
International Journal of Mechanical Sciences 148 (2018) 596–610 

Contents lists available at ScienceDirect 

International Journal of Mechanical Sciences 

journal homepage: www.elsevier.com/locate/ijmecsci 

Nonlinear vibration and dynamic buckling analyses of sandwich 

functionally graded porous plate with graphene platelet reinforcement 
resting on Winkler–Pasternak elastic foundation 

Qingya Li, Di Wu 

∗ , Xiaojun Chen, Lei Liu, Yuguo Yu, Wei Gao 

∗ 

Centre for Infrastructure Engineering and Safety (CIES), School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, 

Australia 

a r t i c l e i n f o 

Keywords: 

Sandwich functionally graded porous plate 
Graphene platelet reinforcements 
Nonlinear dynamic response 
Dynamic buckling 
Nonlinear dynamics 

a b s t r a c t 

The nonlinear vibration and the dynamic buckling of a graphene platelet reinforced sandwich functionally graded 
porous (GPL-SFGP) plate are thoroughly investigated in this paper. The investigated GPL-SFGP plate consists of 
two metal face layers and a functionally graded porous core with graphene platelet reinforcement. The effects 
of the Winkler–Pasternak elastic foundation, thermal environment and damping are incorporated. The open-cell 
metal foam model is implemented to model the mechanical properties of the porous core. Axial compressive 
stress is applied on the GPL-SFGP plate by exerting various compressive loading speeds at one edge of the plate. 
Grounded on the classical plate theory, both motion and geometric compatibility equations of the plate are 
deduced by introducing the Von Kármán strain-displacement relationship and stress function. Both the Galerkin 
and the fourth-order Runge–Kutta methods are implemented to solve the governing equation of the dynamic 
system. Meticulously designed numerical experiments are conducted to identify the critical influential factors 
of the dynamic stability of the GPL-SFGP plate. The influences of loading speed, damping ratio, temperature 
variation, initial imperfection, elastic foundation parameters, porosity, GPL weight fraction and the dimensions 
of the GPL on the overall dynamic stability of the GPL-SFGP plate are evidently demonstrated. 
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. Introduction 

With the conspicuous advantages of high stiffness and relatively light
eight, sandwich structures are extensively implemented across wide

ange of engineering applications such as aerospace, automotive, con-
truction and biomedical industries [1–9] . Porous materials, such as
etal foam, are prevalently employed as the core of the sandwich struc-

ures due to its excellent properties provided by light weight, heat resis-
ance and energy dissipation reduction [10–15] . The resulting compos-
te structures, known as the sandwich porous structures, are manufac-
ured by connecting two thin face layers with a lightweight porous core
ogether. In general, adopting sandwich porous structures can notice-
bly reduce the mass of the system while ensuring the same level of stiff-
ess. One of the attractive applications for the sandwich porous struc-
ures is the manufacture of the prototype of the high-speed train ( Fig. 1 ).
o fulfill the high demand of the engineering industries, various theo-
etical and experimental researches on the static and dynamic charac-
eristics of the sandwich porous structures have been reported [16–22] .

Due to the existence of internal pores of the porous material, the
tiffness of the structure is decreased when the porosity is increased.
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o improve the performance (i.e., maintaining relatively higher stiff-
ess but with lighter weight) of the porous structures in engineering ap-
lication, nanofillers, such as carbon nanotubes [25–28] and graphene
latelets (GPLs) [29] , have been introduced to reinforce the porous
tructures. GPLs can transfer load in a more efficient way which en-
ances the material strength by improving the bonding with the matrix
30–32] . 

The functionally graded (FG) materials, whose properties vary con-
inuously along one or multiple directions, have demonstrated their su-
eriority over conventional composite materials in many aspects. Ex-
ensive research works have been implemented to study the dynamic
ehaviors of FG material structures. Grounded on the first order shear
eformation theory, Sofiyev and Kuruoglu [33] analyzed the paramet-
ic vibration of simply-supported sandwich cylindrical shell with an FG
ore under combined static and time dependent periodic axial compres-
ive loads. Both uniformly distributed and FG distributed patterns were
onsidered. Yang et al. [34] explored the buckling and the postbuck-
ing behaviors of the GPL reinforced FG multilayer beams supported by
lastic foundation. Various GPL distribution patterns were studied to
btain the optimum reinforcing effect. Sofiyev et al. [35] examined the
tember 2018 
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Fig. 1. (a) The sandwich porous plate; (b) Prototype of high-speed train made of welded aluminum sandwich porous structures [23] ; The high-speed train [24] . 
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s  
ynamic response of the FG coated sandwich cylindrical shell resting on
he Pasternak elastic foundation. The impacts of the shear stresses and
he rotary inertia were considered. 

Combining the FG composites with porous materials provides the
ossibility to optimize the global performance of composite structures.
everal studies have investigated the vibration and bending responses
f the functionally graded porous (FGP) structures. Based on the Timo-
henko beam theory, Chen et al. [36] investigated the free and forced
ibration characteristics of FGP beams with two different porosity dis-
ributions subjected to various loading conditions. Chen et al. [37] also
dopted the Ritz method to study the nonlinear free vibration of shear
eformable sandwich beam with FGP core by taking two non-uniform
G distributions into account. Wu et al. [38] proposed a finite ele-
ent analysis framework to investigate the free and forced vibration

f FGP beam type structures based on the Euler-Bernoulli and Timo-
henko beam theories. By employing the finite element method, Chen
t al. [39] investigated the dynamic response and energy absorption
ehaviors of 2D FGP structures with various porous distribution types.
itipornchai et al. [40] studied the free vibration and the critical buck-

ing load of GPL reinforced FGP beams with the considerations of three
ifferent internal pores and GPL distributions. Chen et al. [41] ex-
lored the nonlinear free vibration and postbuckling characteristics of
he GPL reinforced multilayer FGP nanocomposite beams with vari-
us distribution patterns of both internal pores and GPL nanofillers.
ahmani et al. [42] investigated the size-dependent nonlinear bending
f GPL reinforced FGP micro/nano-beams by employing the nonlocal
train gradient theory of elasticity and the third-order shear deformable
eam theory. Yang et al. [43] employed the first-order shear defor-
ation plate theory and Chebyshev-Ritz method to derive the buck-

ing and free vibration behaviors of FGP nanocomposite plates rein-
orced by GPLs. Grounded on the first-order shear deformation the-
ry, Dong et al. [44] investigated the free vibration behaviors of the
PL reinforced FGP nanocomposite cylindrical shell with considerations
f three types of GPL patterns and four types of the porosity distribu-
ions. 
597 
It is noticed that all aforementioned researches mainly focused on
he free and forced vibration of the structures. In real-life engineer-
ng application, the dynamic buckling analysis is vital to assess the
afety of the structures. Aksogan and Sofiyev [45] investigated the
ynamic buckling of elastic cylindrical shell with various thicknesses.
he shell is subjected to a uniform external pressure as a power func-
ion of time. Deniz and Sofiyev [46] analyzed the nonlinear dynamic
uckling of the FG truncated conical shells which are subjected to a
inear time-dependent axial compressive load. Huang et al. [47] in-
estigated the nonlinear dynamic buckling problem of temperature-
ependent FG composite cylindrical shells subjected to a linearly in-
reased dynamic axial load. By adopting the large deformation theory,
ofiyev [48] explored the dynamic buckling characteristics of the FG
oated conical shells subjected to a time-dependent axial load. Mouhat
nd Abdellatif [49] presented the dynamic buckling analysis of stiff-
ned panels subjected to an in-plane uniform axial compressive loading.
ith the consideration of six different boundary conditions, Azarboni

t al. [50] investigated the nonlinear dynamic buckling of imperfect
ectangular plate subjected to various impulsive loads. Kolahchi et al.
51] conducted the dynamic stability analysis of the single-walled CNTs
einforced polymeric temperature-dependent viscoelastic plates resting
n orthotropic temperature-dependent elastomeric medium. Yang and
ang [52] presented the dynamic buckling of the stiffened plate sub-

ected to an in-plane impact load under elastically restrained boundary
onditions. Sheng et al. [53] proposed a reduction nonlinear model to
nvestigate the dynamic stability and nonlinear vibrations of the stiff-
ned FG cylindrical shell in thermal environment. Hajmohammad et al
54] investigated the dynamic buckling behavior of a laminated vis-
oelastic FG-CNT-reinforced sandwich plates. The core of the plate was
ade of nanocomposite layers integrated with piezoelectric materials

ubjected to an electric field. Gao et al. [55] analyzed the dynamic sta-
ility of a composite orthotropic plate with the consideration of damp-
ng, temperature and the Winkler–Pasternak foundation. Hajmoham-
ad et al [56] conducted the dynamic buckling analysis of viscoelastic

andwich truncated conical shell exposed to moisture, temperature and
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Fig. 2. (a) 3D view and (b) front view of the GPL-SFGP plate resting on the Winkler–Pasternak elastic foundation. 
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agnetic field. Arani et al. [57] presented the dynamic analysis of a
ectangular porous plate subjected to a dynamic transverse load resting
n the Pasternak foundation. Fakhar and Kolahchi [58] conducted the
ynamic buckling analysis of sandwich plates with magnetorheological
uid core and piezoelectric nanocomposite face layers. Magnetic field
nd 3D electric field are applied on the core and the face layers respec-
ively. However, to the best of the authors’ knowledge, no previous in-
estigation has been conducted on the dynamic stability analysis of the
PL-SFGP plate structures with the considerations of various practically
otivated effects. 

This paper presents an analytical approach to study the nonlinear dy-
amic response and buckling analysis of a graphene platelet reinforced
andwich functionally graded porous (GPL-SFGP) plate. To achieve a
ore generalized nonlinear dynamic analysis, the Winkler–Pasternak

lastic foundation, thermal operational environmental, as well as damp-
ng effects are simultaneously incorporated. The dynamic compressive
oad is applied along the longitudinal direction by setting a constant
isplacement rate on one edge of the plate. In addition, an out-plane
niformly distributed pressure is exerted on the plate. The investigated
PL-SFGP plate in the present study possesses the mechanical proper-

ies of open-cell metal foam to obtain the porosity and mass density
oefficients of the porous core. The Von Kármán strain-displacement re-
ationship and the classical plate theory are adopted for the compatibil-
ty formulations. The Galerkin method combined with the fourth-order
unge–Kutta approach are implemented to solve the governing equation
f the dynamic buckling. Furthermore, the influences of imperfections,
hermal variations, external excitations, loading speeds, damping ratios,
lastic foundation parameters, porosities, the GPL weight fractions as
ell as the GPL dimensions on the dynamic stability of the GPL-SFGP
late are evidently explored. 
598 
. Porosity distribution and GPL patterns 

A GPL-SFGP plate resting on the Winkler–Pasternak elastic founda-
ion is defined in a Cartesian coordinate system ( x, y, z ), which is shown
n Fig. 2 . The x - y plane is defined as the middle surface of the plate, and
he z -axis is indicating the thickness direction. The length, width and to-
al thickness of the GPL-SFGP plate are denoted as a, b and h = h c + 2 h f ,
espectively. h c and h f denote the thicknesses of the porous core and the
etal face layer, respectively. The investigated GPL-SFGP plate is as-

umed to be simply supported. The uniformly distributed external pres-
ure is exerted on the plate and an axial compressive loading rate is
pplied on the edge of the plate along the x -direction. 

The location-dependent material properties, which are including the
oung’s modulus ( E ( z )), shear modulus ( G ( z )), mass density ( 𝜌( z )) and
hermal expansion coefficient ( 𝛼( z )) of the porous core, are described
y Eqs. (1) –(4) . 

( 𝑧 ) = 𝐸 1 
[
1 − 𝑒 0 𝜆( 𝑧 ) 

]
(1)

( 𝑧 ) = 

𝐸( 𝑧 ) 
2[1 + 𝜈( 𝑧 )] 

(2)

( 𝑧 ) = 𝜌1 
[
1 − 𝑒 𝑚 𝜆( 𝑧 ) 

]
(3)

( 𝑧 ) = 𝛼1 
[
1 − 𝑒 𝑚 𝜆( 𝑧 ) 

]
(4)

here 

( 𝑧 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
cos ( 𝜋𝑧 

ℎ 
) non-uniform symmetric porosity distribution 

cos ( 𝜋𝑧 2 ℎ + 

𝜋

4 ) non-uniform asymmetric porosity distribution 

𝜆 uniform distribution 

(5) 
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 0 denotes the coefficient of porosity which is defined by 

 0 = 1 − 

𝐸 2 
𝐸 1 

(6)

here E 1 and E 2 denote the maximum and minimum Young’s modu-
us of the non-uniformly distributed porous material, respectively [34] .
 m 

represents the mass density coefficient. By introducing the typical
echanical property of the open-cell metal foam [31] , the relationship

etween e 0 and e m 

can be expressed as 

 𝑚 = 1 − 

√
1 − 𝑒 0 (7)

For a uniform porous distribution, the coefficient 𝜆 can be deter-
ined as 

= 

1 
𝑒 0 

− 

1 
𝑒 0 

( 2 
𝜋

√
1 − 𝑒 0 − 

2 
𝜋
+ 1 
)2 

(8)

The relationship between the volume and weight fractions is given
y 

ΛGPL 

ΛGPL + 

𝜌GPL 

𝜌𝑀 
− 

𝜌GPL 

𝜌𝑀 
ΛGPL 

×∫
ℎ ∕2 

− ℎ ∕2 

[
1 − 𝑒 𝑚 𝜆( 𝑧 ) 

]
dz = ∫

ℎ ∕2 

− ℎ ∕2 
𝑉 GPL 

[
1 − 𝑒 𝑚 𝜆( 𝑧 ) 

]
dz 

(9) 

here V GPL and ΛGPL denote the volume and weight fractions of the GPL
anofillers, respectively. 

According to the Halpin-Tsai micromechanics model [59–61] , the
lastic modulus of the porous core can be obtained as 

 1 = 

3 
8 

( 

1 + 𝜉𝐺𝑃𝐿 
𝐿 

𝜂𝐺𝑃𝐿 
𝐿 

𝑉 𝐺𝑃𝐿 

1 − 𝜂𝐺𝑃𝐿 
𝐿 

𝑉 𝐺𝑃𝐿 

) 

𝐸 𝑀 

+ 

5 
8 

( 

1 + 𝜉𝐺𝑃𝐿 
𝑊 

𝜂𝐺𝑃𝐿 
𝑊 

𝑉 𝐺𝑃𝐿 

1 − 𝜂𝐺𝑃𝐿 
𝑊 

𝑉 𝐺𝑃𝐿 

) 

𝐸 𝑀 

(10)

n which 

𝐺𝑃𝐿 
𝐿 

= 

2 𝑙 𝐺𝑃𝐿 
𝑡 𝐺𝑃𝐿 

(11) 

𝐺𝑃𝐿 
𝑊 

= 

2 𝑤 𝐺𝑃𝐿 

𝑡 𝐺𝑃𝐿 
(12) 

𝐺𝑃𝐿 
𝐿 

= 

( 𝐸 𝐺𝑃𝐿 ∕ 𝐸 𝑀 

) − 1 
( 𝐸 𝐺𝑃𝐿 ∕ 𝐸 𝑀 

) + 𝜉𝐺𝑃𝐿 
𝐿 

(13) 

𝐺𝑃𝐿 
𝑊 

= 

( 𝐸 𝐺𝑃𝐿 ∕ 𝐸 𝑀 

) − 1 
( 𝐸 𝐺𝑃𝐿 ∕ 𝐸 𝑀 

) + 𝜉𝐺𝑃𝐿 
𝑊 

(14) 

here l GPL , w GPL and t GPL represent the average length, width and thick-
ess of the GPLs, respectively. 

By applying the rule of mixture, the mass density 𝜌1 , the Poisson’s
atio 𝜈1 and the thermal expansion coefficient 𝛼1 of the GPL reinforced
etal porous core can be calculated as 

1 = 𝜌𝐺𝑃𝐿 𝑉 𝐺𝑃𝐿 + 𝜌𝑀 

𝑉 𝑀 

(15)

1 = 𝜈𝐺𝑃𝐿 𝑉 𝐺𝑃𝐿 + 𝜈𝑀 

𝑉 𝑀 

(16)

1 = 

𝑉 𝐺𝑃𝐿 𝐸 𝐺𝑃𝐿 𝛼𝐺𝑃𝐿 + 𝑉 𝑀 

𝐸 𝑀 

𝛼𝑀 

𝑉 𝐺𝑃𝐿 𝐸 𝐺𝑃𝐿 + 𝑉 𝑀 

𝐸 𝑀 

(17) 

here 𝜌GPL , 𝜌M 

, 𝜈GPL and 𝜈M 

denote the densities of the GPLs and metal
atrix, and the Poisson’s ratios of the GPL and metal matrix, respec-

ively. V M 

represents the volume fraction of the matrix, which is related
o the volume fraction of the GPLs as: 
 𝑀 

= 1 − 𝑉 𝐺𝑃𝐿 (18) ⎩
599 
. The fundamental formulations 

From the classical laminated plate theory, the Von Kármán strain-
isplacement relationship bears the form 

 

 

 

 

𝜀 𝑥 
𝜀 𝑦 
𝛾𝑥𝑦 

⎞ ⎟ ⎟ ⎠ = 

⎛ ⎜ ⎜ ⎝ 
𝜀 0 
𝑥 

𝜀 0 
𝑦 

𝛾0 
𝑥𝑦 

⎞ ⎟ ⎟ ⎠ + 𝑧 

⎛ ⎜ ⎜ ⎝ 
𝜀 1 
𝑥 

𝜀 1 
𝑦 

𝛾1 
𝑥𝑦 

⎞ ⎟ ⎟ ⎠ (19)

here 

𝜀 0 
}
= 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 
(0) 
𝑥 

𝜀 
(0) 
𝑦 

𝛾
(0) 
𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝜕𝑢 

𝜕𝑥 
+ 

1 
2 

(
𝜕𝑤 

𝜕𝑥 

)2 
𝜕𝑣 

𝜕𝑦 
+ 

1 
2 

(
𝜕𝑤 

𝜕𝑦 

)2 
𝜕𝑢 

𝜕𝑦 
+ 

𝜕𝑣 

𝜕𝑥 
+ 

𝜕𝑤 

𝜕𝑥 

𝜕𝑤 

𝜕𝑦 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(20) 

𝜀 1 
}
= 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 1 
𝑥 

𝜀 1 
𝑦 

𝛾1 
𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
− 

𝜕 2 𝑤 
𝜕 𝑥 2 

− 

𝜕 2 𝑤 
𝜕 𝑦 2 

−2 𝜕 
2 𝑤 
𝜕 𝑥𝜕 𝑦 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(21) 

here u and v represent the displacement components along the x- and
 -directions, respectively. 

Based on the Hooke’s law, the stress-strain relationships of the face
ayer and the porous core of the GPL-SFGP plate under a uniform ther-
al environment can be defined as 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎𝑥 
𝜎𝑦 

𝜎xy 

⎫ ⎪ ⎬ ⎪ ⎭ 𝑓 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑄 11 𝑄 12 0 

𝑄 12 𝑄 22 0 

0 0 𝑄 66 

⎤ ⎥ ⎥ ⎥ ⎦ 
𝑓 

⎧ ⎪ ⎨ ⎪ ⎩ 
(
𝜀 𝑥 
)
𝑓 
− 𝜀 𝑇 

𝑥 (
𝜀 𝑦 
)
𝑓 
− 𝜀 𝑇 

𝑦 (
𝛾xy 

)
𝑓 

⎫ ⎪ ⎬ ⎪ ⎭ and 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎𝑥 

𝜎𝑦 

𝜎xy 

⎫ ⎪ ⎬ ⎪ ⎭ 
𝑐 

= 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑄 11 𝑄 12 0 

𝑄 12 𝑄 22 0 

0 0 𝑄 66 

⎤ ⎥ ⎥ ⎥ ⎦ 
𝑐 

⎧ ⎪ ⎨ ⎪ ⎩ 
(
𝜀 𝑥 
)
𝑐 
− 𝜀 𝑇 

𝑥 (
𝜀 𝑦 
)
𝑐 
− 𝜀 𝑇 

𝑦 (
𝛾xy 

)
𝑐 

⎫ ⎪ ⎬ ⎪ ⎭ (22) 

espectively. Moreover, the thermal strains are defined by 

 

𝜀 𝑇 
𝑥 
= 𝛼𝑥 Δ𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 

𝜀 𝑇 
𝑦 
= 𝛼𝑦 Δ𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 

(23) 

here 𝛼x and 𝛼y are the thermal expansion coefficients along the x - and
 -directions, respectively. The subscripts f and c denote the face layers
nd porous core layer, respectively. The coefficients Q ij ( i,j = 1, 2, 6) for
he face layers and the porous core are given by 

 

 

 

 

 

 

 

 

 

(
𝑄 11 
)
𝑓 
= 

𝐸 𝑓 

1− 𝜈2 
𝑓 (

𝑄 12 
)
𝑓 
= 

𝜈𝑓 𝐸 𝑓 

1− 𝜈2 
𝑓 (

𝑄 22 
)
𝑓 
= 

𝐸 𝑓 

1− 𝜈2 
𝑓 (

𝑄 66 
)
𝑓 
= 

𝐸 𝑓 

2 
(
1+ 𝜈𝑓 

)
(24) 

 

 

 

 

 

 

 

( 𝑄 11 ) 𝑐 = 

𝐸( 𝑧 ) 
1− 𝜈( 𝑧 ) 2 

( 𝑄 12 ) 𝑐 = 

𝜈( 𝑧 ) 𝐸( 𝑧 ) 
1− 𝜈( 𝑧 ) 2 

( 𝑄 22 ) 𝑐 = 

𝐸( 𝑧 ) 
1− 𝜈( 𝑧 ) 2 

( 𝑄 66 ) 𝑐 = 

𝐸( 𝑧 ) 
2 [ 1+ 𝜈( 𝑧 ) ] 

(25) 

here E f and 𝜈f represent the Young’s modulus and Poisson’s ratios of
he face layer, respectively. 

The in-plane force and the moment resultants of the GPL-SFGP plate
re calculated by 

 

 

 

 

 

𝑁 𝑖 = ∫ ℎ 𝑓 + 
ℎ 𝑐 

2 
ℎ 𝑐 

2 

( 𝜎𝑖 ) 𝑓 𝑑𝑧 + ∫
ℎ 𝑐 

2 

− ℎ 𝑐 2 
( 𝜎𝑖 ) 𝑐 𝑑𝑧 + ∫ − ℎ 𝑐 2 

−( ℎ 𝑓 + 
ℎ 𝑐 

2 ) 
( 𝜎𝑖 ) 𝑓 𝑑𝑧 

𝑀 𝑖 = ∫ ℎ 𝑓 + 
ℎ 𝑐 

2 
ℎ 𝑐 

2 

( 𝜎𝑖 ⋅ 𝑧 ) 𝑓 𝑑𝑧 + ∫
ℎ 𝑐 

2 

− ℎ 𝑐 2 
( 𝜎𝑖 ⋅ 𝑧 ) 𝑐 𝑑𝑧 + ∫ − ℎ 𝑐 2 

−( ℎ 𝑓 + 
ℎ 𝑐 

2 ) 
( 𝜎𝑖 ⋅ 𝑧 ) 𝑓 𝑑𝑧 

𝑖 = 𝑥, 𝑦, 𝑥𝑦 (26)
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) 
Substituting Eqs. (19) –(25) into Eq. (26) , the force and the moment
esultants can be formulated as 

 

 

 

 

 

 

 

 

𝑁 𝑥 

𝑁 𝑦 

𝑁 𝑥𝑦 

𝑀 𝑥 

𝑀 𝑦 

𝑀 𝑥𝑦 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐴 11 𝐴 12 0 𝐵 11 𝐵 12 0 
𝐴 12 𝐴 22 0 𝐵 12 𝐵 22 0 
0 0 𝐴 66 0 0 𝐵 66 
𝐵 11 𝐵 12 0 𝐷 11 𝐷 12 0 
𝐵 12 𝐵 22 0 𝐷 12 𝐷 22 0 
0 0 𝐵 66 0 0 𝐷 66 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜀 0 
𝑥 
− 𝜀 𝑇 

𝑥 

𝜀 0 
𝑦 
− 𝜀 𝑇 

𝑦 

𝛾0 
𝑥𝑦 

𝜀 1 
𝑥 

𝜀 1 
𝑦 

𝛾1 
𝑥𝑦 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(27)

here 

𝐴 𝑖𝑗 , 𝐵 𝑖𝑗 , 𝐷 𝑖𝑗 

}
= ∫

ℎ 𝑓 + 
ℎ 𝑐 
2 

ℎ 𝑐 
2 

( 𝑄 𝑖𝑗 ) 𝑓 
{
1 , 𝑧, 𝑧 2 

}
𝑑𝑧 + ∫

ℎ 𝑐 
2 

− ℎ 𝑐 2 

( 𝑄 𝑖𝑗 ) 𝑐 
{
1 , 𝑧, 𝑧 2 

}
𝑑𝑧 

+ ∫
− ℎ 𝑐 2 

−( ℎ 𝑓 + 
ℎ 𝑐 
2 ) 

( 𝑄 𝑖𝑗 ) 𝑓 
{
1 , 𝑧, 𝑧 2 

}
𝑑𝑧 

𝑖, 𝑗 = 1 , 2 , 6 (28)

From the classical plate theory, the nonlinear equilibrium equation
f the GPL-SFGP plate resting on the Winkler–Pasternak elastic foun-
ation with the consideration of damping effects can be formulated as

𝜕 𝑁 𝑥 

𝜕𝑥 
+ 

𝜕 𝑁 𝑦𝑥 

𝜕𝑦 
= 𝜌ℎ 

𝜕 2 𝑢 

𝜕 𝑡 2 
+ C 𝑑 𝜌ℎ 

𝜕𝑢 

𝜕𝑡 
(29)

𝜕 𝑁 𝑥𝑦 

𝜕𝑥 
+ 

𝜕 𝑁 𝑦 

𝜕𝑦 
= 𝜌ℎ 

𝜕 2 𝑣 

𝜕 𝑡 2 
+ C 𝑑 𝜌ℎ 

𝜕𝑣 

𝜕𝑡 
(30)

𝜕 2 𝑀 𝑥 

𝜕𝑥 2 
+ 2 
𝜕 2 𝑀 xy 

𝜕 𝑥𝜕 𝑦 
+ 

𝜕 2 𝑀 𝑦 

𝜕𝑦 2 
+ 𝑁 𝑥 

𝜕 2 𝑤 

𝜕𝑥 2 
+ 2 𝑁 xy 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 

+ 𝑁 𝑦 

𝜕 2 𝑤 

𝜕𝑦 2 
+ 𝑞 − 𝑘 𝑤 𝑤 + 𝑘 𝑝 

( 
𝜕 2 𝑤 

𝜕𝑥 2 
+ 

𝜕 2 𝑤 

𝜕𝑦 2 

) 
=𝜌ℎ 𝜕 

2 𝑤 

𝜕𝑡 2 
+ C 𝑑 𝜌ℎ 

𝜕𝜔 

𝜕𝑡 

(31)

here C d represents the viscous damping coefficient; k w denotes the
inkler foundation modulus and k p denotes the shear layer foundation

tiffness of the Pasternak model; q represents the uniformly distributed
xternal pressure applied on the plate. In this study, it is assumed that
he flexural motion dominates the overall structural deformation, i.e.,

 ≪ w , and v ≪ w , so 𝜕 
2 𝑢 
𝜕 𝑡 2 

, 𝜕𝑢 
𝜕𝑡 

, 𝜕 
2 𝑣 
𝜕 𝑡 2 

, and 𝜕𝑣 
𝜕𝑡 

are negligible. According to
qs. (27) –(31) , the stress function f ( x, y ) can be defined by 

 𝑥 = 

𝜕 2 𝑓 

𝜕 𝑥 2 
, 𝑁 𝑦 = 

𝜕 2 𝑓 

𝜕 𝑦 2 
, 𝑁 𝑥𝑦 = − 

𝜕 2 𝑓 

𝜕 𝑥𝜕 𝑦 
(32)

By considering the initial imperfection, the geometric compatibility
quation for the GPL-SFGP plate can be formulated as 

𝜕 2 𝜀 0 
𝑥 

𝜕𝑦 2 
+ 

𝜕 2 𝜀 0 
𝑦 

𝜕𝑥 2 
− 

𝜕 2 𝛾0 xy 

𝜕 𝑥𝜕 𝑦 

 

( 
𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 

) 2 
− 

𝜕 2 𝑤 

𝜕𝑥 2 
𝜕 2 𝑤 

𝜕𝑦 2 
+ 2 𝜕 

2 𝑤 

𝜕 𝑥𝜕 𝑦 

𝜕 2 𝑤 

∗ 

𝜕 𝑥𝜕 𝑦 
− 

𝜕 2 𝑤 

𝜕𝑥 2 
𝜕 2 𝑤 

∗ 

𝜕𝑦 2 
− 

𝜕 2 𝑤 

𝜕𝑦 2 
𝜕 2 𝑤 

∗ 

𝜕𝑥 2 
(33)

here w 

∗ ( x, y ) is a function which represents the initial imperfection of
he plate. 

From Eq. (27) , the membrane strains can be rewritten as 

 

 

 

 

 

𝜀 0 
𝑥 
= 𝐴 ∗ 11 𝑁 𝑥 + 𝐴 ∗ 12 𝑁 𝑦 + 𝐴 ∗ 13 𝜀 

1 
𝑥 
+ 𝐴 ∗ 14 𝜀 

1 
𝑦 
+ 𝜀 𝑇 

𝑥 

𝜀 0 
𝑦 
= 𝐴 ∗ 12 𝑁 𝑥 + 𝐴 ∗ 22 𝑁 𝑦 + 𝐴 ∗ 23 𝜀 

1 
𝑥 
+ 𝐴 ∗ 24 𝜀 

1 
𝑦 
+ 𝜀 𝑇 

𝑦 

𝛾0 
𝑥𝑦 

= 𝐴 ∗ 31 𝑁 𝑥𝑦 + 𝐴 ∗ 32 𝛾
1 
𝑥𝑦 

(34)

ith 

 

∗ 
11 = 

𝐴 22 

𝐴 11 𝐴 22 − 𝐴 12 
2 (35)
600 
 

∗ 
12 = − 

𝐴 12 

𝐴 11 𝐴 22 − 𝐴 12 
2 (36)

 

∗ 
13 = 

𝐴 12 𝐵 12 − 𝐴 22 𝐵 11 

𝐴 11 𝐴 22 − 𝐴 12 
2 (37)

 

∗ 
14 = 

𝐴 12 𝐵 22 − 𝐴 22 𝐵 12 

𝐴 11 𝐴 22 − 𝐴 12 
2 (38)

 

∗ 
22 = 

𝐴 11 

𝐴 11 𝐴 22 − 𝐴 12 
2 (39)

 

∗ 
23 = 

𝐴 12 𝐵 11 − 𝐴 11 𝐵 12 

𝐴 11 𝐴 22 − 𝐴 12 
2 (40)

 

∗ 
24 = 

𝐴 12 𝐵 12 − 𝐴 11 𝐵 22 

𝐴 11 𝐴 22 − 𝐴 12 
2 (41)

 

∗ 
31 = 

1 
𝐴 66 

(42)

 

∗ 
32 = − 

𝐵 66 
𝐴 66 

(43)

By substituting Eq. (34) into Eq. (33) , for the environment with uni-
orm temperature variations, the nonlinear compatibility equation of the
PL-SFGP plate with initial imperfection can be obtained as: 

 

∗ 
22 
𝜕 4 𝑓 

𝜕 𝑥 4 
+ 𝐴 ∗ 11 

𝜕 4 𝑓 

𝜕 𝑦 4 
+ 

(
2 𝐴 ∗ 12 + 𝐴 ∗ 31 

) 𝜕 4 𝑓 

𝜕 𝑥 2 𝜕 𝑦 2 

− 𝐴 ∗ 23 
𝜕 4 𝑤 

𝜕 𝑥 4 
− 𝐴 ∗ 14 

𝜕 4 𝑤 

𝜕 𝑦 4 
+ 

(
2 𝐴 ∗ 32 − 𝐴 ∗ 13 − 𝐴 ∗ 24 

) 𝜕 4 𝑤 

𝜕 𝑥 2 𝜕 𝑦 2 

 

( 
𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 

) 2 
− 

𝜕 2 𝑤 

𝜕 𝑥 2 
𝜕 2 𝑤 

𝜕 𝑦 2 
+ 2 𝜕 

2 𝑤 

𝜕 𝑥𝜕 𝑦 

𝜕 2 𝑤 

∗ 

𝜕 𝑥𝜕 𝑦 
− 

𝜕 2 𝑤 

𝜕 𝑥 2 
𝜕 2 𝑤 

∗ 

𝜕 𝑦 2 
− 

𝜕 2 𝑤 

𝜕 𝑦 2 
𝜕 2 𝑤 

∗ 

𝜕 𝑥 2 
(44) 

By substituting Eq. (34) into Eq. (27) , and then substitute the resul-
ant into Eq. (31) , the equation of motion of the GPL-SFGP plate can be
eformulated as: 

 11 
𝜕 4 𝑓 

𝜕 𝑥 4 
+ 𝑇 12 

𝜕 4 𝑓 

𝜕 𝑦 4 
+ 𝑇 13 

𝜕 4 𝑓 

𝜕 𝑥 2 𝜕 𝑦 2 
+ 𝑇 14 

𝜕 4 𝑤 

𝜕 𝑥 4 

+ 𝑇 15 
𝜕 4 𝑤 

𝜕 𝑦 4 
+ 𝑇 16 

𝜕 4 𝑤 

𝜕 𝑥 2 𝜕 𝑦 2 
+ 

𝜕 2 𝑓 

𝜕 𝑦 2 
𝜕 2 𝑤 

𝜕 𝑥 2 
− 2 𝜕 

2 𝑓 

𝜕 𝑥𝜕 𝑦 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 

+ 

𝜕 2 𝑓 

𝜕 𝑥 2 
𝜕 2 𝑤 

𝜕 𝑦 2 
+𝑞 − 𝑘 𝑤 𝑤 + 𝑘 𝑝 

( 
𝜕 2 𝑤 

𝜕 𝑥 2 
+ 

𝜕 2 𝑤 

𝜕 𝑦 2 

) 
= 𝜌ℎ 

𝜕 2 𝑤 

𝜕 𝑡 2 
+ C 𝑑 𝜌ℎ 

𝜕𝑤 

𝜕𝑡 
(45) 

ith 

𝑇 11 = 𝐵 11 𝐴 
∗ 
12 + 𝐵 12 𝐴 

∗ 
22 

𝑇 12 = 𝐵 12 𝐴 
∗ 
11 + 𝐵 22 𝐴 

∗ 
12 

𝑇 13 = 𝐵 11 𝐴 
∗ 
11 + 2 𝐵 12 𝐴 ∗ 12 − 2 𝐵 66 𝐴 ∗ 31 + 𝐵 22 𝐴 

∗ 
22 

𝑇 14 = − ( 𝐵 11 𝐴 ∗ 13 + 𝐵 12 𝐴 
∗ 
23 + 𝐷 11 ) 

𝑇 15 = − ( 𝐵 12 𝐴 ∗ 14 + 𝐵 22 𝐴 
∗ 
24 + 𝐷 22 ) 

𝑇 16 = − ( 𝐵 11 𝐴 ∗ 14 + 𝐵 12 𝐴 
∗ 
24 + 2 𝐷 12 + 4( 𝐵 66 𝐴 ∗ 32 + 𝐷 66 ) + 𝐵 12 𝐴 

∗ 
13 + 𝐵 22 𝐴 

∗ 
23 ) (46) 

Taking the initial imperfection into consideration, for a GPL-SFGP
late resting on the Winkler–Pasternak elastic foundation, the equation
f motion can be explicitly formulated as: 

 11 
𝜕 4 𝑓 

𝜕 𝑥 4 
+ 𝑇 12 

𝜕 4 𝑓 

𝜕 𝑦 4 
+ 𝑇 13 

𝜕 4 𝑓 

𝜕 𝑥 2 𝜕 𝑦 2 
+ 𝑇 14 

( 
𝜕 4 𝑤 

𝜕 𝑥 4 
+ 

𝜕 4 𝑤 

∗ 

𝜕 𝑥 4 

) 
+ 𝑇 15 

( 
𝜕 4 𝑤 

𝜕 𝑦 4 
+ 

𝜕 4 𝑤 

∗ 

𝜕 𝑦 4 

) 
+ 𝑇 16 

( 
𝜕 4 𝑤 

𝜕 𝑥 2 𝜕 𝑦 2 
+ 

𝜕 4 𝑤 

∗ 

𝜕 𝑥 2 𝜕 𝑦 2 

) 
+ 

𝜕 2 𝑓 

𝜕 𝑦 2 

( 
𝜕 2 𝑤 

𝜕 𝑥 2 
+ 

𝜕 2 𝑤 

∗ 

𝜕 𝑥 2 

)
− 2 𝜕 

2 𝑓 

𝜕 𝑥𝜕 𝑦 

( 
𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 
+ 

𝜕 2 𝑤 

∗ 

𝜕 𝑥𝜕 𝑦 

) 
+ 

𝜕 2 𝑓 

𝜕 𝑥 2 

( 
𝜕 2 𝑤 

𝜕 𝑦 2 
+ 

𝜕 2 𝑤 

∗ 

𝜕 𝑦 2 

) 
+ 𝑞 − 𝑘 𝑤 𝑤 

+ 𝑘 𝑝 

( 
𝜕 2 𝑤 + 

𝜕 2 𝑤 

) 
= 𝜌ℎ 

𝜕 2 𝑤 + C 𝑑 𝜌ℎ 
𝜕𝑤 

(47

𝜕 𝑥 2 𝜕 𝑦 2 𝜕 𝑡 2 𝜕𝑡 
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𝑃
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. Nonlinear dynamic analysis 

In this study, the four edges of the plate are assumed to be simply
upported and remain straight after buckling. Thus, such adoption of
he boundary conditions implies that 

𝑤 = 𝑢 = 𝑀 𝑥 = 0 
𝑁 𝑥 = 𝑁 𝑥 0 

} 

𝑥 = 0 , 𝑎 (48)

𝑤 = 𝑣 = 𝑀 𝑦 = 0 
𝑁 𝑦 = 0 

} 

𝑦 = 0 , 𝑏 (49)

here N x 0 = − p ( t ) h is the compressive load along the x -direction. 
The solution of the plate deflection w , which satisfies the boundary

onditions, is assumed to be [62] : 

 ( 𝑥, 𝑦, 𝑡 ) = 𝑊 ( 𝑡 ) sin 
(
𝑚𝜋𝑥 

𝑎 

)
sin 
(
𝑛𝜋𝑦 

𝑏 

)
(50)

here W ( t ) represents the time-dependent function of w; m and n are odd
ntegers that indicate the number of half waves in x - and y -directions,
espectively. 

The initial imperfection, w 

∗ ( x, y ), is presumed to have the same for-
at of w ( x, y, t ), 

 

∗ ( 𝑥, 𝑦 ) = 𝑊 0 sin 
(
𝑚𝜋𝑥 

𝑎 

)
sin 
(
𝑛𝜋𝑦 

𝑏 

)
(51)

here W 0 denotes the amplitude. 
The solution of the stress function, which satisfies the boundary con-

itions, is assumed to be: 

 ( 𝑥, 𝑦, 𝑡 ) = 𝐻 1 cos 
( 2 𝑚𝜋𝑥 

𝑎 

)
+ 𝐻 2 cos 

( 
2 𝑛𝜋𝑦 
𝑏 

) 
+ 𝐻 3 sin 

(
𝑚𝜋𝑥 

𝑎 

)
sin 
(
𝑛𝜋𝑦 

𝑏 

)
+ 

1 
2 𝑁 𝑥 0 𝑦 

2 
(52) 

here 

 1 = 

(
𝑊 

2 + 2 𝑊 𝑊 0 
)( 𝑛𝜋

𝑏 

)2 
32 𝐴 ∗ 22 

(
𝑚𝜋

𝑎 

)2 
 2 = 

(
𝑊 

2 + 2 𝑊 𝑊 0 
)(𝑚𝜋

𝑎 

)2 
32 𝐴 ∗ 11 

(
𝑛𝜋

𝑏 

)2 
 3 = 

𝐴 ∗ 14 

(
𝑛𝜋

𝑏 

)4 
+ 𝐴 ∗ 23 

(
𝑚𝜋

𝑎 

)4 
− 

(
2 𝐴 ∗ 32 − 𝐴 ∗ 13 − 𝐴 ∗ 24 

)(𝑚𝜋
𝑎 

)2 (
𝑛𝜋

𝑏 

)2 
𝐴 ∗ 11 

(
𝑛𝜋

𝑏 

)4 
+ 𝐴 ∗ 22 

(
𝑚𝜋

𝑎 

)4 
+ 

(
2 𝐴 ∗ 12 + 𝐴 ∗ 31 

)(𝑚𝜋
𝑎 

)2 (
𝑛𝜋

𝑏 

)2 𝑊 (53) 

Substituting Eqs. (50) –(53) into Eq. (47) , and with the assumption
f 𝛼 = 𝑚𝜋∕ 𝑎, 𝛽 = 𝑛𝜋∕ 𝑏 , the equaiton of motion of the plate can be refor-
ulated as: 

 11 
[
16 𝐻 1 𝛼

4 cos ( 2 𝛼𝑥 ) + 𝐻 3 𝛼
4 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 

]
+ 𝑇 12 

[
16 𝐻 2 𝛽

4 cos ( 2 𝛽𝑦 ) + 𝐻 3 𝛽
4 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 

]
+ 𝑇 13 

[
𝛼2 𝛽2 𝐻 3 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 

]
+ 𝑇 14 

[
𝛼4 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 

](
𝑊 + 𝑊 0 

)
+ 𝑇 15 

[
𝛽4 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 

](
𝑊 + 𝑊 0 

)
+ 𝑇 16 

[
𝛼2 𝛽2 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 

](
𝑊 + 𝑊 0 

)
+ 

[
4 𝐻 2 𝛽

2 cos ( 2 𝛽𝑦 ) + 𝐻 3 𝛽
2 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) − 𝑁 𝑥 0 

]
×
[
𝛼2 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 

(
𝑊 + 𝑊 0 

)]
−2 
[
𝐻 3 𝛼𝛽 cos ( 𝛼𝑥 ) cos ( 𝛽𝑦 ) 

][
𝛼𝛽 cos ( 𝛼𝑥 ) cos ( 𝛽𝑦 ) 

(
𝑊 + 𝑊 0 

)]
+ 

[
4 𝐻 1 𝛼

2 cos ( 2 𝛼𝑥 ) + 𝐻 3 𝛼
2 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 

][
𝛽2 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 

(
𝑊 + 𝑊 0 

)
+ 𝑞 − 𝑘 𝑤 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 𝑊 − 𝑘 𝑝 

[(
𝛼2 + 𝛽2 

)
sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) 𝑊 

]
 𝜌ℎ 
𝜕 2 𝑊 

𝜕𝑡 2 
sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) + 𝐶 𝑑 𝜌ℎ 

𝜕𝑊 

𝜕𝑡 
sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) (54) 

By adopting the Galerkin method, sin ( m 𝜋x / a ) sin ( n 𝜋y / b ) is multi-
lied with each term in Eq. (54) , and then integrated over the middle
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urface of the GPL-SFGP plate. Consequently, the resultant equation can
e expressed as 

𝑃 1 
(
𝑊 + 2 𝑊 0 

)
𝑊 + 𝑃 2 𝑊 + 𝑃 3 

(
𝑊 + 𝑊 0 

)
+ 𝑃 4 

(
𝑊 + 𝑊 0 

)(
𝑊 + 2 𝑊 0 

)
𝑊 

+ 𝑃 5 
(
𝑊 + 𝑊 0 

)
𝑊 + 𝑃 6 𝑞 − 𝑁 𝑥 0 𝛼

2 (𝑊 + 𝑊 0 
)
− 

[
𝑘 𝑤 + 𝑘 𝑝 ⋅

(
𝛼2 + 𝛽2 

)]
𝑊 

 𝜌ℎ 
𝜕 2 𝑊 

𝜕𝑡 2 
+ 𝐶 𝑑 𝜌ℎ 

𝜕𝑊 

𝜕𝑡 
(55) 

here 

 1 = − 
( 
𝑇 12 

𝐴 ∗ 11 
+ 
𝑇 11 

𝐴 ∗ 22 

) 
⋅
8 
3 
𝛼𝛽

𝑎𝑏 

 2 = 
(
𝑇 11 𝛼

4 + 𝑇 12 𝛽4 + 𝑇 13 𝛼2 𝛽2 
)
⋅

[ 
𝐴 ∗ 14 𝛽

4 + 𝐴 ∗ 23 𝛼
4 − 
(
2 𝐴 ∗ 32 − 𝐴 

∗ 
13 − 𝐴 

∗ 
24 

)
𝛼2 𝛽2 

𝐴 ∗ 11 𝛽
4 + 𝐴 ∗ 22 𝛼4 + 

(
2 𝐴 ∗ 12 + 𝐴 

∗ 
31 

)
𝛼2 𝛽2 

] 
 3 = 

(
𝑇 14 𝛼

4 + 𝑇 15 𝛽4 + 𝑇 16 𝛼2 𝛽2 
)

 4 = − 
( 

𝛼4 

16 𝐴 ∗ 11 
+ 𝛽4 

16 𝐴 ∗ 22 

) 
 5 = 

32 𝛼𝛽
3 𝑎𝑏 

⋅
𝐴 ∗ 14 𝛽

4 + 𝐴 ∗ 23 𝛼
4 − 
(
2 𝐴 ∗ 32 − 𝐴 

∗ 
13 − 𝐴 

∗ 
24 

)
𝛼2 𝛽2 

𝐴 ∗ 11 𝛽
4 + 𝐴 ∗ 22 𝛼4 + 

(
2 𝐴 ∗ 12 + 𝐴 

∗ 
31 

)
𝛼2 𝛽2 

 6 = 
4 
𝛼𝛽

4 
𝑎𝑏 

(56) 

It is assumed that the plate is subjected to a uniformly distributed ex-
ernal pressure q = Q sin Ωt , where Q and Ω denote the amplitude and fre-
uency of the excitation, respectively. Consequently, Eq. (55) becomes 

 1 
(
𝑊 + 2 𝑊 0 

)
𝑊 + 𝑃 2 𝑊 + 𝑃 3 

(
𝑊 + 𝑊 0 

)
+ 𝑃 4 

(
𝑊 + 𝑊 0 

)(
𝑊 + 2 𝑊 0 

)
𝑊 

+ 𝑃 5 
(
𝑊 + 𝑊 0 

)
𝑊 + 𝑃 6 𝑄 sin( Ω𝑡 ) + 𝑝 ( 𝑡 ) 𝛼2 ℎ 

(
𝑊 + 𝑊 0 

)
− 
[
𝑘 𝑤 + 𝑘 𝑝 

(
𝛼2 + 𝛽2 

)]
𝑊 

 𝜌ℎ 
𝜕 2 𝑊 

𝜕 𝑡 2 
+ 𝐶 𝑑 𝜌ℎ 

𝜕𝑊 

𝜕𝑡 
(57) 

According to Eqs. (20) and (34) , with the consideration of the initial
mperfection of the plate, the expression of the strain along the x -axial
an be obtained as 

𝜕𝑢 

𝜕𝑥 
= −4 𝛽2 𝐴 ∗ 11 𝐻 2 cos ( 2 𝛽𝑦 ) − 4 𝛼2 𝐴 ∗ 12 𝐻 1 cos ( 2 𝛼𝑥 ) − 𝐴 ∗ 11 𝑝 ( 𝑡 ) ℎ 

− 

(
𝐴 ∗ 11 𝛽

2 + 𝐴 ∗ 12 𝛼
2 )𝐻 3 sin ( 𝛼𝑥 ) sin ( 𝛽𝑦 ) + 

(
𝐴 ∗ 13 𝛼

2 + 𝐴 ∗ 14 𝛽
2 )Wsin ( 𝛼𝑥 ) sin ( 𝛽𝑦

− 𝛼2 
( 1 
2 
𝑊 + 𝑊 0 

)
Wco 𝑠 2 ( 𝛼𝑥 ) co 𝑠 2 ( 𝛽𝑦 ) + 𝜀 𝑇 

𝑥 
(58

To apply a dynamic compressive load on the longitudinal direction
f the plate, a constant displacement rate v is exerted on the edge of the
late along the x -axis. Thus, the relative edge displacement of the plate
long the x- direction is given as 

 = ∫
𝑏 

0 ∫
𝑎 

0 

𝜕𝑢 

𝜕𝑥 
𝑑 𝑥𝑑 𝑦 = −v 𝑡 (59) 

Substituting Eq. (58) into Eq. (59) produces an average compressive
tress as 

 ( 𝑡 ) = − 

(
𝐴 ∗ 11 𝛽

2 + 𝐴 ∗ 12 𝛼
2 )

𝐴 ∗ 11 abh 

4 
𝛼𝛽
𝐻 3 + 

𝜀 𝑇 
𝑥 

𝐴 ∗ 11 ℎ 
+ 

(
𝐴 ∗ 13 𝛼

2 + 𝐴 ∗ 14 𝛽
2 )

𝐴 ∗ 11 abh 

4 
𝛼𝛽
𝑊 

− 

(
𝑊 + 2 𝑊 0 

)
𝑊 𝛼2 

8 𝐴 ∗ 11 ℎ 
+ 

v 𝑡 
𝐴 ∗ 11 abh 

(60) 

.1. Nonlinear dynamic response analysis 

By neglecting the damping effect of an unloaded perfect plate,
q. (57) can be reduced into 

𝜕 2 𝑊 

𝜕 𝑡 2 
− 

[
𝑃 2 + 𝑃 3 − 𝑘 𝑤 − 𝑘 𝑝 

(
𝛼2 + 𝛽2 

)]
𝜌ℎ 

𝑊 − 

(
𝑃 1 + 𝑃 5 

)
𝜌ℎ 

𝑊 

2 − 

𝑃 4 
𝜌ℎ 
𝑊 

3 =0 (61)

Without the consideration of the nonlinearity, the natural frequency
f the perfect GPL-SFGP plate can be obtained from the coefficient of W
n Eq. (61) . That is, 

 mn = 

√ 

− 

𝑃 2 + 𝑃 3 − 

[
𝑘 𝑤 + 𝑘 𝑝 

(
𝛼2 + 𝛽2 

)]
𝜌ℎ 

(62) 
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Table 1 

The adopted material properties. 

Young’s modulus (GPa) Density (kg/m 

3 ) Poisson’s ratio Thermal expansion coefficient (K − 1 ) 

Aluminum 68.3 2689.8 0.34 23e–6 
GPL 1010 1062.5 0.186 5e–6 
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By considering the harmonic vibration, the solution of W ( t ) can be
dopted as: 

 ( 𝑡 ) = 𝐴 sin (Ω𝑡 ) (63)

Assuming the compressive loading rate v = 0, for the nonlinear vi-
ration of an initially perfect GPL-SFGP plate with the consideration of
amping effects, Eq. (57) bears the form 

𝜕 2 𝑊 

𝜕𝑡 2 
+ 𝐶 𝑑 

𝜕𝑊 

𝜕𝑡 
+ 𝜔 mn 

2 𝑊 − 

𝜀 𝑇 
𝑥 
𝛼2 

𝐴 ∗ 11 𝜌ℎ 
𝑊 − 

ℎ𝛼2 𝜑 + 𝑃 1 + 𝑃 5 
𝜌ℎ 

𝑊 

2 

− 

𝑃 4 + ℎ𝛼2 𝜓 

𝜌ℎ 
𝑊 

3 − 

𝑃 6 
𝜌ℎ 

Qsin Ω𝑡 = 0 (64)

here 

 = − 

4 
𝛼𝛽

(
𝐴 ∗ 11 𝛽

2 + 𝐴 ∗ 12 𝛼
2 )

𝐴 ∗ 11 abh 

𝐴 ∗ 14 𝛽
4 + 𝐴 ∗ 23 𝛼

4 − 

(
2 𝐴 ∗ 32 − 𝐴 ∗ 13 − 𝐴 ∗ 24 

)
𝛼2 𝛽2 

𝐴 ∗ 11 𝛽
4 + 𝐴 ∗ 22 𝛼

4 + 

(
2 𝐴 ∗ 12 + 𝐴 ∗ 31 

)
𝛼2 𝛽2 

+ 

4 
𝛼𝛽

(
𝐴 ∗ 13 𝛼

2 + 𝐴 ∗ 14 𝛽
2 )

𝐴 ∗ 11 abh 
(65)

 = − 

𝛼2 

8 𝐴 ∗ 11 ℎ 
(66)

 𝑑 = 2 𝜔 𝑚𝑛 𝜁 (67)

here 𝜁 is the damping ratio of the plate. 
By applying the Galerkin procedure to the resultant formulation,

hich was obtained by substituting Eq. (63) into Eq. (64) , the nonlinear
ibration equation of the plate can be transformed into 

2 − 

2 
𝜋
𝐶 𝑑 Ω − 𝜔 mn 

2 + 

8 𝐴 
3 𝜋
ℎ𝛼2 𝜑 + 𝑃 1 + 𝑃 5 

𝜌ℎ 
+ 

3 
4 
𝑃 4 + ℎ𝛼2 𝜓 

𝜌ℎ 
𝐴 2 + 

𝜀 𝑇 
𝑥 
𝛼2 

𝐴 ∗ 11 𝜌ℎ 

+ 

𝑃 6 
𝜌hA 

𝑄 = 0 (68)

.2. Dynamic buckling analysis 

Considering an initially perfect GPL-SFGP plate, the corresponding
inear static behavior can be obtained by omitting the uniformly dis-
ributed external pressure, the high-order term, the acceleration term
nd the velocity term from Eq. (57) . That is, 

 2 + 𝑃 3 + 𝑝 ( 𝑡 ) ℎ 𝛼2 − 

[
𝑘 𝑤 + 𝑘 𝑝 

(
𝛼2 + 𝛽2 

)]
= 0 (69)

Then the critical buckling load can be determined as 

 𝑠𝑡 = 

1 
ℎ 𝛼2 

[
𝑘 𝑤 + 𝑘 𝑝 

(
𝛼2 + 𝛽2 

)
− 𝑃 2 − 𝑃 3 

]
(70)

By substituting Eq. (60) into Eq. (57) , the equation describing the
ynamic buckling behavior of the GPL-SFGP plate with initial imperfec-
ion is given as 

𝑃 1 
𝜌ℎ 

(
𝑊 + 2 𝑊 0 

)
𝑊 + 

𝑃 2 
𝜌ℎ 
𝑊 + 

𝑃 3 
𝜌ℎ 

(
𝑊 + 𝑊 0 

)
+ 

𝑃 4 
𝜌ℎ 

(
𝑊 + 𝑊 0 

)(
𝑊 + 2 𝑊 0 

)
𝑊 + 

𝑃 5 
𝜌ℎ 

(
𝑊 + 𝑊 0 

)
𝑊 

+ 

𝑃 6 
𝜌ℎ 
𝑄 sin( Ω𝑡 ) − 

1 
𝜌ℎ 

[
𝑘 𝑤 + 𝑘 𝑝 

(
𝛼2 + 𝛽2 

)]
𝑊 
602 
+ 

𝛼2 

𝜌

(
𝑊 + 𝑊 0 

)
[ 𝜑𝑊 + 

𝜀 𝑇 
𝑥 

𝐴 ∗ 11 ℎ 
+ 𝜓( 𝑊 + 2 𝑊 0 ) 𝑊 + 

v 𝑡 
𝐴 ∗ 11 𝑎𝑏ℎ 

] 

 

𝜕 2 𝑊 

𝜕 𝑡 2 
+ 𝐶 𝑑 

𝜕𝑊 

𝜕𝑡 
(71) 

By solving Eq. (71) , the buckling load can be obtained from
q. (60) accordingly. 

. Numerical results and discussions 

The adopted material properties of the GPL-SFGP plate for all subse-
uent numerical investigations are presented in Table 1 . 

.1. Validation analysis 

Since there are not any available results for the GPL-SFGP plate un-
er the currently concerned conditions, the proposed method is vali-
ated against the commercial Finite Element Method (FEM) package,
NSYS. 

A uniformly distributed porous core reinforced by uniformly dis-
ributed GPL and orthotropic metal face layers are considered in the
ree vibration of the GPL-SFGP plate. The dimensions of the plate are
 = b = 1 m, h = 0.005 a, h f = 0.1 h, h c = 0.8 h, e 0 = 0.5.For the GPLs, the pa-
ameters are selected as l GPL = 2.5 𝜇m, w GPL = 1.5 𝜇m, t GPL = 1.5nm and

GPL = 1 wt %. 
By neglecting the effect of the elastic foundation, different modes of

he natural frequency of the plate computed by presented method are
ompared with the results obtained from ANSYS. Since there is not a di-
ect element type that exactly matching the GPL-SFGP plate in ANSYS,
he SHELL 281 element has been adopted for the purpose of validation.
n order to model the functionally graded porous material, the cross-
ection of the GPL-SFGP plate has been discretized into 200 layers and
ach layer with a constant material property. Furthermore, the GPL-
FGP plate has been meshed with an element length = 0.02 m. The nu-
erical results on the natural frequencies of the GPL-SFGP plate through

he two methods are reported in Table 2 . 

able 2 

atural frequencies of the GPL-SFGP plate without considering Winkler–
asternak elastic foundation. 

Mode type (m, n) Proposed method (rad/s) ANSYS (rad/s) Related error ∗ (%) 

(1,1) 160.6964 159.1782 0.9538 
(1,3) 803.4820 795.7654 0.9697 
(3,3) 1446.2676 1429.8645 1.1472 
(3,5) 2731.8389 2699.7591 1.1882 

elated error = 

Presented value − ANSYS value 
ANSYS value 

× 100% 

It can be observed from Table 2 that the natural frequencies of the
late obtained by the proposed method generally agree with the numer-
cal results. 

Furthermore, Table 3 demonstrates the influences of different
inkler–Pasternak elastic foundation parameters on the natural fre-

uency of the plate. The values of the natural frequencies are increased
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Fig. 3. (a) Effect of the damping ratio on the nonlinear dynamic response of the GPL-SFGP plate; (b) Zoomed-in view of (a). 

Fig. 4. (a) Influence of the temperature increment on the nonlinear dynamic response of the GPL-SFGP plate; (b) Zoomed-in view of (a). 

Table 3 

Effects of the Winkler–Pasternak foundation parameters on the natural 
frequencies of the GPL-SFGP plate. 

k w 
(N/m 

2 ) 
k p 
(N/m) 

( m, n ) 

(1,1) (1,3) (3,3) (3,5) 

0 500,000 539.172 1322.491 1918.327 2993.348 
500,000 0 169.563 619.106 1100.251 2069.597 
500,000 500,000 551.983 1327.766 1921.967 2995.682 
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G  
ith the enlargements of the elastic foundation parameters. It is no-
iced that k p , which is the Pasternak shear layer foundation stiffness, has
reater impact on the natural frequencies of the plate than k w , which is
he Winkler foundation mudulus. 

.2. Nonlinear dynamic responses 

To explore the influences of the damping ratio, thermal varia-
ion, external excitation, elastic foundation, porosity, GPL weight frac-
ion and GPL dimensions on the nonlinear dynamic responses of the
PL-SFGP plate, the fourth-order Runge–Kutta method is employed

o solve Eq. (64) . The initial conditions are assumed to be 𝑊 (0) =
 , dW (0)∕ dt = 0 . A negative value of the thermal expansion coefficient
f the plate is adopted for the rising temperature from the basic temper-
ture ( T = 300K). The Winkler–Pasternak elastic foundation coefficients
re 𝑘 𝑤 = 1 × 10 5 N∕ m 

2 , 𝑘 𝑝 = 1 × 10 3 N∕m . 
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Fig. 3 shows the effect of damping ratio on the nonlinear dynamic
esponse of the initially perfect GPL-SFGP plate. Five sets of damping
atios are considered with 𝜁 = [0, 0.1, 0.2, 0.3, 0.4]. To enhance the vi-
ualization on the difference between the five curves, a zoomed-in view
f Fig. 3 (a) is showed in Fig. 3 (b). It is discovered that the nonlinear
ynamic response of the plate decreases when the damping ratio is in-
reased. 

Fig. 4 illustrates the effect of thermal variation on the nonlinear dy-
amic response of the initially perfect GPL-SFGP plate. Fig. 4 (b) is the
oom-in of Fig. 4 (a). Five cases, namely ΔT = [0°C, 20°C, 40°C, 60°C,
0°C], are considered. It should be noticed that the increase of the mag-
itude of the temperature increment reduces the amplitude of vibration
f the plate. One possible reason for such phenomenon is that the rise of
emperature counteracts the effects of the oppositely applied compres-
ive loading on the plate. 

Fig. 5 (a) and (b) demonstrate the impact of the magnitudes and
he frequencies of the external excitation on the nonlinear dynamic
esponse of the GPL-SFGP plate, respectively. For the same frequency
f the excitation, the amplitude of the plate grows significantly with
he increasing of magnitude of the external excitation, but the pe-
iod of vibration almost remains the same. However, as shown in
ig. 5 (b), the variation of the frequency of the external excitation influ-
nces both the periods and amplitudes of the nonlinear response of the
late. 

Fig. 6 illustrates the impact of the Winkler–Pasternak foundation
oefficients, k w and k p , on the nonlinear dynamic response of the
PL-SFGP plate. A zoomed-in view of Fig. 6 (a) is presented in Fig. 6 (b).
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Fig. 5. Influence of (a) the magnitude and (b) the frequency of the external excitation on the nonlinear dynamic response of the GPL-SFGP plate. 

Fig. 6. (a) Influence of the Winkler–Pasternak foundation on the nonlinear dynamic response of the GPL-SFGP plate; (b) Zoomed-in view of (a). 

Fig. 7. (a) Influence of the porosity of the nonlinear dynamic response of the GPL-SFGP plate; (b) Zoomed-in view of Figure 7 (a). 
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rom Fig. 6 , it is demonstrated that the amplitudes of the nonlinear
ynamic response of the plate reduce due to the existence of the elastic
oundation. In addition, the benefit provided by the Pasternak shear
ayer foundation stiffness, k p , is more prominent than the Winkler
oundation modulus, k . 
w 

T  
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The nonlinear dynamic response of the GPL-SFGP plate with various
orosities (i.e., e 0 = [0, 0.1, 0.2, 0.3, 0.4, 0.5]) are investigated and, the
orresponding results are reported in Fig. 7 . Fig. 7 (b) is the zoom-in of
ig. 7 (a). It is discovered that the amplitude of the transverse deflection
f the GPL-SFGP plate increases with the rise of the porosity of the plate.
he porosity of the plate is a key parameter which balances the weight
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Fig. 8. (a) Influence of the GPL weight fraction on the nonlinear dynamic response of the GPL- SFGP plate; (b) Zoomed-in view of Figure 8 (a). 

Fig. 9. (a) Influence of r l / t on the nonlinear dynamic response of the GPL- SFGP plate; (b) Zoomed-in view of Figure 9 (a); (c) Influence of r l / w on the nonlinear 
dynamic response of the GPL- SFGP plate; (d) Zoomed-in view of Figure 9 (c). 

a  

w
 

n  

w  

a  

C  

p

 

r  

s  

c  

c  

t  

v  

f  
nd stiffness of the plate. That is, increasing the porosity of the plate
ould reduce the capacity of itself against external excitation. 

Fig. 8 illustrates the effect of various GPL weight fractions on the
onlinear dynamic response of the GPL-SFGP plate. Five different GPL
eight fractions, which are from 0% to 1% with an increment of 0.25%,
re considered. A zoomed-in view of Fig. 8 (a) is presented in Fig. 8 (b).
learly, the addition of the GPL reduces the vibration of the GPL-SFGP
late due to the enhancement of the overall structural stiffness. 
605 
The effect of the dimension of the GPLs on the nonlinear dynamic
esponse of the GPL- SFGP plate is indicated in Fig. 9 . As clearly demon-
trated in Fig. 9 (a) and (b), for the same width of the GPLs, the in-
rease of the length-to-thick ratio of the GPL (i.e., 𝑟 𝑙∕ 𝑡 = 𝑙 𝐺𝑃𝐿 ∕ 𝑡 𝐺𝑃𝐿 )
an effectively reduce the amplitude of the vibration. However, when
he length-to-thick ratio is larger than 10 3 , no further reduction of the
ibration of the GPL-SFGP plate can be observed in Fig. 9 (b). There-
ore, 𝑟 𝑙∕ 𝑡 = 𝑙 𝐺𝑃𝐿 ∕ 𝑡 𝐺𝑃𝐿 = 10 3 is a threshold for the dimension of GPL that
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Fig. 10. (a) Deflections of the GPL-SFGP plate with various compressive loading velocities; (b) Buckling loads of the GPL-SFGP plate with various compressive 
loading velocities. 

Fig. 11. (a) Deflections of the GPL-SFGP plate with various damping ratios; (b) Buckling loads of the GPL-SFGP plate with various damping ratios. 
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an be inserted for reducing the vibrational amplitude of the GPL-SFGP
late. 

Moreover, as evidently illustrated in Fig. 9 (c) and (d), for the same
hickness of the GPLs, the increase of the length-to-width ratio of the
PL (i.e., 𝑟 𝑙∕ 𝑤 = 𝑙 𝐺𝑃𝐿 ∕ 𝑤 𝐺𝑃𝐿 ) leads to the increase of the amplitude of

he vibration of the plate. This is due to the reduction of the surface area
f the GPL when r l / w is increased. 

.3. Dynamic buckling analysis 

In this subsection, the effects of the compressive loading velocity,
amping ratio, temperature variation, initial imperfection, Winkler–
asternak elastic foundation, porosity, GPL weight fraction, length-to-
hickness ratio of the GPL, and length-to-width ratio of the GPL acting
n the dynamic buckling behavior of the plate are thoroughly investi-
ated. For a GPL-SFGP plate subjected to a compressive loading velocity,
q. (71) is solved by the fourth-order Runge–Kutta method to investi-
ate the nonlinear dynamic stability. The initial conditions are assumed
o be 𝑊 (0) = 𝑊 0 , 

𝑑𝑊 

𝑑𝑡 
(0) = 0 . The Winkler–Pasternak elastic foundation

oefficients are 𝑘 𝑤 = 5 × 10 4 N∕ m 

2 , 𝑘 𝑝 = 5 × 10 4 N∕m . 

Fig. 10 (a) and (b) demonstrate the effect of the compressive load-
ng velocity on the deflection and buckling load of the plate, re-
pectively. With three different compressive loading velocities, namely
 = 0.001m/s, 0.002m/s, 0.003m/s, the corresponding longitudinal end
606 
hortening of the plate can be obtained. As shown in Fig. 10 (a), there
re three distinct phases of the dynamic buckling curves, namely the
light fluctuation, the fast growth, and the eventual oscillation. With
he increase of the compressive loading velocity, the slight fluctuation
hase shortens significantly. Fig. 10 (b) indicates that a higher velocity
enerally leads to a higher buckling load of the plate but with shorter
eaching time. 

The effect of the damping ratio on the dynamic buckling of the GPL-
FGP plate is presented in Fig. 11 (a) and (b). The existence of damping
atio weakens the fluctuation of the plate while increasing the buckling
oad. Since the damped vibration is a process which depletes the sys-
em energy, so the increase of the damping ratio would accelerate the
ibration attenuation. 

Fig. 12 (a) and (b) demonstrate the effect of the temperature vari-
tion on the dynamic buckling of the GPL-SFGP plate. Evidently, the
nlargement of the temperature increment lengthens the slight fluctua-
ion phase. However, the buckling load of the plate increases with the
rowth of the temperature increment. 

The influence of the initial imperfection on the nonlinear dynamic
uckling of the GPL-SFGP plate is indicated in the Fig. 13 (a) and (b).
hree sets of initial imperfection, namely W 0 = 0.1 h , 0.01 h , 0.001 h , are
elected in this study. It is noted that the increase of the initial imper-
ection shortens the slight fluctuation phase and reduces the buckling
oad of the plate. 
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Fig. 12. (a) Deflections of the GPL-SFGP plate with various temperature increments; (b) Buckling loads of the GPL-SFGP plate with various temperature increments. 

Fig. 13. (a) Deflections of the GPL-SFGP plate with various initial imperfections; (b) Buckling loads of the GPL-SFGP plate with various initial imperfections. 
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Fig. 14 (a) and (b) illustrate the effect of various Winkler–Pasternak
lastic foundation coefficients on the dynamic buckling of the plate.
learly, the deflection of the plate decreases due to the existence of the
inkler–Pasternak elastic foundation, while the increase of the elastic

oundation coefficients leads to the rise of the buckling load. The Paster-
ak coefficient is more pronounced than the Winkler one in terms of the
mpacts on the deflection as well as the buckling load, since the resis-
ance provided by the Pasternak shear layer stiffness limits the lateral
eflection of the plate. 

The impact of different porosities of the porous core on the dynamic
uckling of the plate are reported in Fig. 15 (a) and (b). The larger value
f the porosity means less metal matrix content, which results in the
ecrease of the density as well as the stiffness of the GPL-SFGP plate.
bviously, the increase of the porosity of the core prolongs the slight
uctuation phase of the plate. Also, in terms of the corresponding buck-

ing loading showed in Fig. 15 (b), the higher porosity of the GPL-SFGP
late, the smaller buckling load can be obtained. 

The influence of various weight fractions of the GPL reinforcement
n the dynamic buckling of the GPL-SFGP plate is illustrated in Fig. 16 (a)
nd (b). It can be observed that increasing the weight percentage of
he GPL within the GPL-SFGP plate results in the growth of the buck-
ing load. Therefore, the buckling load of the plate can be increased by
dding more GPLs into the porous core of the plate. 

The influence of the dimensions of GPLs on the dynamic buckling be-
avior of the GPL- SFGP plate is indicated in Fig. 17 . From Fig. 17 (a) and
607 
b), for the same width of GPLs, when the length-to-thick ratio of GPLs
 l / t increases, the buckling load of the plate rises significantly. However,
hen the value of r l / t is larger than 10 3 , the growth of the r l / t has no

ffect on the buckling load of the plate. Obviously, r l / t = 10 3 provides a
hreshold for the enhancement effect of the dimension of the GPLs on the
ynamic stability of the plate. In terms of the impact of length-to-width
atio of the GPLs, as showed in Fig. 17 (c) and (d), for the same thickness
f the GPL, the higher value of r l / w , the smaller dynamic buckling load
an be gained. 

. Conclusion 

This paper investigates the dynamic stability of a GPL-SFGP plate
ased on the classical plate theory by using an analytical approach. The
inkler–Pasternak elastic foundation, thermal and damping effects are

aken into consideration during the analysis. In addition, some numeri-
al simulations are presented to further explore the impacts of damping
atios, temperature increments, compressive loading velocities, the ini-
ial imperfections, elastic foundation parameters, porosities, GPL weight
ractions and dimensions of GPLs. Some conclusions can be drawn from
he presented analysis: 

1. The damping ratio of the structure leads to slight decrease of the
dynamic response and the dynamic buckling load of the plate due to
the energy depletion. 
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Fig. 14. (a) Deflections of the GPL-SFGP plate with various elastic foundation coefficients; (b) Buckling loads of the GPL-SFGP plate with various elastic foundation 
coefficients. 

Fig. 15. (a) Deflection of the GPL-SFGP plate with various porosities; (b) Buckling loads of the GPL-SFGP plate with various porosities. 

Fig. 16. (a) Deflections of the GPL-SFGP plate with various GPL weight fractions; (b) Buckling loads of the GPL-SFGP plate with various GPL weight fractions. 
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Fig. 17. (a) Deflections of the GPL-SFGP plate with various r l / t ; (b) Buckling loads of the GPL-SFGP plate with various r l / t ; (c) Deflections of the GPL-SFGP plate with 
various r l / w ; (d) Buckling loads of the GPL-SFGP plate with various r l / w . 
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2. The initial imperfection of the plate causes the shortening of the
slight fluctuation phase and the reduction of buckling load of the
plate. 

3. The temperature increment leads to a higher axial compressive stress
when the edges of the plate are immovable. The rise of the envi-
ronment temperature increment can depress the vibration of the
plate, while increase the buckling load of the plate to some ex-
tent. 

4. It is demonstrated that the supporting of the elastic foundation
has beneficial effect on the nonlinear dynamic response of the
plate. With the increase of the parameters of the Winkler–Pasternak
foundation, the deflection of the plate can be decreased while
the buckling load can be increased. It is noticed that the im-
pact of the Pasternak shear layer stiffness is more significant
than the Winkler one, which is demonstrated in both the nonlin-
ear dynamic response and the dynamic buckling analyses of the
plate. 

5. The increase of the porosity of the porous core results in the reduc-
tion of the buckling load of the plate since both the stiffness and
density of plate decrease. 

6. The presence of the GPL reinforcement tends to increase the buckling
load of the plate due to the improvement of the stiffness of the plate.
However, such improvement is limited by a threshold value of 10 3 

for the length-to-thickness ratio of GPLs. 
609 
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