganisms, conditioned by relief, acting on parent material over a period of time (SSSA 
2008)– is vital to support the environment and our societies but, as a non-renewable resource 
(Larson & Pierce 1991), must be carefully preserved to avoid its degradation. The global and 
continuous increase of population, urbanization and industrialization has induced pollution of 
soils threatening human and ecosystems health (Kaya 2006). 

 
 

HEAVY METALS IN SOIL 
 
Heavy metals are contaminants capable of induce environmental and health problems in 

soils, water, atmosphere and living organisms (Navarro-Pedreño et al. 2008). The term heavy 

metals is applied for metallic elements which have densities >5.0 Mg m-3, including Cd, Co, 
Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, and Zn (SSSA 2008). Some metalloids like As are 
considered in heavy metals studies by its toxicity. Some of these elements are essential for 
plant nutrition, becoming a problem when the concentration is high enough to induce toxicity. 
Heavy metals are naturally present in soils depending on the type and chemistry of the parent 
material, or are artificially introduced into de soil system by anthropogenic activities (Mirsal 
2004). Major source of heavy metals in soil are: 1) geochemical origin; 2) human activities 
like mining and smelting, agriculture materials (fertilizers, pesticides, sewage sludge, etc), 
fossil fuel combustion, metallurgical and chemical industries, sports and military ammunition, 
and 3) atmospheric deposition (Alloway 1995). Continuous monitoring of soil pollution by 
heavy metals is needed to ensure the sustainability of ecosystems (Kaya 2006). 

 
 

THE ROLE OF REMOTE SENSING IN SOIL SCIENCES 
 
The acquisition of soil information for large areas and for repeated time periods has been 

a major challenge for soil scientist. In coordination with field soil surveys and physical-
chemical analytical methods that are costly and time consuming, lower cost methods and 
tools for soil mapping over large areas are needed. In the early 70s, digital soil mapping 
(Webster & Burrough 1972a, b) began a new era in soil mapping and had a continuous 
development by the improvement of the information and remote-sensing technologies, 
computing, statistics and modeling, spatial information and global positioning systems, 
measurement systems (such as infrared spectroscopy), and in more recent times, online access 
to information (Sanchez et al. 2009). 

Remote sensing is defined as the science an art of obtaining information about an object, 
area, or phenomenon through the analysis of data acquired by a device that is not in contact 
with the object, area or phenomena under investigation (Lillesand et al. 2003). Remote 
sensing is based on the analysis of the interaction between a flux of electromagnetic radiation 
and the object or phenomena under investigation. Remote sensors are carried onto aerial or 
satellite platforms which offer the capability of rapid and synoptically monitoring of large 
areas (Andrew & Ustin 2008). Remote sensors can be used to frequently revisit a study area 
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providing data to monitor a phenomena or process. In particular, remote sensing is useful for 
surveying natural resources and monitoring the environment (e.g. urban growth, rainforest 
deforestation, floods mapping, etc.), especially when fast and repeated observations are 
required (López-Pamo et al. 1999).  

The process of soil information acquisition by remote sensing is complex and requires a 
great knowledge of the interaction between the radiation and the soil. In this sense, 
researchers infer the three dimensional properties of soils by the convergence of two possible 
forms of evidence (Frazier 2006): 1) direct evidences of soil properties by their spectral 
characteristics and patterns of distributions, and 2) indirect evidences derived from 
observations of geomorphology, vegetation types and physiological status, and human 
induced land covers. With these basic premises, a wide range of remote sensing applications 
in Soil Sciences has been developed supporting the usefulness of remote sensing in soil 
studies. Examples of remote sensing applications in soil sciences are: the mapping of soil 
classes (Kariuki et al. 2003, Debella-Gilo & Etzelmüller 2009), soil salinity detection (Taylor 
et al. 1996, Metternicht 2001, Dehaan & Taylor 2003, Farifteh et al. 2007, Schmid et al. 2009, 
Melendez-Pastor et al. 2010), soil moisture mapping (Ferrer et al. 2003, Merlin et al. 2008, 
Barrett et al. 2009), the detection of soil nutrients (Rivero et al. 2009, Sridhar et al. 2009), and 
many others. 

 
 

SPECTROSCOPY OF MINERALS AND ROCKS 
 
Due to remote sensing is relatively a new science based in the analysis of the 

electromagnetic radiation with the object under investigation, remote sensing has employed 
the scientific background of other science disciplines -like physics and chemistry- that 
previously analyzed this topic. In this sense, spectroscopy, defined as the study of the 
interaction between the electromagnetic radiations with the matter as a function of 
wavelength, plays a prominent role in remote sensing. A basis statement that supports the 
ability of remote sensing to study an object or phenomena is that each material is identifiable 
by a characteristic spectral signature that contains information about its chemical composition 
and physical structure. Thus it is not possible to generate extensive catalogs of material-
specific spectra known as spectral libraries (Clark et al. 2007, Baldridge et al. 2009). 

Basically, two physical processes are employed in remote sensing to acquire information 
about a target material: 1) a remote sensor detects a portion of the incident electromagnetic 
radiation (in the visible and near-infrared (VNIR) spectral regions) after it has interacted with 
a material (reflection or scattering); and 2) a remote sensor detects the efficiency at emitting 
thermal radiation (emission) by the target material (Rees 2001). The first process requires the 
action of an illumination source (i.e. the Sun or an active sensor), while the second one is 
based in the recording of the radiation emitted by any material with a temperature above 0K 
(absolute zero). After remote sensors record the electromagnetic radiation flux emitted or 
reflected by the target, and the data is transferred to receiving station (or stored in the 
instruments onboard and airplane), the information is digitally available for remote sensing 
data processing. Later, the analysis of reflectance spectra provides a rapid and inexpensive 
technique for determining the mineralogy and chemical composition of samples (Van Der 
Meer 2002). 
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Remote thermal sensors are also very useful in Soil Sciences. The emissivity of a 
material in the thermal (3 to 15 μm) region determines the quantity of radiation emitted at a 
given temperature and is negatively related to the reflectivity at the same wavelength, with 
high emissivities for most materials with the exception of metals and some minerals (Rees 
2001). Thermal remote sensing has been employed for mapping evaporite minerals (Crowley 
1993; Crowley & Hook 1996) and hydrothermally altered rocks (Vaughan et al. 2005). 

For microwave (frequencies between 0.3 and 300 GHz) regions, the amount of thermal 
radiation is also determined by the emissivity of the materials for such wavelengths but the 
microwave observations are made with different observation angles respect to the normal and 
polarization types which largely the emissivity (Rees 2001). Microwave sensors are useful for 
soil moisture mapping (Ferrer et al. 2003, Merlin et al. 2008, Barrett et al. 2009). In addition, 
ground penetrating radar (GPR) can be employed to locate buried waste and for measurement 
of organic pollutants in ground water, like the presence of hydrocarbon films by measuring 
the degree of depression of the capillary zone (Mirsal 2004). 

Finally, some relatively new applications employs gamma-ray sensor in soil research. 
The gamma-ray response recorded by the sensor (usually onboard an airplane) denotes the 
mineralogy and geochemistry of the parent mineral and the derived alteration and weathering 
products, including residual and transported clays, sands and silts (Martelet et al. 2006). 
Measurements are usually taken in the spectral windows for 40K, 238U and 232Th. In soil 
science studies, gamma-ray sensors has been employed in several applications like soil type 
mapping (Cook et al. 1996) or the analysis of mineralization styles (Shives et al. 2000). 

 
 

MAPPING TECHNIQUES 
 
The basic underlying purpose of remote sensing is the extraction of thematic information 

by transforming data into information (Jensen 2004). In this sense, many multipurpose digital 
image processing techniques has been developed and tested in varied applications. In soil 
mineralogy mapping, digital image processing techniques employ the knowledge acquired by 
the spectrometric analysis of mineral and rocks spectra to develop mathematical methods 
capable to enhance and quantify the presence of mineral specie. Image transformations and 
imaging spectroscopy are two of the most employed digital image processing techniques for 
mineral mapping. 

 
 

Image Transformations 
 
An image transformation is an operation that re-express the information content of an 

image or an image set, including arithmetic operations (although they are not strictly 
transforms), empirically based image transforms (e.g. tasselled cap transform, perpendicular 
vegetation index), principal components analysis, the hue-saturation-intensity (HSI) 
transform, or harmonic analysis transforms like the Fourier or Wavelet transforms (Mather 
2004). 

Many spectral ratios have been employed in mineral mapping to enhance the spectral 
contrast of specific absorption features. A selection of spectral indexes employed in mineral 
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mapping is showed in Table 1. The brightness index (BI) quantifies the average reflectance 
magnitude as is calculated as a Euclidian distance in a space of n spectral dimension, 
considering soil reflectivity in the visible region (Mathieu et al. 1998). The coloration index 
(CI) developed by Escafadal and Huete (1991) reduces the influence of soil color on the 
sensitivity of some vegetation indices and related by Madeira et al. (1997) to absorption of 
iron oxides like goethite and hematite. The redness index (RI) calculated from Helmholtz 
chromatic co-ordinates (lambda d, Pe, Y) and correlated to hematite content (Madeira et al. 
1997). Rowan and Mars (2003) mapped granitoids and gneisses with intense Fe3+ absorption 
bands with a simple ratio between red and green spectral bands (Fe3+ ratio). Special attention 
requires the relative absorption-band depth (RBD concept (Crowley et al. 1989) which is a 
three-point ratio formulation for mapping Al-O-H, Mg-O-H and CO3

2- absorption intensities. 
The general formulation of the RBD ratio is the following: 

 

3
21

band
bandbandRBD +

=  

 
The numerator corresponds to the sum of the 'shoulders' of the absorption band while the 

denominator corresponds with the band of the absorption feature minimum. RBD's success 
lies in the removal of the continuum to enhance the intensity of the absorption feature 
(Crowley et al. 1989). Rowan and Mars (2003) employed three different version of the RBD 
spectral index to map limestone, dolomite and muscovite with a multispectral sensor. 

The Crosta technique (Crosta and Moore 1989) is a feature oriented principal component 
selection. Through the analysis of the eigenvector values it allows the identification of the 
principal components that contain spectral information about specific minerals, as well as the 
contribution of each of the original bands to the components in relation to the spectral 
response of the materials of interest (Ranjbar et al. 2004). The technique can be applied on 
four and six selected bands of Landsat Thematic Mapper (TM) and Landsat Enhanced 
Thematic Mapper Plus (ETM+) data to map iron oxides, hydroxyl minerals, the presence of 
hydrothermally altered rocks and the main structural features that can be related with ore 
deposition, for exploration of porphyry copper mineralization or clay alterations (Crosta & 
Moore 1990, Ruiz-Armenta & Prol-Ledesma 1998, Ranjbar et al. 2004, Mohammadzadeh & 
Babaee 2006, Aydal et al. 2007).  

In a similar approach, Yamaguchi and Naito (2003) employed an orthogonal 
transformation of the five ASTER multispectral sensor bands in the short wave infrared 
region (SWIR, from 1600 to 2430 nm) to represent specific spectral patterns, proposing five 
spectral indices, from lower to higher orders: the brightness index, the alunite index, the 
kaolinite index, the calcite index and the montmorillonite index. They calculated a set of 
coefficients to be multiplied by the corresponding band reflectance. The final value of the 
indexes results from the summation of all band-specific products. 



 

Table 1. Spectral indices for mineral mapping. The numeric values of wavelength correspond with the midpoint of the full width and 
half maximum (FWHM) of the original sensor bands 

 
Index General formulation References 

Brightness Index 
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Mathieu et al. 1998 
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Madeira et al. 1997 
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Madeira et al. 1997 
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Rowan & Mars 2003 

Ca-CO3 (limestone) 

nm

nmnm
limestoneRBD

2330

23952260

ρ
ρρ +

=  
Rowan & Mars 2003 

Ca, Mg-CO3 (dolomite) 
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ρ
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=  
Rowan & Mars 2003 

Muscovite 

nm

nmnm
itemusRBD

2205
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cov ρ
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Rowan & Mars 2003 

Brightness Index 
iiiiii XXXXXY 54321 441.0447.0453.0449.0446.0 ++++=  Yamaguchi & Naito 2003 



 

Table 1 (Continued) 

Alunite Index 
iiiiii XXXXXY 54321 048.0389.0562.0219.0694.0 −++−−=  Yamaguchi & Naito 2003 

Kaolinite Index 
iiiiii XXXXXY 54321 124.0372.0505.0763.0012.0 −++−=  Yamaguchi & Naito 2003 

Calcite Index 
iiiiii XXXXXY 54321 365.0647.0388.0522.0156.0 +−−+=  Yamaguchi & Naito 2003 

Montmorillonite Index 
iiiiii XXXXXY 54321 589.0185.0364.0069.0696.0 −+−+=  Yamaguchi & Naito 2003 
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Imaging Spectroscopy 
 
Imaging spectroscopy deals with the mapping of specific ground materials by detecting 

specific chemical bonds, and analyzing reflectance/absorbance features in hyperspectral (or 
multispectral) images (Clark 1999; Clark et al. 2003). Methods on imaging spectroscopy were 
first developed when the first hyperspectral remote sensors were constructed in the early 80’s. 
Nowadays, imaging spectroscopy is a field of great interest in remote sensing with 
applications in soil mineral mapping (Clark et al. 2003, Kruse et al. 2003, Bartholomeus et al. 
2007) and vegetation studies (Okin et al. 2001, Kokaly et al. 2003, Andrew & Ustin 2008). 

Imaging spectroscopy is based in the analysis of absorptions in a spectrum whereas 
absorption features have two components: the continuum and individual features. The 
continuum is the "background absorption" onto which other absorption features are 
superimposed (Figure 2) and may be due to the wing of a larger absorption feature (Clark & 
Roush 1984, Clark 1999). The apparent depth or strength of an absorption feature relative to 
the continuum is dependent on the intrinsic absorption strength, the grain size and abundance 
of the material as well as the abundance, absorbing nature, and grain sizes of the other 
materials mixed with the sample (Clark & Roush 1984). The depth of an absorption band (D) 
is usually defined relative to the continuum with the following expression (Clark & Roush 
1984, Clark 1999, Clark et al. 2003): 

 

c

b

R
R

D −= 1  

 
where Rb is the reflectance at the band bottom and Rc is the reflectance of the continuum 

at the same wavelength as Rb. 
 

 
 

Figure 2. Characteristics of an absorption feature. From Clark et al. 2003. 
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The continuum should be removed by division, whether you are working in reflectance or 
emittance, and by subtraction when working with absorption coefficients. The continuum-
removal process isolates spectral features and puts them on a level playing field so they may 
be intercompared (Clark 1999). 

Many algorithms are available and have been developed to extract information from 
hyperspectral (and multispectral) data by using the high spectral dimensionality of those 
datasets. Van der Meer et al. (2002) reviewed a large set of analytical techniques for imaging 
spectrometry studies, including: binary encoding (Goetz et al. 1985), waveform 
characterization (Okada & Iwashita 1992), spectral feature fitting (SFF) also known as the 
TETRACORDER algorithm (Crowley et al. 1989, Clark et al. 2003), spectral angle mapper 
(SAM) (Kruse et al. 1990), spectral unmixing (Adams & Adams 1984, Adams et al. 1986), 
iterative spectral unmixing (ISU) (Van der Meer 1999), multiple endmember spectral mixture 
analysis (MESMA) (Roberts et al. 1998), constrained energy minimization (CEM) (Farrand 
& Harsanyi 1997), foreground-background analysis (FBA) (Smith et al. 1994), cross 
correlogram spectral matching (CCSM) (Van der Meer & Bakker 1997), geophysical 
inversion (Van der Meer 2000), and supervised and unsupervised statistical classification 
methods (e.g. minimum Euclidean distance, maximum likelihood, etc.) frequently employed 
in land-cover mapping. 

 
 

EXAMPLES OF SOIL HEAVY METALS DETECTION WITH 
REMOTE SENSING 

 
This section provides a compilation of various studies that employed remote sensing 

techniques (field or laboratory spectroscopy and aerial or satellite data) for mapping heavy 
metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, and Zn) and metalloids (As, Sb) in soil. 
Table 2 shows the chemical elements assesses in the studies included in this compilation and 
the main characteristics of the mapping approaches. 

Kemper and Somner (2003) employed a spectral mixture modeling approach combining 
field and airborne hyperspectral sensor in combination with soil samples. They mapped heavy 
metal sludge contamination (As, Cd, Cu, Hg, Pb, Sb, and Zn) after the mining accident in 
Aznalcóllar (southwest Spain). The variable multiple endmember spectral mixture analysis 
(VMESMA) tool was used aiming to estimate the quantities and distribution of the waste 
sludge material. They employed field observations and chemical measurements of samples 
taken in the area to assess the sludge abundances obtained by unmixing the hyperspectral 
spectral data.  

Bartholomeus et al. (2007) quantified topsoil iron content with imaging spectroscopy 
techniques in south Spain. They combined laboratory, field and airborne hyperspectral 
sensors in combination with soil samples. They employed the redness index (RI) and the 
continuum-removal and band-depth (CR-BD) analysis to assess the correlations between the 
spectral data and iron content. A final map of iron content in partially vegetated (vegetation 
coverage was determined by spectral mixture analysis) areas was obtained with the 
established regression functions. 



 

Table 2. Main characteristics of the studies that employed remote sensing techniques for mapping heavy metals and metalloids in soils 
 
Elements References Study areas Sensors 

(1) 
Spectral regions 
(2) 

Mapping methods 
(3) 

As Kemper & Sommer 2003 Southwest Spain FAH VNIR, SWIR VMESMA 

As Choe et al. 2008 Southeast Spain FAH VNIR, SWIR Ratios, CR-BD, SAM 

Cd Kemper & Sommer 2003 Southwest Spain FAH VNIR, SWIR VMESMA 

Cu Kemper & Sommer 2003 Southwest Spain FAH VNIR, SWIR VMESMA 

Cu Choe et al. 2008 Southeast Spain FAH VNIR, SWIR Ratios, CR-BD, SAM 

Fe Kemper & Sommer 2003 Southwest Spain FAH VNIR, SWIR VMESMA 

Fe Bartholomeus et al. 2007 South Spain FAH VNIR, SWIR RI, CR-BD, SMA 

Hg Kemper & Sommer 2003 Southwest Spain FAH VNIR, SWIR VMESMA 

Pb Kemper & Sommer 2003 Southwest Spain FAH VNIR, SWIR VMESMA 

Pb Choe et al. 2008 Southeast Spain FAH VNIR, SWIR Ratios, CR-BD, SAM 

Sb Kemper & Sommer 2003 Southwest Spain FAH VNIR, SWIR VMESMA 

Zn Kemper & Sommer 2003 Southwest Spain FAH VNIR, SWIR VMESMA 

Zn Choe et al. 2008 Southeast Spain FAH VNIR, SWIR Ratios, CR-BD, SAM 
Notes: 
1. FAH: field and airborne hyperspectral 
2. V: visible, 400-700 nm; NIR: near-infrared, 700-1000nm; SWIR: short-wave infrared, 1000-2500nm (notation in Ben-Dor & Banin, 1994). 
3. CR-BD (continuum-removal and band-depth analysis); VMESMA (variable multiple endmember spectral mixture analysis); RI (redness index); SMA 

(spectral mixture analysis); SAM (spectral angle mapper) 
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Choe et al. (2008) derived parameters (i.e. spectral ratios and continuum-removal and 
band-depth analysis) from spectral variations associated with heavy metals in soils of 
southeast Spain. They found significant correlations between ground-derived spectral 
parameters and heavy metal concentrations for with the depth of the absorption at 500 nm 
(Depth550 nm) for Pb and Zn, with the ratio  of 610 to 500 nm (R610,550 nm) for Cu, Pb and Zn, 
with the depth of the absorption at 2200 nm (Depth2200 nm) for Zn and As, with the area of the 
absorption at 2200 nm (log(Area2200 nm)) for Cu, Pb, Zn and As, and with the asymmetry of 
the absorption feature at 2200 nm (Asym2200 nm) for As. They applied these parameters to a 
hyperspectral aerial image acquired with the HyMAP sensor. The pixels classified in the rule 
image of Depth500 nm, the ratio R1344,778 nm, and Area2200 nm derived from a HyMAP image 
showed similar spatial patterns to the gradient maps of ground-derived spectral parameters. 

 
 

CONCLUSION 
 
Heavy metals are pollutants of great importance for human health and ecosystems. The 

use of remote sensing techniques to determine the presence of these pollutants in soils is a 
good tool for this purpose. However, not too many research and studies are done. To know 
the level of heavy metal pollution in soils is vital for most of the human activities in the Earth 
surface, thus the improvement of remote sensing techniques to study soil pollution are 
needed. 

The development of new sensors join to the improvement of the imaging analysis are the 
key factors to aid us to locate heavy metals in large areas and favors to take the best decisions 
for land management and pollution control. 

 
 

REFERENCES 
 

Adams, J.B. & Adams, J.D. (1984) Geologic mapping using Landsat MSS and TM images: 
removing vegetation by modeling spectral mixtures. Proceedings of the International 
Symposium on Remote Sensing of Environment, Third Thematic Conference on Remote 
Sensing for Exploration Geology (pp. 615-622). Colorado Springs (CO), USA: 
Environmental Research Institute of Michigan. 

Adams, J.B., Smith, M.O. & Johnson, P.E. (1986) Spectral Mixture Modeling: A New 
Analysis of Rock and Soil Types at the Viking Lander 1 Site. Journal of Geophysical 
Research, 91, 8098–8112. 

Alloway, B. (1995) The origin of heavy metals in soils. In: B. Alloway (Ed.), Heavy metals in 
soils. Second edition (pp. 38-57). London, UK: Blackie Academic & Professional. 

Andrew, M. & Ustin, S. (2008) The role of environmental context in mapping invasive plants 
with hyperspectral image data. Remote Sensing of Environment, 112, 4301-4317. 

Aydal, D., Arda, E. & Dumanlilar, Ö. (2007) Application of the Crosta technique for 
alteration mapping of granitoidic rocks using ETM+ data: Case study from eastern 
Tauride belt (SE Turkey). International Journal of Remote Sensing, 28, 3895-3913. 

Baldridge, A., Hook, S., Grove, C. & Rivera, G. (2009) The ASTER spectral library version 
2.0. Remote Sensing of Environment, 113, 711-715. 



The Use of Remote Sensing to Locate Heavy Metal as Source of Pollution 229

Barrett, B.W., Dwyer, E. & Whelan, P. (2009) Soil Moisture Retrieval from Active 
Spaceborne Microwave Observations: An Evaluation of Current Techniques. Remote 
Sensing, 1, 210-242. 

Bartholomeus, H., Epema, G. & Schaepman, M. (2007) Determining iron content in 
Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging 
spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 
9, 194-203. 

Ben-Dor, E. & Banin, A. (1994) Visible and near-infrared (0.4-1.1 μm) analysis of arid and 
semiarid soils. Remote Sensing of Environment, 48, 261-274. 

Burns, R. (1970) Mineralogical Applications of Crystal Field Theory. Cambridge, UK: 
Cambridge University Press. 

Choe, E., van der Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, B. & Kim, K. 
(2008) Mapping of heavy metal pollution in stream sediments using combined 
geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the 
Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 112, 3222-3233. 

Clark, R. (1999) Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of 
Spectroscopy. In: A. Rencz (Ed.), Manual of Remote Sensing, Volume 3, Remote Sensing 
for the Earth Sciences (pp. 3-58). New York, USA: John Wiley and Sons. 

Clark, R. & Roush, T. (1984) Reflectance spectroscopy: quantitative analysis techniques for 
remote sensing applications. Journal of Geophysical Research, 89, 6329 -6340. 

Clark, R., Swayze, G., Livo, K., Kokaly, R., Sutley, S., Dalton, J., McDougal, R. & Gent, C. 
(2003) Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS 
Tetracorder and Expert Systems. Journal of Geophysical Research, 108, 5131. 

Clark, R., Swayze, G., Wise, R., Livo, K., Hoefen, T., Kokaly, R. & Sutley, S. (2007) USGS 
Digital Spectral Library splib06a. Denver (CO), USA: U.S. Geological Survey (USGS). 

Cook, S., Corner, R., Groves, P. & Grealish, G. (1996) Use of airborne gamma radiometric 
data for soil mapping. Aust. J. Soil Res., 34, 183-194. 

Crosta, A. & Moore, J. (1990) Enhancement of Landsat Thematic Mapper imagery for 
residual soil mapping in SW Minas Gerais State, Brazil- A prospecting case history in 
greenstone belt terrain. Thematic Conference on Remote Sensing for Exploration 
Geology- Methods, Integration, Solutions (pp. 1173–1187). Calgary, Canada. 

Crowley, J. (1993) Mapping playa evaporite minerals with AVIRIS data: A first report from 
death valley, California. Remote Sensing of Environment, 44, 337-356. 

Crowley, J., Brickey, D. & Rowan, L. (1989) Airborne imaging spectrometer data of the 
Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth 
images. Remote Sensing of Environment, 29, 121-134. 

Crowley, J. & Hook, S. (1996) Mapping playa evaporite minerals and associated sediments in 
Death Valley, California, with multispectral thermal infrared images. Journal of 
Geophysical Research B: Solid Earth, 101, 643-660. 

Debella-Gilo, M. & Etzelmüller, B. (2009) Spatial prediction of soil classes using digital 
terrain analysis and multinomial logistic regression modeling integrated in GIS: 
Examples from Vestfold County, Norway. CATENA, 77, 8-18. 

Dehaan, R. & Taylor, G. (2003) Image-derived spectral endmembers as indicators of 
salinisation. International Journal of Remote Sensing, 24, 775-794. 



I. Melendez-Pastor, J. Navarro-Pedreño, I. Gómez et al. 230 

Escadafal, R. & Huete, A. (1991) Improvement in remote sensing of low vegetation cover in 
arid regions by correcting vegetation indices for soil "noise'. Comptes Rendus - Academie 
des Sciences, Serie II, 312, 1385-1391. 

Farifteh, J., Van der Meer, F., Atzberger, C. & Carranza, E. (2007) Quantitative analysis of 
salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and 
ANN). Remote Sensing of Environment, 110, 59-78. 

Farrand, W. & Harsanyi, J. (1997) Mapping the distribution of mine tailings in the Coeur 
d'Alene River Valley, Idaho, through the use of a constrained energy minimization 
technique. Remote Sensing of Environment, 59, 64-76. 

Ferrer, F., Antolín, C. & López-Baeza, E. (2003) Spatial distribution of soil moisture content 
and its relationship to other surface parameters at the Valencia site. European Space 
Agency, (Special Publication) ESA SP, 213-224. 

Frazier, B. (2006) Satellite mapping. In: R. Lal (Ed.), Encyclopedia of Soil Science, Second 
Edition 2 Volume Set (pp. 1542-1545). New York, USA: Taylor & Francis Group. 

Goetz, A.F., Vane, G., Solomon, J.E. & Rock, B.N. (1985) Imaging Spectrometry for Earth 
Remote Sensing. Science, 228, 1147-1153. 

Holdgate, M. (1979) A Perspective of environmental pollution. Cambridge, UK: Cambridge 
University Press. 

Hunt, G.R. (1977) Spectral signatures of particulate minerals in the visible and near-infrared. 
Geophysics, 42, 501-513. 

Jensen, J.R. (2004) Introductory Digital Image Processing (3rd Edition). Upper Saddle River 
(NJ), USA: Prentice Hall. 

Kariuki, P.C., Van Der Meer, F. & Siderius, W. (2003) Classification of soils based on 
engineering indices and spectral data. International Journal of Remote Sensing, 24, 2567. 

Kaya, Z. (2006) Pollution. In: R. Lal (Ed.), Encyclopedia of Soil Science, Second Edition 2 
Volume Set (pp. 1343-1346). New York, USA: Taylor & Francis Group. 

Kemper, T. & Somner, S. (2003) Mapping and monitoring of residual heavy metal 
contamination and acidification risk after the Aznalcóllar mining accident (Andalusia, 
Spain) using field and airborne hyperspectral data. Proceedings 3rd EARSeL Workshop 
on Imaging Spectroscopy (pp. 333-343). Herrsching, Germany: European Association of 
Remote Sensing Laboratories (EARSeL). 

Kokaly, R., Despain, D., Clark, R. & Livo, K. (2003) Mapping vegetation in Yellowstone 
National Park using spectral feature analysis of AVIRIS data. Remote Sensing of 
Environment, 84, 437-456. 

Kruse, F., Boardman, J. & Huntington, J. (2003) Comparison of airborne hyperspectral data 
and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote 
Sensing, 41, 1388-1400. 

Kruse, F., Kierein-Young, K. & Boardman, J. (1990) Mineral mapping at Cuprite, Nevada 
with a 63-channel imaging spectrometer. Photogrammetric Engineering & Remote 
Sensing, 56, 83-92. 

Larson, W.E. & Pierce, F. (1991) Conservation and enhancement of soil quality. Evaluation 
for Sustainable Land Management in the Developing World Vol. 2: Technical Papers 
(pp. 175-203). Bangkok, Thailand: International Board for Soil Research and 
Management (IBSRAM). 

Lillesand, T.M., Kiefer, R.W. & Chipman, J.W. (2003) Remote Sensing and Image 
Interpretation. Hoboken (NJ), USA: Wiley. 



The Use of Remote Sensing to Locate Heavy Metal as Source of Pollution 231

López-Pamo, E., Barettino, D., Antón-Pacheco, C., Ortiz, G., Arránz, J.C., Gumiel, J.C., 
Martínez-Pledel, B., Aparicio, M. & Montouto, O. (1999) The extent of the Aznalcóllar 
pyritic sludge spill and its effects on soils. The Science of The Total Environment, 242, 
57-88. 

Madeira, J., Bédidi, A., Cervelle, B., Pouget, M. & Flay, N. (1997) Visible spectrometric 
indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a 
Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. International Journal 
of Remote Sensing, 18, 2835-2852. 

Martelet, G., Truffert, C., Tourlière, B., Ledru, P. & Perrin, J. (2006) Classifying airborne 
radiometry data with Agglomerative Hierarchical Clustering: A tool for geological 
mapping in context of rainforest (French Guiana). International Journal of Applied Earth 
Observation and Geoinformation, 8, 208-223. 

Mather, P.M. (2004) Computer Processing of Remotely-Sensed Images: An Introduction. 
Chichester, UK: Wiley. 

Mathieu, R., Pouget, M., Cervelle, B. & Escadafal, R. (1998) Relationships between satellite-
based radiometric indices simulated using laboratory reflectance data and typic soil color 
of an arid environment. Remote Sensing of Environment, 66, 17 -28. 

Melendez-Pastor, I., Navarro-Pedreño, J., Koch, M. & Gómez, I. (2010) Applying imaging 
spectroscopy techniques to map saline soils with ASTER images. Geoderma, in press 
(doi:10.1016/j.geoderma.2010.02.015) 

Merlin, O., Walker, J.P., Chehbouni, A. & Kerr, Y. (2008) Towards deterministic 
downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. 
Remote Sensing of Environment, 112, 3935-3946. 

Metternicht, G. (2001) Assessing temporal and spatial changes of salinity using fuzzy logic, 
remote sensing and GIS. Foundations of an expert system. Ecological Modelling, 144, 
163-179. 

Mirsal, I. (2004) Soil pollution. Origin, monitoring & remediation. Berlin, Germany: 
Springer-Verlag. 

Mohammadzadeh, M. & Babaee, H. (2006) Application of Crosta technique for porphyry 
copper alteration mapping using TM data in Varzegan, East Azarbaijan, Iran. European 
Journal of Scientific Research, 13, 213-221. 

Navarro-Pedreño, J., Gómez, I., Almendro-Candel, M. & Meléndez-Pastor, I. (2008) Heavy 
metals in Mediterranean soils. In: J. Dominguez (Ed.), Soil contamination research 
trends (pp. 161-176). New York, USA: Nova Science Publishers, Inc. 

Okada, K. & Iwashita, A. (1992) Hyper-multispectral image analysis based on waveform 
characteristics of spectral curve. Advances in Space Research, 12, 433-442. 

Okin, G., Roberts, D., Murray, B. & Okin, W. (2001) Practical limits on hyperspectral 
vegetation discrimination in arid and semiarid environments. Remote Sensing of 
Environment, 77, 212-225. 

Ranjbar, H., Honarmand, M. & Moezifar, Z. (2004) Application of the Crosta technique for 
porphyry copperalteration mapping, using ETM+ data in the southern partof the Iranian 
volcanic sedimentary belt. Journal of Asian Earth Sciences, 24, 237-243. 

Rees, W.G. (2001) Physical Principles of Remote Sensing. Cambridge, UK: Cambridge 
University Press. 



I. Melendez-Pastor, J. Navarro-Pedreño, I. Gómez et al. 232 

Rivero, R., Grunwald, S., Binford, M. & Osborne, T. (2009) Integrating spectral indices into 
prediction models of soil phosphorus in a subtropical wetland. Remote Sensing of 
Environment, 113, 2389-2402. 

Roberts, D., Gardner, M., Church, R., Ustin, S., Scheer, G. & Green, R. (1998) Mapping 
chaparral in the Santa Monica Mountains using multiple endmember spectral mixture 
models. Remote Sensing of Environment, 65, 267-279. 

Rowan, L., Goetz, A. & Ashley, R. (1977) Discrimination of hydrothermally altered and 
unaltered rocks in visible and near-infrared multispectral images. Geophysics, 42, 522-
535. 

Rowan, L., Hook, S., Abrams, M. & Mars, J. (2003) Mapping hydrothermally altered rocks at 
Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection 
radiometer (ASTER), a new satellite-imaging system. Economic Geology, 98, 1019-1027. 

Rowan, L. & Mars, J. (2003) Lithologic mapping in the Mountain Pass, California area using 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. 
Remote Sensing of Environment, 84, 350-366. 

Ruiz-Armenta, J. & Prol-Ledesma, R. (1998) Techniques for enhancing the spectral response 
of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico. 
International Journal of Remote Sensing, 19, 1981-2000. 

Sanchez, P.A., Ahamed, S., Carre, F., Hartemink, A.E., Hempel, J., Huising, J., Lagacherie, 
P., McBratney, A.B., McKenzie, N.J., Mendonca-Santos, M.D.L., Minasny, B., 
Montanarella, L., Okoth, P., Palm, C.A., Sachs, J.D., Shepherd, K.D., Vagen, T., 
Vanlauwe, B., Walsh, M.G., Winowiecki, L.A. & Zhang, G. (2009) Digital Soil Map of 
the World. Science, 325, 680-681. 

Schmid, T., Koch, M. & Gumuzzio, J. (2009) Application of hyperspectral imagery to map 
soil salinity. In: G. Metternicht, G. & J. Zinck (Eds.), Remote Sensing of Soil 
Salinization: Impact and Land Management (pp. 113-139). Boca Raton (FL), USA: CRC 
Press, Taylor and Francis Publisher. 

Shives, R.B.K., Charbonneau, B.W. & Ford, K.L. (2000) The detection of potassic alteration 
by gamma-ray spectrometry---Recognition of alteration related to mineralization. 
Geophysics, 65, 2001-2011. 

Smith, M., Roberts, D., Hill, J., Mehl, W., Hosgood, B., Verdebout, J., Schmuck, G., 
Koechler, C. & Adams, J. (1994) New approach to quantifying abundances of materials 
in multispectral images. International Geoscience and Remote Sensing Symposium 
(IGARSS). págs. 2372-2374. 

Sridhar, B.M., Vincent, R.K., Witter, J.D. & Spongberg, A.L. (2009) Mapping the total 
phosphorus concentration of biosolid amended surface soils using LANDSAT TM data. 
Science of The Total Environment, 407, 2894-2899. 

SSSA (2008) Glossary of Soil Science Terms. Madison (WI), USA: Soil Science Society of 
America. 

Taylor, G., Mah, A., Kruse, F., Kierein-Young, K., Hewson, R. & Bennett, B. (1996) 
Characterization of saline soils using airborne radar imagery. Remote Sensing of 
Environment, 57, 127-142. 

Van der Meer, F., De Jong, S. & Bakker, W. (2002) Imaging spectrometry: basic analytical 
techniques. In: F.D. Van Der Meer & S.M. De Jong (Eds.), Imaging Spectrometry. Basic 
Principles and Prospective Applications (pp. 17-61). Hingham (MA), USA: Kluwer 
Academic Publishers. 



The Use of Remote Sensing to Locate Heavy Metal as Source of Pollution 233

Van Der Meer, F. (1999) Iterative spectral unmixing (ISU). International Journal of Remote 
Sensing, 20, 3431. 

Van Der Meer, F. (2000) Geophysical inversion of imaging spectrometer data for geologic 
modelling. International Journal of Remote Sensing, 21, 387-393. 

Van Der Meer, F. & Bakker, W. (1997) CCSM: Cross correlogram spectral matching. 
International Journal of Remote Sensing, 18, 1197-1201. 

Van Der Meer, F. (2002) Basic physics of spectrometry. In: F.D. Van Der Meer & S.M. De 
Jong (Eds.), Imaging Spectrometry. Basic Principles and Prospective Applications (pp. 3-
16). Hingham (MA), USA: Kluwer Academic Publishers. 

Vaughan, R., Hook, S., Calvin, W. & Taranik, J. (2005) Surface mineral mapping at 
Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. 
Remote Sensing of Environment, 99, 140-158. 

Webster, R. & Burrough, P.A. (1972a) Computer-based soil mapping of small areas from 
sample data II. Classification smoothing. European Journal of Soil Science, 23, 222-234. 

Webster, R. & Burrough, P.A. (1972b) Computer-based soil mapping of small areas from 
sample data I. Multivariate classification and ordination. European Journal of Soil 
Science, 23, 210-221. 

Yamaguchi, Y. & Naito, C. (2003) Spectral indices for lithologic discrimination and mapping 
by using the ASTER SWIR bands. International Journal of Remote Sensing, 24, 4311-
4323. 
 

View publication statsView publication stats

https://www.researchgate.net/publication/235935553

