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The nonlinear vibration and the dynamic buckling of a graphene platelet reinforced sandwich functionally graded
porous (GPL-SFGP) plate are thoroughly investigated in this paper. The investigated GPL-SFGP plate consists of
two metal face layers and a functionally graded porous core with graphene platelet reinforcement. The effects
of the Winkler-Pasternak elastic foundation, thermal environment and damping are incorporated. The open-cell
metal foam model is implemented to model the mechanical properties of the porous core. Axial compressive
stress is applied on the GPL-SFGP plate by exerting various compressive loading speeds at one edge of the plate.
Grounded on the classical plate theory, both motion and geometric compatibility equations of the plate are
deduced by introducing the Von Kérmén strain-displacement relationship and stress function. Both the Galerkin
and the fourth-order Runge-Kutta methods are implemented to solve the governing equation of the dynamic
system. Meticulously designed numerical experiments are conducted to identify the critical influential factors
of the dynamic stability of the GPL-SFGP plate. The influences of loading speed, damping ratio, temperature
variation, initial imperfection, elastic foundation parameters, porosity, GPL weight fraction and the dimensions

of the GPL on the overall dynamic stability of the GPL-SFGP plate are evidently demonstrated.

1. Introduction

With the conspicuous advantages of high stiffness and relatively light
weight, sandwich structures are extensively implemented across wide
range of engineering applications such as aerospace, automotive, con-
struction and biomedical industries [1-9]. Porous materials, such as
metal foam, are prevalently employed as the core of the sandwich struc-
tures due to its excellent properties provided by light weight, heat resis-
tance and energy dissipation reduction [10-15]. The resulting compos-
ite structures, known as the sandwich porous structures, are manufac-
tured by connecting two thin face layers with a lightweight porous core
together. In general, adopting sandwich porous structures can notice-
ably reduce the mass of the system while ensuring the same level of stiff-
ness. One of the attractive applications for the sandwich porous struc-
tures is the manufacture of the prototype of the high-speed train (Fig. 1).
To fulfill the high demand of the engineering industries, various theo-
retical and experimental researches on the static and dynamic charac-
teristics of the sandwich porous structures have been reported [16-22].

Due to the existence of internal pores of the porous material, the
stiffness of the structure is decreased when the porosity is increased.
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To improve the performance (i.e., maintaining relatively higher stiff-
ness but with lighter weight) of the porous structures in engineering ap-
plication, nanofillers, such as carbon nanotubes [25-28] and graphene
platelets (GPLs) [29], have been introduced to reinforce the porous
structures. GPLs can transfer load in a more efficient way which en-
hances the material strength by improving the bonding with the matrix
[30-32].

The functionally graded (FG) materials, whose properties vary con-
tinuously along one or multiple directions, have demonstrated their su-
periority over conventional composite materials in many aspects. Ex-
tensive research works have been implemented to study the dynamic
behaviors of FG material structures. Grounded on the first order shear
deformation theory, Sofiyev and Kuruoglu [33] analyzed the paramet-
ric vibration of simply-supported sandwich cylindrical shell with an FG
core under combined static and time dependent periodic axial compres-
sive loads. Both uniformly distributed and FG distributed patterns were
considered. Yang et al. [34] explored the buckling and the postbuck-
ling behaviors of the GPL reinforced FG multilayer beams supported by
elastic foundation. Various GPL distribution patterns were studied to
obtain the optimum reinforcing effect. Sofiyev et al. [35] examined the
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Fig. 1. (a) The sandwich porous plate; (b) Prototype of high-speed train made of welded aluminum sandwich porous structures [23]; The high-speed train [24].

dynamic response of the FG coated sandwich cylindrical shell resting on
the Pasternak elastic foundation. The impacts of the shear stresses and
the rotary inertia were considered.

Combining the FG composites with porous materials provides the
possibility to optimize the global performance of composite structures.
Several studies have investigated the vibration and bending responses
of the functionally graded porous (FGP) structures. Based on the Timo-
shenko beam theory, Chen et al. [36] investigated the free and forced
vibration characteristics of FGP beams with two different porosity dis-
tributions subjected to various loading conditions. Chen et al. [37] also
adopted the Ritz method to study the nonlinear free vibration of shear
deformable sandwich beam with FGP core by taking two non-uniform
FG distributions into account. Wu et al. [38] proposed a finite ele-
ment analysis framework to investigate the free and forced vibration
of FGP beam type structures based on the Euler-Bernoulli and Timo-
shenko beam theories. By employing the finite element method, Chen
et al. [39] investigated the dynamic response and energy absorption
behaviors of 2D FGP structures with various porous distribution types.
Kitipornchai et al. [40] studied the free vibration and the critical buck-
ling load of GPL reinforced FGP beams with the considerations of three
different internal pores and GPL distributions. Chen et al. [41] ex-
plored the nonlinear free vibration and postbuckling characteristics of
the GPL reinforced multilayer FGP nanocomposite beams with vari-
ous distribution patterns of both internal pores and GPL nanofillers.
Sahmani et al. [42] investigated the size-dependent nonlinear bending
of GPL reinforced FGP micro/nano-beams by employing the nonlocal
strain gradient theory of elasticity and the third-order shear deformable
beam theory. Yang et al. [43] employed the first-order shear defor-
mation plate theory and Chebyshev-Ritz method to derive the buck-
ling and free vibration behaviors of FGP nanocomposite plates rein-
forced by GPLs. Grounded on the first-order shear deformation the-
ory, Dong et al. [44] investigated the free vibration behaviors of the
GPL reinforced FGP nanocomposite cylindrical shell with considerations
of three types of GPL patterns and four types of the porosity distribu-
tions.

597

It is noticed that all aforementioned researches mainly focused on
the free and forced vibration of the structures. In real-life engineer-
ing application, the dynamic buckling analysis is vital to assess the
safety of the structures. Aksogan and Sofiyev [45] investigated the
dynamic buckling of elastic cylindrical shell with various thicknesses.
The shell is subjected to a uniform external pressure as a power func-
tion of time. Deniz and Sofiyev [46] analyzed the nonlinear dynamic
buckling of the FG truncated conical shells which are subjected to a
linear time-dependent axial compressive load. Huang et al. [47] in-
vestigated the nonlinear dynamic buckling problem of temperature-
dependent FG composite cylindrical shells subjected to a linearly in-
creased dynamic axial load. By adopting the large deformation theory,
Sofiyev [48] explored the dynamic buckling characteristics of the FG
coated conical shells subjected to a time-dependent axial load. Mouhat
and Abdellatif [49] presented the dynamic buckling analysis of stiff-
ened panels subjected to an in-plane uniform axial compressive loading.
With the consideration of six different boundary conditions, Azarboni
et al. [50] investigated the nonlinear dynamic buckling of imperfect
rectangular plate subjected to various impulsive loads. Kolahchi et al.
[51] conducted the dynamic stability analysis of the single-walled CNTs
reinforced polymeric temperature-dependent viscoelastic plates resting
on orthotropic temperature-dependent elastomeric medium. Yang and
Wang [52] presented the dynamic buckling of the stiffened plate sub-
jected to an in-plane impact load under elastically restrained boundary
conditions. Sheng et al. [53] proposed a reduction nonlinear model to
investigate the dynamic stability and nonlinear vibrations of the stiff-
ened FG cylindrical shell in thermal environment. Hajmohammad et al
[54] investigated the dynamic buckling behavior of a laminated vis-
coelastic FG-CNT-reinforced sandwich plates. The core of the plate was
made of nanocomposite layers integrated with piezoelectric materials
subjected to an electric field. Gao et al. [55] analyzed the dynamic sta-
bility of a composite orthotropic plate with the consideration of damp-
ing, temperature and the Winkler-Pasternak foundation. Hajmoham-
mad et al [56] conducted the dynamic buckling analysis of viscoelastic
sandwich truncated conical shell exposed to moisture, temperature and
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magnetic field. Arani et al. [57] presented the dynamic analysis of a
rectangular porous plate subjected to a dynamic transverse load resting
on the Pasternak foundation. Fakhar and Kolahchi [58] conducted the
dynamic buckling analysis of sandwich plates with magnetorheological
fluid core and piezoelectric nanocomposite face layers. Magnetic field
and 3D electric field are applied on the core and the face layers respec-
tively. However, to the best of the authors’ knowledge, no previous in-
vestigation has been conducted on the dynamic stability analysis of the
GPL-SFGP plate structures with the considerations of various practically
motivated effects.

This paper presents an analytical approach to study the nonlinear dy-
namic response and buckling analysis of a graphene platelet reinforced
sandwich functionally graded porous (GPL-SFGP) plate. To achieve a
more generalized nonlinear dynamic analysis, the Winkler-Pasternak
elastic foundation, thermal operational environmental, as well as damp-
ing effects are simultaneously incorporated. The dynamic compressive
load is applied along the longitudinal direction by setting a constant
displacement rate on one edge of the plate. In addition, an out-plane
uniformly distributed pressure is exerted on the plate. The investigated
GPL-SFGP plate in the present study possesses the mechanical proper-
ties of open-cell metal foam to obtain the porosity and mass density
coefficients of the porous core. The Von Karman strain-displacement re-
lationship and the classical plate theory are adopted for the compatibil-
ity formulations. The Galerkin method combined with the fourth-order
Runge-Kutta approach are implemented to solve the governing equation
of the dynamic buckling. Furthermore, the influences of imperfections,
thermal variations, external excitations, loading speeds, damping ratios,
elastic foundation parameters, porosities, the GPL weight fractions as
well as the GPL dimensions on the dynamic stability of the GPL-SFGP
plate are evidently explored.

(b)

Fig. 2. (a) 3D view and (b) front view of the GPL-SFGP plate resting on the Winkler-Pasternak elastic foundation.
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2. Porosity distribution and GPL patterns

A GPL-SFGP plate resting on the Winkler-Pasternak elastic founda-
tion is defined in a Cartesian coordinate system (x, y, z), which is shown
in Fig. 2. The x-y plane is defined as the middle surface of the plate, and
the z-axis is indicating the thickness direction. The length, width and to-
tal thickness of the GPL-SFGP plate are denoted as a, b and h=h_ + 2hf,
respectively. h, and hy denote the thicknesses of the porous core and the
metal face layer, respectively. The investigated GPL-SFGP plate is as-
sumed to be simply supported. The uniformly distributed external pres-
sure is exerted on the plate and an axial compressive loading rate is
applied on the edge of the plate along the x-direction.

The location-dependent material properties, which are including the
Young’s modulus (E(2)), shear modulus (G(2)), mass density (p(z)) and
thermal expansion coefficient («(z)) of the porous core, are described
by Egs. (1)-(4).

E(z) = E|[1 - eyA(2)] 1)

___E@®
@ = v @
p(z) = py[1 = €, A(2)] 3
a(z) = o [1 —e, /1(2)] 4)
where
cos(”f) non-uniform symmetric porosity distribution

Mz) = cos(% + %) non-uniform asymmetric porosity distribution
A uniform distribution

(6]
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ey denotes the coefficient of porosity which is defined by
(6)

where E; and E, denote the maximum and minimum Young’s modu-
lus of the non-uniformly distributed porous material, respectively [34].
e, represents the mass density coefficient. By introducing the typical
mechanical property of the open-cell metal foam [31], the relationship
between e and e, can be expressed as

em=1—m

For a uniform porous distribution, the coefficient 4 can be deter-
mined as

(O]

®)

The relationship between the volume and weight fractions is given
by
n/2
</
—h/2

where V¢p; and Agp; denote the volume and weight fractions of the GPL
nanofillers, respectively.

According to the Halpin-Tsai micromechanics model [59-61], the
elastic modulus of the porous core can be obtained as

AgpL
Apy + ZGEL _ PGEL A
GPL ou o GPL

h/2
[1-e,i(z)]dz = /_ i Ve[l — enA(2)]dz

(C)]

3 [ 1+E0PLyOPLy 5 1+§g/PLng/PLVGPL
1=3 GPL En + 8 GPL Ey o (10)
11— V6p, L—ny, "VopL
in which
21
gopt = =S an
fGpL
2w,
gorL GPL a12)
fGrL
GPL _ (EGPL/EM) -1 1
L - GPL a3
(EgpL/Em) + &7
E, Ey)—1
GPL _ (EgpL/Em) (14)

(EgpL/Em) + f;(,;VPL

where l;p;, Wgpr, and tgp; represent the average length, width and thick-
ness of the GPLs, respectively.

By applying the rule of mixture, the mass density p;, the Poisson’s
ratio v; and the thermal expansion coefficient a; of the GPL reinforced
metal porous core can be calculated as

p1=rcpLVerL +PuVu 1s)

vi =VeprLVerL +VvuVu (16)
_ VerrEgprocrL + VM Enay

a = a7

VeoprEgpr +VEm

where pepr, pur> Vapr, and vy, denote the densities of the GPLs and metal
matrix, and the Poisson’s ratios of the GPL and metal matrix, respec-
tively. V,, represents the volume fraction of the matrix, which is related
to the volume fraction of the GPLs as:

(18)

Vi =1-Vspr
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3. The fundamental formulations

From the classical laminated plate theory, the Von Karmén strain-
displacement relationship bears the form

£, |= 85 + 2z 6¥ (19)
Yxy Yxy Vxy
where
2
du 1(ow
0 ou L
SS() 0x+2<dx)
(e =2 e (2’ 20)
AN
Xy ou 4, ov , Jwow
(3y+0x+ x dy
| _Pw
I3 ox2
x v
n_J.a (_J)_ow
{e'}=1¢, ¢ = o @1
y;y %W
dxdy

where u and v represent the displacement components along the x- and
y-directions, respectively.

Based on the Hooke’s law, the stress-strain relationships of the face
layer and the porous core of the GPL-SFGP plate under a uniform ther-
mal environment can be defined as

T
o, Oy Q9p O (ex), — &1
% ¢ =|Qn QO»n O (Ey)f - 53 and
%)y 1O 0 Oco (Fxy) I
Ox Oy Qp O (ex)c—ef
o, ¢ =|0;p Qn O (e)). — € (22)
Oxy c 0 0 Q66 c (7xy)c
respectively. Moreover, the thermal strains are defined by
el = a AT(x,y,2,1)
X - Vs 2,
{sz: = a,AT(x,y,z,1) 23

where a, and «, are the thermal expansion coefficients along the x- and
y-directions, respectively. The subscripts f and ¢ denote the face layers
and porous core layer, respectively. The coefficients Q; (ij=1, 2, 6) for

the face layers and the porous core are given by

E
(Q”)f = I—CZ
v
(Qn), =52
o (24)
1
(Q22)f = 1-v2
(€u), =
66) 7 = 2(14v))
E
@) =125
E
©p), = 5273
£y (25)
@), = 225
_ _E®
(©66). = 2[1+v(2)]

where Ey and v represent the Young’s modulus and Poisson’s ratios of
the face layer, respectively.

The in-plane force and the moment resultants of the GPL-SFGP plate
are calculated by

he he
P (o)pdz+ [,

hpt

Ni:/m

2 2

(6).dz+ /7(;#,%) (6),dz 6)

e re e i=x,y,xy
M=/ (6;-2),dz+ [} (a,..z)cdz+f(,f+h(><6, -z),dz
2 e AN
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Substituting Egs. (19)-(25) into Eq. (26), the force and the moment
resultants can be formulated as

Ny Ay A, 0 By Bp O e% - 5;
Ny Ap Ay 0 By, B, 0 Sy—osy
Ny, _ 0 0 Ags 0 0 By yxly @n
M, B, B, 0 D, D, O el
M, B, By 0O D, Dy O el
M,, 0 0 Bgg 0 0 Dys J,chy
where
{Aij’Biij[j}
h/+% R %c )
= [1 ©Qip{l.z.z }dz+/hc Qi A1,2,2% }dz
B -7
_he
2
+/ (Q;,-)f{l,z,zz}dz
~(h 1)
i,j=1,2,6 28)

From the classical plate theory, the nonlinear equilibrium equation
of the GPL-SFGP plate resting on the Winkler-Pasternak elastic foun-
dation with the consideration of damping effects can be formulated as

ON

aNX yx 021,4 ou
= ph—+C ph— 29
ax oy Phontharny 29
0ny ()Ny 62U v
—2 = ph=—+C, ph— 30
ox oy  Plar TPy 30)
2
0?M, 0*M azMy+N02w+2 o w
0x2 0x0y 9y? * 9x2 Y oxoy
2w ’w  w 0*w ow
+N,— +q—kyw+k,| — + — ) =ph—- + Cyph—
o q-k,w p<ax2 o rh—3 aph
3D

where C; represents the viscous damping coefficient; k,, denotes the
Winkler foundation modulus and k,, denotes the shear layer foundation
stiffness of the Pasternak model; q represents the uniformly distributed
external pressure applied on the plate. In this study, it is assumed that
the flexural motion dominates the overall structural deformation, i.e.,
u<w,and v < w, so "2—2‘, 3—';, %, and % are negligible. According to
Egs. (27)-(31), the stress function f(x, y) can be defined by

ot
2 2
_Pf _Pf

N=2L N=LL N, =
R > R A 0xdy

(32)

By considering the initial imperfection, the geometric compatibility
equation for the GPL-SFGP plate can be formulated as

0262 0263 B 527’%,

0y? ox2  0xdy

_{ Pw ? _ 62_w02w + Pw >w* _ 02_w02w* _ ()z_wa w (33)
0xdy 0x? dy?* 0xdy 0xdy  0x2 0y? 0y 0x?

where w*(x, y) is a function which represents the initial imperfection of
the plate.
From Eq. (27), the membrane strains can be rewritten as

0 _ gx * w1 * o1 T
6_AllNX+A12Ny+A13£ic+A14Ely+£3;
A% * * *
g%_A|2NX+A22NY1+A23£X+A246y+5y (34)
A% *
Yey = A3 Ny + 457,
with
A
A% = + (35)
AjAyp — Ay
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A

A”{ZZ_#2 (36)
A Ay — Ap
A,B,—A»B

A = 2B —Axn 211 @7)
A1 Ay — Ap
A,B,, — A»,B

ar, = Aubn—4n 212 38)
ApAn —Ap

A

A;2=+2 (39)
A Ay —Ap
A,B,—-A;B

A% = 2B — Ay 212 0)
Ay An —Ap
A,B,—- A B

A% = 1B — A 222 @n
Ay Apn —Ap

A% —L 42)

31— A%

. Bgs
A= 43)

66
By substituting Eq. (34) into Eq. (33), for the environment with uni-

form temperature variations, the nonlinear compatibility equation of the

GPL-SFGP plate with initial imperfection can be obtained as:

atr o*f *f
* * * *
254 + 47 I + (247, + 43)) ax20y2
. 0w . 0w Py . p *w
_A23 It - A14 oy + (2A32 - A13 - A24)_¢)x20y2
_( Pw : _ ’w *w Pw Pw* _ P w *w* _ Pw *w (44)
0xdy 0x2 0y? 0xdy 0xdy  0x2 0y? 0y? 0x?

By substituting Eq. (34) into Eq. (27), and then substitute the resul-
tant into Eq. (31), the equation of motion of the GPL-SFGP plate can be
reformulated as:

o*tf orf otf o w
T, L +1,~L +1,— +1,%2%
e 1254 Box2ay T
4 4 02 2 02 2
+T156w+T160w °f Fw [ *w
oyt 0x20y2  0y? 0x2 0x0y 0x0y
f *w Pw  w 0w ow
SLoW i —kgwtk,( L2+ ) = T e pn Y 45
onz oyr TATkewtkp\ G+ oy ) oGy F Carh e 49
with
T”=B“A’1‘2+BIZA;2
T12=312AT| + BZZATZ
T\3=Bj A}, + 2B, A%, — 2Bes A%, + By AL,
Tiy=— (By1 A}y + Bip A, + Dyy)
T)5=— (BleT4 + BZZA;; + D)
Tie=— (BllAT4+B12A34+2D12+4(Bﬁ6A3*2+D66)+BIQAT3+B22A;3) (46)

Taking the initial imperfection into consideration, for a GPL-SFGP
plate resting on the Winkler—Pasternak elastic foundation, the equation
of motion can be explicitly formulated as:

T|1%+Tl2§7£+T13%+T14<% a;:f)
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4. Nonlinear dynamic analysis
In this study, the four edges of the plate are assumed to be simply

supported and remain straight after buckling. Thus, such adoption of
the boundary conditions implies that

Mx=0}x
x0
M, = o}y= 0.5

where N,o=—p(t)h is the compressive load along the x-direction.
The solution of the plate deflection w, which satisfies the boundary
conditions, is assumed to be [62]:

u

0,a (48)

RS

X

=0V

y=0

49

RS

w(x,y,t) = W(t)sin (m> sin <any>
where W(t) represents the time-dependent function of w; m and n are odd
integers that indicate the number of half waves in x- and y-directions,
respectively.

The initial imperfection, w*(x, y), is presumed to have the same for-
mat of w(x, y, t),

w(x,y) = Wosin(m—”x) sin (?)
a

where W, denotes the amplitude.
The solution of the stress function, which satisfies the boundary con-
ditions, is assumed to be:

(50)

(6D

f(x,y,1)=H| cos (2m7zx> + H,cos 2””)’)
(52)
+Hj sin ( ) sin ("”) + - NxOy
where
" (W2+2WI/V0)<%>2
3243 ("Z’ )2
(w? +2WW0)<¥)2
H, = y
32A71("?”)
3= AT4(%)4+A* (%)4— (245, - Af; - 4] )(%)2(%214/ (53)

nm mm nm

ai () () o ) (22) ()

Substituting Eqs. (50)-(53) into Eq. (47), and with the assumption
of a = mrn/a, p = nx /b, the equaiton of motion of the plate can be refor-
mulated as:

Ty, [16H1 a* cos Qax) + H3t:r4 sin (ax) sin (ﬂy)]
+T [16H, f* cos (2By) + H3p* sin (ax) sin (8y)]
+Ty3[o® B2 Hsin(ax) sin (By)]
+T4 [0 sin (ax) sin (8y)| (W + Wy) + Tys|B* sin (ax) sin (By)| (W + W)
+T 6 [0 B2sin(ax) sin ()| (W + W)
+[4H, % cos (2By) + H3 2 sin (ax) sin (By) — Ny
X[a2 sin (ax) sin (ﬂy)(W + WO)]
—2[Hzap cos (ax)cos(y)] [ap cos (ax) cos (By) (W + Wy)]
+[4H, 0 cos (2ax) + Hya? sin (ax) sin (By)] [#* sin (ax) sin (By) (W + W,)]
+q — ksin(ax) sin (B)W — k,[(o? + f7) sin (ax) sin (By)W |

2
= ph aatsz sin (ax) sin (fy) + Cdphaa—vl/ sin (ax) sin (fy) (54)
By adopting the Galerkin method, sin (mzx/a)sin(nzy/b) is multi-

plied with each term in Eq. (54), and then integrated over the middle
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surface of the GPL-SFGP plate. Consequently, the resultant equation can
be expressed as

P (W +2W0)W + PW + Py (W + W) + Py(W + Wy) (W +2W, )W

+Ps(W + WO)W + P6q = N (W + W) — |k + k, - (0 + 2)|W
- ph—W +c,oh Y (55)
61
where
P = T, T\ 8ap
'TT\a T ) 3w
11 22
A% B+ A et — (245, — AT, — A},) a2 P
4 23 32 3 24
P2=(T11“4+T12ﬂ4+T130‘2ﬁ2)’[ l = B A b+ (24 . V252
A} P+ ALt + (247 + A7) a2
Py = (Tyya* + T5p* + Tga®B°)
4 p
Py = ‘( s )
1647, " 1643,
P 32ap AL P+ ALt — (245 - A} - A )’
TU3ab AT+ ALt + (247, + AT )a2p?
4 4
b= aﬂ ab (56)

It is assumed that the plate is subjected to a uniformly distributed ex-
ternal pressure g = Qsin Qt, where Q and Q denote the amplitude and fre-
quency of the excitation, respectively. Consequently, Eq. (55) becomes

P, (W +2W, )W + P,W + P3(W + W) + Py (W + W) (W +2W, )W

+P5(W + Wo)W + PsQsin(Q1) + p(ta*h(W + Wy) — [k, + k,(a* + f7)|W
W c,m?¥

02
R W
’ or

or?

(57

According to Egs. (20) and (34), with the consideration of the initial
imperfection of the plate, the expression of the strain along the x-axial
can be obtained as
du
I Al p(Dh

— (A%, % + A},0%) Hysin (ax) sin (By) + (A],a® + A}, %) Wsin(ax) sin (BY)

= —4p* A} H, cos (2py) — 4a* AT, H, cos (2ax) —

- az(%W + VVO)Wcosz(ax)cosz(ﬂy) + EI (58)

To apply a dynamic compressive load on the longitudinal direction
of the plate, a constant displacement rate v is exerted on the edge of the
plate along the x-axis. Thus, the relative edge displacement of the plate
along the x- direction is given as

o [ e

Substituting Eq. (58) into Eq. (59) produces an average compressive
stress as

(59)

p(t) = _AL P A 4 - AL+ AL 4
Aflabh af A’l‘lh ATlabh af
W+ 2W,) W a?
_L *0) + U (60)
8AJ A A’l‘labh

4.1. Nonlinear dynamic response analysis

By neglecting the damping effect of an unloaded perfect plate,
Eq. (57) can be reduced into

>wW _ [P2+P3_kw_kp(a2+ﬁ2)] W— (P1+P5) ﬁ
or? ph ph ph
Without the consideration of the nonlinearity, the natural frequency

of the perfect GPL-SFGP plate can be obtained from the coefficient of W
in Eq. (61). That is,

P, + P —
[ -

W2-—=w?=0

(61)

[k + K, (a2 + 52)]
ph

(62)
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Table 1
The adopted material properties.
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Young’s modulus (GPa)  Density (kg/m®)  Poisson’s ratio  Thermal expansion coefficient (K1)
Aluminum  68.3 2689.8 0.34 23e-6
GPL 1010 1062.5 0.186 Se-6

By considering the harmonic vibration, the solution of W(t) can be
adopted as:

W () = Asin(Qr) (63)

Assuming the compressive loading rate v=0, for the nonlinear vi-
bration of an initially perfect GPL-SFGP plate with the consideration of
damping effects, Eq. (57) bears the form

T,2 2
oW ow 5 e ho®p+ P +Ps
2% L, _ _ w
o TGt Omn A% oh oh
Py + ha? P,
— 4—}10[WWz _ _ZQSith =0 (64)
p p
where
2 2 * p4 * 4 * * * 22
Q=- 4 (ATlﬁ + AL ) AL f"+ Ay — (2A32 — A - A24)0‘ B
af A}, abh AX P+ AL o + (ZATZ + AL )a2p?
2 2
+ i(ATzsa +AT4ﬁ) ©5)
af A} abh
2
a
=T%AF h 66
V= TRa (66)
Cy = 2wy, ¢ 67)

where ¢ is the damping ratio of the plate.

By applying the Galerkin procedure to the resultant formulation,
which was obtained by substituting Eq. (63) into Eq. (64), the nonlinear
vibration equation of the plate can be transformed into

T2
@ 2co o 24 84Ot PI AP 3Pthaty , @
z ¢ mn ph ph A% ph
P
+—hZQ=() @
p

4.2. Dynamic buckling analysis

Considering an initially perfect GPL-SFGP plate, the corresponding
linear static behavior can be obtained by omitting the uniformly dis-
tributed external pressure, the high-order term, the acceleration term
and the velocity term from Eq. (57). That is,

Py + Py + p(Oha® — [k, + k,(a* + §%)] = 0 (69)
Then the critical buckling load can be determined as
1
Pu=7— [k + k,(a® + ) — P, — Py (70)

By substituting Eq. (60) into Eq. (57), the equation describing the
dynamic buckling behavior of the GPL-SFGP plate with initial imperfec-
tion is given as
i(W+2W)W+ By B
ph 0 ph ph

— (W +w,)
P, Py

+— (W +Wo) (W +2W)W + —= (W + Wy )W
ph ph
P . 1

+ p—;’lem(Qt) - [k + Ky (a® + p7)|W
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2 5T
a x vt
+— (W + W) oW + + (W +2W)W + ——
P ( 0)le A h vl 0 A’l‘]abh]
a*w oW
= — 71
a2 4ot an

By solving Eq. (71), the buckling load can be obtained from
Eq. (60) accordingly.

5. Numerical results and discussions

The adopted material properties of the GPL-SFGP plate for all subse-
quent numerical investigations are presented in Table 1.

5.1. Validation analysis

Since there are not any available results for the GPL-SFGP plate un-
der the currently concerned conditions, the proposed method is vali-
dated against the commercial Finite Element Method (FEM) package,
ANSYS.

A uniformly distributed porous core reinforced by uniformly dis-
tributed GPL and orthotropic metal face layers are considered in the
free vibration of the GPL-SFGP plate. The dimensions of the plate are
a=b=1m, h=0.005q, hf: 0.1h, h, =0.8h, ey =0.5.For the GPLs, the pa-
rameters are selected as lgp; =2.5um, wgpp =1.5um, tgp;, =1.5nm and
Agpr = 1wt%.

By neglecting the effect of the elastic foundation, different modes of
the natural frequency of the plate computed by presented method are
compared with the results obtained from ANSYS. Since there is not a di-
rect element type that exactly matching the GPL-SFGP plate in ANSYS,
the SHELL 281 element has been adopted for the purpose of validation.
In order to model the functionally graded porous material, the cross-
section of the GPL-SFGP plate has been discretized into 200 layers and
each layer with a constant material property. Furthermore, the GPL-
SFGP plate has been meshed with an element length =0.02m. The nu-
merical results on the natural frequencies of the GPL-SFGP plate through
the two methods are reported in Table 2.

Table 2
Natural frequencies of the GPL-SFGP plate without considering Winkler—
Pasternak elastic foundation.

Mode type (m, n) Proposed method (rad/s) ANSYS (rad/s) Related error* (%)

1,1) 160.6964 159.1782 0.9538
1,3) 803.4820 795.7654 0.9697
(3,3) 1446.2676 1429.8645 1.1472
(3,5) 2731.8389 2699.7591 1.1882
Presented value — ANSYS value
Related error = X 100%

ANSYS value

It can be observed from Table 2 that the natural frequencies of the
plate obtained by the proposed method generally agree with the numer-
ical results.

Furthermore, Table 3 demonstrates the influences of different
Winkler-Pasternak elastic foundation parameters on the natural fre-
quency of the plate. The values of the natural frequencies are increased



Q. Lietal

International Journal of Mechanical Sciences 148 (2018) 596-610

60 - —(=0—¢=0.1—¢=0.2—(=0.3—¢=0.4 . 48 - [—¢=0 —¢=0.1 —¢=0.2 —(¢=0.3 —(=0.4 | 1
4. S0°08 Agp 1%, WG=0, (mn)=(1,1), AT=0, Q=10°N/m? Q=2000rad/s
44 - ,
<
=42
40 - :
al 1 38
€,=0.5, Agp =1%, W=0, (m,n)=(1,1), AT=0, Q=10°N/m? 2=2000rad/s
60 - ‘ ‘ : ‘ : ‘ .
0 0.002 0.004 0.006 0.008 0.01 3.7 3.8 3.9 4 4.1 42
t(s) t(s) %1073
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Fig. 4. (a) Influence of the temperature increment on the nonlinear dynamic response of the GPL-SFGP plate; (b) Zoomed-in view of (a).
Table 3

Effects of the Winkler-Pasternak foundation parameters on the natural
frequencies of the GPL-SFGP plate.

k, kp (m, n)
(N/m?) (N/m)

1D 1,3) (3,3) (3,5)
0 500,000 539.172 1322.491 1918.327 2993.348
500,000 0 169.563 619.106 1100.251 2069.597
500,000 500,000 551.983 1327.766 1921.967 2995.682

with the enlargements of the elastic foundation parameters. It is no-
ticed that k;,, which is the Pasternak shear layer foundation stiffness, has
greater impact on the natural frequencies of the plate than k,,, which is
the Winkler foundation mudulus.

5.2. Nonlinear dynamic responses

To explore the influences of the damping ratio, thermal varia-
tion, external excitation, elastic foundation, porosity, GPL weight frac-
tion and GPL dimensions on the nonlinear dynamic responses of the
GPL-SFGP plate, the fourth-order Runge-Kutta method is employed
to solve Eq. (64). The initial conditions are assumed to be W (0) =
0, dW(0)/dt = 0. A negative value of the thermal expansion coefficient
of the plate is adopted for the rising temperature from the basic temper-
ature (T =300K). The Winkler—Pasternak elastic foundation coefficients
are k,, = 1 X 10°N/m?, k, = 1 x 10°N/m.
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Fig. 3 shows the effect of damping ratio on the nonlinear dynamic
response of the initially perfect GPL-SFGP plate. Five sets of damping
ratios are considered with ¢ =[0, 0.1, 0.2, 0.3, 0.4]. To enhance the vi-
sualization on the difference between the five curves, a zoomed-in view
of Fig. 3(a) is showed in Fig. 3(b). It is discovered that the nonlinear
dynamic response of the plate decreases when the damping ratio is in-
creased.

Fig. 4 illustrates the effect of thermal variation on the nonlinear dy-
namic response of the initially perfect GPL-SFGP plate. Fig. 4(b) is the
zoom-in of Fig. 4(a). Five cases, namely AT= [0°C, 20°C, 40°C, 60°C,
80°C], are considered. It should be noticed that the increase of the mag-
nitude of the temperature increment reduces the amplitude of vibration
of the plate. One possible reason for such phenomenon is that the rise of
temperature counteracts the effects of the oppositely applied compres-
sive loading on the plate.

Fig. 5(a) and (b) demonstrate the impact of the magnitudes and
the frequencies of the external excitation on the nonlinear dynamic
response of the GPL-SFGP plate, respectively. For the same frequency
of the excitation, the amplitude of the plate grows significantly with
the increasing of magnitude of the external excitation, but the pe-
riod of vibration almost remains the same. However, as shown in
Fig. 5(b), the variation of the frequency of the external excitation influ-
ences both the periods and amplitudes of the nonlinear response of the
plate.

Fig. 6 illustrates the impact of the Winkler—Pasternak foundation
coefficients, k,, and k,, on the nonlinear dynamic response of the
GPL-SFGP plate. A zoomed-in view of Fig. 6(a) is presented in Fig. 6(b).
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Fig. 5. Influence of (a) the magnitude and (b) the frequency of the external excitation on the nonlinear dynamic response of the GPL-SFGP plate.
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Fig. 6. (a) Influence of the Winkler-Pasternak foundation on the nonlinear dynamic response of the GPL-SFGP plate; (b) Zoomed-in view of (a).
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From Fig. 6, it is demonstrated that the amplitudes of the nonlinear
dynamic response of the plate reduce due to the existence of the elastic
foundation. In addition, the benefit provided by the Pasternak shear
layer foundation stiffness, k,, is more prominent than the Winkler
foundation modulus, k.
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Fig. 7. (a) Influence of the porosity of the nonlinear dynamic response of the GPL-SFGP plate; (b) Zoomed-in view of Figure 7 (a).

The nonlinear dynamic response of the GPL-SFGP plate with various
porosities (i.e., ey =[0, 0.1, 0.2, 0.3, 0.4, 0.5]) are investigated and, the
corresponding results are reported in Fig. 7. Fig. 7(b) is the zoom-in of
Fig. 7(a). It is discovered that the amplitude of the transverse deflection
of the GPL-SFGP plate increases with the rise of the porosity of the plate.
The porosity of the plate is a key parameter which balances the weight
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Fig. 8. (a) Influence of the GPL weight fraction on the nonlinear dynamic response of the GPL- SFGP plate; (b) Zoomed-in view of Figure 8 (a).
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Fig. 9. (a) Influence of r;,, on the nonlinear dynamic response of the GPL- SFGP plate; (b) Zoomed-in view of Figure 9 (a); (c) Influence of r;,, on the nonlinear

dynamic response of the GPL- SFGP plate; (d) Zoomed-in view of Figure 9 (c).

and stiffness of the plate. That is, increasing the porosity of the plate
would reduce the capacity of itself against external excitation.

Fig. 8 illustrates the effect of various GPL weight fractions on the
nonlinear dynamic response of the GPL-SFGP plate. Five different GPL
weight fractions, which are from 0% to 1% with an increment of 0.25%,
are considered. A zoomed-in view of Fig. 8(a) is presented in Fig. 8(b).
Clearly, the addition of the GPL reduces the vibration of the GPL-SFGP
plate due to the enhancement of the overall structural stiffness.
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The effect of the dimension of the GPLs on the nonlinear dynamic
response of the GPL- SFGP plate is indicated in Fig. 9. As clearly demon-
strated in Fig. 9(a) and (b), for the same width of the GPLs, the in-
crease of the length-to-thick ratio of the GPL (i.e., r;;, = lgpr/tGpL)
can effectively reduce the amplitude of the vibration. However, when
the length-to-thick ratio is larger than 103, no further reduction of the
vibration of the GPL-SFGP plate can be observed in Fig. 9(b). There-
fore, r))y =lgpr/topL = 10 is a threshold for the dimension of GPL that
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Fig. 11. (a) Deflections of the GPL-SFGP plate with various damping ratios; (b) Buckling loads of the GPL-SFGP plate with various damping ratios.

can be inserted for reducing the vibrational amplitude of the GPL-SFGP
plate.

Moreover, as evidently illustrated in Fig. 9(c) and (d), for the same
thickness of the GPLs, the increase of the length-to-width ratio of the
GPL (i.e., 7/, = lgpL/Wgpy) leads to the increase of the amplitude of
the vibration of the plate. This is due to the reduction of the surface area
of the GPL when r,,, is increased.

5.3. Dynamic buckling analysis

In this subsection, the effects of the compressive loading velocity,
damping ratio, temperature variation, initial imperfection, Winkler—
Pasternak elastic foundation, porosity, GPL weight fraction, length-to-
thickness ratio of the GPL, and length-to-width ratio of the GPL acting
on the dynamic buckling behavior of the plate are thoroughly investi-
gated. For a GPL-SFGP plate subjected to a compressive loading velocity,
Eq. (71) is solved by the fourth-order Runge-Kutta method to investi-
gate the nonlinear dynamic stability. The initial conditions are assumed
to be W(0) = W, dd—V:/(O) = 0. The Winkler-Pasternak elastic foundation
coefficients are k,, = 5x 10°N/m?, k, = 5 x 10*N/m.

Fig. 10(a) and (b) demonstrate the effect of the compressive load-
ing velocity on the deflection and buckling load of the plate, re-
spectively. With three different compressive loading velocities, namely
v=0.001m/s, 0.002m/s, 0.003m/s, the corresponding longitudinal end
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shortening of the plate can be obtained. As shown in Fig. 10(a), there
are three distinct phases of the dynamic buckling curves, namely the
slight fluctuation, the fast growth, and the eventual oscillation. With
the increase of the compressive loading velocity, the slight fluctuation
phase shortens significantly. Fig. 10(b) indicates that a higher velocity
generally leads to a higher buckling load of the plate but with shorter
reaching time.

The effect of the damping ratio on the dynamic buckling of the GPL-
SFGP plate is presented in Fig. 11(a) and (b). The existence of damping
ratio weakens the fluctuation of the plate while increasing the buckling
load. Since the damped vibration is a process which depletes the sys-
tem energy, so the increase of the damping ratio would accelerate the
vibration attenuation.

Fig. 12(a) and (b) demonstrate the effect of the temperature vari-
ation on the dynamic buckling of the GPL-SFGP plate. Evidently, the
enlargement of the temperature increment lengthens the slight fluctua-
tion phase. However, the buckling load of the plate increases with the
growth of the temperature increment.

The influence of the initial imperfection on the nonlinear dynamic
buckling of the GPL-SFGP plate is indicated in the Fig. 13(a) and (b).
Three sets of initial imperfection, namely W,=0.1h, 0.01h, 0.001h, are
selected in this study. It is noted that the increase of the initial imper-
fection shortens the slight fluctuation phase and reduces the buckling
load of the plate.
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Fig. 13. (a) Deflections of the GPL-SFGP plate with various initial imperfections; (b) Buckling loads of the GPL-SFGP plate with various initial imperfections.

Fig. 14(a) and (b) illustrate the effect of various Winkler-Pasternak
elastic foundation coefficients on the dynamic buckling of the plate.
Clearly, the deflection of the plate decreases due to the existence of the
Winkler-Pasternak elastic foundation, while the increase of the elastic
foundation coefficients leads to the rise of the buckling load. The Paster-
nak coefficient is more pronounced than the Winkler one in terms of the
impacts on the deflection as well as the buckling load, since the resis-
tance provided by the Pasternak shear layer stiffness limits the lateral
deflection of the plate.

The impact of different porosities of the porous core on the dynamic
buckling of the plate are reported in Fig. 15(a) and (b). The larger value
of the porosity means less metal matrix content, which results in the
decrease of the density as well as the stiffness of the GPL-SFGP plate.
Obviously, the increase of the porosity of the core prolongs the slight
fluctuation phase of the plate. Also, in terms of the corresponding buck-
ling loading showed in Fig. 15(b), the higher porosity of the GPL-SFGP
plate, the smaller buckling load can be obtained.

The influence of various weight fractions of the GPL reinforcement
on the dynamic buckling of the GPL-SFGP plate is illustrated in Fig. 16(a)
and (b). It can be observed that increasing the weight percentage of
the GPL within the GPL-SFGP plate results in the growth of the buck-
ling load. Therefore, the buckling load of the plate can be increased by
adding more GPLs into the porous core of the plate.

The influence of the dimensions of GPLs on the dynamic buckling be-
havior of the GPL- SFGP plate is indicated in Fig. 17. From Fig. 17(a) and
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(b), for the same width of GPLs, when the length-to-thick ratio of GPLs
1. increases, the buckling load of the plate rises significantly. However,
when the value of ry, is larger than 103, the growth of the ry, has no
effect on the buckling load of the plate. Obviously, r;,, =10% provides a
threshold for the enhancement effect of the dimension of the GPLs on the
dynamic stability of the plate. In terms of the impact of length-to-width
ratio of the GPLs, as showed in Fig. 17(c) and (d), for the same thickness
of the GPL, the higher value of r;,,, the smaller dynamic buckling load
can be gained.

6. Conclusion

This paper investigates the dynamic stability of a GPL-SFGP plate
based on the classical plate theory by using an analytical approach. The
Winkler-Pasternak elastic foundation, thermal and damping effects are
taken into consideration during the analysis. In addition, some numeri-
cal simulations are presented to further explore the impacts of damping
ratios, temperature increments, compressive loading velocities, the ini-
tial imperfections, elastic foundation parameters, porosities, GPL weight
fractions and dimensions of GPLs. Some conclusions can be drawn from
the presented analysis:

1. The damping ratio of the structure leads to slight decrease of the
dynamic response and the dynamic buckling load of the plate due to
the energy depletion.
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Fig. 17. (a) Deflections of the GPL-SFGP plate with various ry,,; (b) Buckling loads of the GPL-SFGP plate with various ry,,; (c) Deflections of the GPL-SFGP plate with
various ry,,,; (d) Buckling loads of the GPL-SFGP plate with various r;,,.

. The initial imperfection of the plate causes the shortening of the

slight fluctuation phase and the reduction of buckling load of the
plate.

. The temperature increment leads to a higher axial compressive stress

when the edges of the plate are immovable. The rise of the envi-
ronment temperature increment can depress the vibration of the
plate, while increase the buckling load of the plate to some ex-
tent.

. It is demonstrated that the supporting of the elastic foundation

has beneficial effect on the nonlinear dynamic response of the
plate. With the increase of the parameters of the Winkler-Pasternak
foundation, the deflection of the plate can be decreased while
the buckling load can be increased. It is noticed that the im-
pact of the Pasternak shear layer stiffness is more significant
than the Winkler one, which is demonstrated in both the nonlin-
ear dynamic response and the dynamic buckling analyses of the
plate.

. The increase of the porosity of the porous core results in the reduc-

tion of the buckling load of the plate since both the stiffness and
density of plate decrease.

. The presence of the GPL reinforcement tends to increase the buckling

load of the plate due to the improvement of the stiffness of the plate.
However, such improvement is limited by a threshold value of 103
for the length-to-thickness ratio of GPLs.
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