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As the computational power of IoT (Internet of Things) devices increases, business processes can use them to provide information 
about real world as well as to execute part of business processes, reducing the amount of exchanged data and central processing. 
Current BPMN-based approaches already support modellers to define both business processes and IoT devices behaviour at the 
same level of abstraction. However, they are not restricted to standard BPMN elements and they generate IoT device specific low-
level code. The work we present in this paper only uses standard BPMN to define both central and IoT behaviour of business 
processes. In addition, the BPMN that defines the IoT behaviour is translated to a neutral-platform programming code. 
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1. Introduction 

Nowadays, organisations use more and more business processes to capture, manage, and optimise their activities. 
In areas such as supply chain management, intelligent transport systems, domotics, or remote healthcare, business 
processes can gain a competitive edge by using the information and functionalities of IoT devices (sensors and 
actuators). Business processes use IoT information to incorporate real world data, to take informed decisions, optimise 
their execution, and adapt itself to context changes [14].  In addition, the increase in processing power of IoT devices 
enables them to take part in the execution of the business logic. This way, IoT devices can aggregate and filter data, 
and make decisions locally, by executing parts of the business logic whenever central control is not required, reducing 
both the amount of exchanged data and of central processing [13]. 

However, on the one hand, IoT devices are heterogeneous by nature. They differ in terms of communication 
protocols, interaction paradigms, and computing and storage power. On the other hand, business modellers define 
processes using high-level languages (such as Business Process Model and Notation version 2.0 [19], henceforth 
simply referred as BPMN), as they must know the domain, but do not need to have specific knowledge to program 
IoT devices, nor want to deal with their heterogeneity. 

Current approaches allow modellers to define both business processes and IoT devices behaviour at the same level 
of abstraction, using, for instance, BPMN-based approaches [1, 2, 3, 4, 22, 23]. BPMN already provides the concepts 
to define the behaviour of various participants, by using different pools. The interaction amongst participants is 
specified through collaboration diagrams. Supporting the execution of these hybrid processes requires bridging the 
gap between high-level BPMN and the programming code that IoT devices can execute. These approaches use a three-
step procedure: (1) translation of the process model to a Wireless Sensor Network (WSN) neutral intermediate 
language; (2) translation of the intermediate code to a platform specific executable code; and (3) deployment of the 
executable code into IoT devices. 

Indeed, with these approaches, business modellers can define both business processes and IoT behaviour at the 
same (high) level of abstraction. However, they still use non-standard BPMN to integrate, for instance, IoT device 
information into business processes and they generate IoT device specific code, so that it must be generated again for 
each different IoT device. 

In our work, we only use standard BPMN to define both central and IoT behaviour of business processes. We use 
the BPMN resource element to integrate IoT device information into the model, and we translate the BPMN that 
defines the IoT behaviour into Callas bytecode [15].  We use the Callas sensor programming language as an alternative 
to the target platform-specific languages taken by previous proposals, since it can be executed in every IoT device for 
which there is a Callas virtual machine available. This way, we abstract hardware specificities and make executable 
code portable among IoT devices from different manufacturers. Business process and IoT devices communicate via 
web services. In addition, Callas also supports remote IoT devices reprogramming, a feature that is the first step to 
support ad-hoc changes [21] in the parts of business processes that define IoT behaviour.  

This paper is organised as follows. Section 2 presents the related work, while section 3 describes our proposal to 
model IoT behaviour within BPMN business processes and how we translate it to Callas source code. Finally, section 
4 concludes the paper and hints for future work directions. 

2. Related work 

Business modellers define business processes with languages such as Web Services Business Process Execution 
Language (WS-BPEL) [18] or BPMN, which use an abstraction level closer to the domain being specified. At this 
level, modellers should not deal with IoT devices heterogeneity and specificities: IoT devices use different operating 
systems (e.g., TinyOS, Contiki [8]), different programming languages (e.g., nesC [10], Protothreads), and different 
communication protocols. Traditionally, web services are used to provide IoT information and functionalities, 
abstracting and encapsulating low-level details. More recent approaches take a step forward by supporting IoT 
behaviour definition within the business process [5, 16].  

Zen, Guo and Cheng survey two approaches to implement IoT web services [24].  Some works provide web services 
directly in IoT devices: they simplify, adapt, and optimize Service-Oriented Architecture (SOA) tools and standards 
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1. Introduction 

Nowadays, organisations use more and more business processes to capture, manage, and optimise their activities. 
In areas such as supply chain management, intelligent transport systems, domotics, or remote healthcare, business 
processes can gain a competitive edge by using the information and functionalities of IoT devices (sensors and 
actuators). Business processes use IoT information to incorporate real world data, to take informed decisions, optimise 
their execution, and adapt itself to context changes [14].  In addition, the increase in processing power of IoT devices 
enables them to take part in the execution of the business logic. This way, IoT devices can aggregate and filter data, 
and make decisions locally, by executing parts of the business logic whenever central control is not required, reducing 
both the amount of exchanged data and of central processing [13]. 

However, on the one hand, IoT devices are heterogeneous by nature. They differ in terms of communication 
protocols, interaction paradigms, and computing and storage power. On the other hand, business modellers define 
processes using high-level languages (such as Business Process Model and Notation version 2.0 [19], henceforth 
simply referred as BPMN), as they must know the domain, but do not need to have specific knowledge to program 
IoT devices, nor want to deal with their heterogeneity. 

Current approaches allow modellers to define both business processes and IoT devices behaviour at the same level 
of abstraction, using, for instance, BPMN-based approaches [1, 2, 3, 4, 22, 23]. BPMN already provides the concepts 
to define the behaviour of various participants, by using different pools. The interaction amongst participants is 
specified through collaboration diagrams. Supporting the execution of these hybrid processes requires bridging the 
gap between high-level BPMN and the programming code that IoT devices can execute. These approaches use a three-
step procedure: (1) translation of the process model to a Wireless Sensor Network (WSN) neutral intermediate 
language; (2) translation of the intermediate code to a platform specific executable code; and (3) deployment of the 
executable code into IoT devices. 

Indeed, with these approaches, business modellers can define both business processes and IoT behaviour at the 
same (high) level of abstraction. However, they still use non-standard BPMN to integrate, for instance, IoT device 
information into business processes and they generate IoT device specific code, so that it must be generated again for 
each different IoT device. 

In our work, we only use standard BPMN to define both central and IoT behaviour of business processes. We use 
the BPMN resource element to integrate IoT device information into the model, and we translate the BPMN that 
defines the IoT behaviour into Callas bytecode [15].  We use the Callas sensor programming language as an alternative 
to the target platform-specific languages taken by previous proposals, since it can be executed in every IoT device for 
which there is a Callas virtual machine available. This way, we abstract hardware specificities and make executable 
code portable among IoT devices from different manufacturers. Business process and IoT devices communicate via 
web services. In addition, Callas also supports remote IoT devices reprogramming, a feature that is the first step to 
support ad-hoc changes [21] in the parts of business processes that define IoT behaviour.  

This paper is organised as follows. Section 2 presents the related work, while section 3 describes our proposal to 
model IoT behaviour within BPMN business processes and how we translate it to Callas source code. Finally, section 
4 concludes the paper and hints for future work directions. 

2. Related work 

Business modellers define business processes with languages such as Web Services Business Process Execution 
Language (WS-BPEL) [18] or BPMN, which use an abstraction level closer to the domain being specified. At this 
level, modellers should not deal with IoT devices heterogeneity and specificities: IoT devices use different operating 
systems (e.g., TinyOS, Contiki [8]), different programming languages (e.g., nesC [10], Protothreads), and different 
communication protocols. Traditionally, web services are used to provide IoT information and functionalities, 
abstracting and encapsulating low-level details. More recent approaches take a step forward by supporting IoT 
behaviour definition within the business process [5, 16].  

Zen, Guo and Cheng survey two approaches to implement IoT web services [24].  Some works provide web services 
directly in IoT devices: they simplify, adapt, and optimize Service-Oriented Architecture (SOA) tools and standards 
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to deal with the well-known limitations of resource-constrained devices. Other approaches provide web services 
indirectly through middleware systems. This way, IoT devices that do not support web services can still be accessed.  

Taking a step forward on integrating IoT into business processes, some authors propose the explicit integration of 
IoT concepts into business process models [7, 11, 17]. In [7, 11], the authors extend WS-BPEL with context variables 
to monitor IoT information, abstracting the set of operations to interact with IoT devices. In [17], the authors define 
how to express IoT devices and their services in an IoT-aware process model. 

GWELS [12] provides a graphical user interface to design IoT processes and send them automatically to IoT 
devices as a sequence of operation calls that have been uploaded to IoT devices in advance. It uses proprietary 
communication protocols to interact with IoT devices. IoT processes are provided as web services and, in this way, 
can also be integrated with business processes. 

The above approaches assume a centralised control of the process execution, i.e., the central system executes and 
coordinates processes and communicates with IoT devices using web services. However, business modellers cannot 
define the behaviour of WSNs, they can only use services whose behaviour is previously defined. 

In a decentralised approach, IoT devices (sensors and actuators) can work together to execute parts of business 
processes, reducing the number of exchanged messages and promoting central process engine scalability, since 
information is processed locally. Another important advantage, present in many scenarios, is that the lower network 
traffic between the central system and IoT devices improves battery lifetime of IoT devices. To model business 
processes according to this decentralised approach, business modellers need a unified framework where they can also 
specify IoT devices behaviour and its interactions with the central system. BPMN already provides the concepts to 
define the behaviour of various participants by using different pools; their interactions are specified through 
collaboration diagrams. 

Caracas and Bernauer [1, 2, 3] use standard BPMN to model both central and IoT behaviour. However, IoT device 
information is integrated to the BPMN model in a non-standard way, by appending it to the pool name or with 
additional attributes added to the pool element. They translate the BPMN that defines the IoT behaviour to target IoT 
device specific code. The authors state that the sensor code they generate does not perform much worse than hand-
written code.  

Casati et al. propose the makeSense framework [4]. They extend BPMN with attributes to support the new intra-
WSN participant, which contains the part of the process that IoT devices will execute. To model IoT behaviour, 
makeSense uses a second meta model [4, 6, 23]. To generate executable IoT device code, they use two models: the 
application capability model has information about available sensors and actuators and their operations, while the 
system capability model has additional information about the target IoT devices that is used to generate different code 
based on IoT device capabilities. MakeSense uses its own message format and transmission encoding to support the 
communication between the central process engine and IoT devices [23]. 

In our work, we only use standard BPMN to define all the business process and IoT device information is added to 
the model by using the BPMN resource element. We translate the BPMN that defines the IoT behaviour into Callas 
bytecode [15], a non-platform-specific language that IoT devices with an available Callas virtual machine can execute. 

3. From BPMN modelling to IoT device execution 

This section describes how we use the BPMN language to model IoT behaviour within a business process, at the 
same level of abstraction. After that, it presents how to translate the BPMN IoT behaviour to Callas code and how to 
deploy and execute it in IoT devices. 

3.1. Using BPMN to model IoT behaviour 

As BPMN-based approaches the related work presents, we use pool elements to distinguish and model both central 
and IoT devices behaviour. The interaction amongst participants (i.e., pools) is specified through collaboration 
diagrams.  

Figure 1 presents a use case scenario. It is a simplified process for automatic irrigation control. The process includes 
two participants, whose behaviour we model in two separated pools. The central process (named Irrigation) receives 
a notification when the IoT Irrigation process detects a water leek that needs human intervention to be fixed. The IoT 
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Irrigation process, periodically, wakes up to irrigate the garden. The process starts by reading the rainfall sensor, and 
only starts irrigating if it is not raining; otherwise, it stops. Upon finishing the irrigation task, the process reads the 
flowmeter to make sure it is sealed. If water still flows, the IoT Irrigation process sends an alert to the central process. 
This simplified process omits a lot of details, such as the capability to change both timers (the irrigation interval and 
duration) of the IoT Irrigation process, for instance. 

 

 

Figure 1 - BPMN use case scenario 

To model IoT devices behaviour, we select a subset of BPMN, avoiding the use of two different meta models. The 
selection of the subset considers two main factors: 

1. to model IoT devices behaviour, business modellers do not need all BPMN elements, as stated by Caracas [3]. 
This way, we include in our subset the BPMN elements that Caracas use to model the IoT programming 
patterns, and 

2. as Callas already considers general IoT devices limitations, it does not support, for instance, parallel tasks, and 
it is a block-structured language, unlike BPMN that supports unstructured control flow, allowing gateways to 
loop back and forward. Figure 2 illustrates an example of a flow control that we do not support in IoT 

behaviour definitions, since there is no way to represent the flow from Task B to Task A. 
 

The BPMN subset includes the following elements: 
 Flow control: events (message received, timers, and the start and end events), activities (service task, send 

task, and receive task), and gateways (Exclusive Gateway and Merging Exclusive Gateway); 
 Connecting objects: sequence flow, message flow, and data associations; and 
 Data: data objects. 

 

 

Figure 2 - Example of a non-block control flow structure 

We use script tasks to handle the interaction with the hardware of IoT devices. For instance, in our use case 
example, IoT devices have rainfall sensors, and we need to model the data acquisition. For that, we use the script task 
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to deal with the well-known limitations of resource-constrained devices. Other approaches provide web services 
indirectly through middleware systems. This way, IoT devices that do not support web services can still be accessed.  

Taking a step forward on integrating IoT into business processes, some authors propose the explicit integration of 
IoT concepts into business process models [7, 11, 17]. In [7, 11], the authors extend WS-BPEL with context variables 
to monitor IoT information, abstracting the set of operations to interact with IoT devices. In [17], the authors define 
how to express IoT devices and their services in an IoT-aware process model. 

GWELS [12] provides a graphical user interface to design IoT processes and send them automatically to IoT 
devices as a sequence of operation calls that have been uploaded to IoT devices in advance. It uses proprietary 
communication protocols to interact with IoT devices. IoT processes are provided as web services and, in this way, 
can also be integrated with business processes. 

The above approaches assume a centralised control of the process execution, i.e., the central system executes and 
coordinates processes and communicates with IoT devices using web services. However, business modellers cannot 
define the behaviour of WSNs, they can only use services whose behaviour is previously defined. 

In a decentralised approach, IoT devices (sensors and actuators) can work together to execute parts of business 
processes, reducing the number of exchanged messages and promoting central process engine scalability, since 
information is processed locally. Another important advantage, present in many scenarios, is that the lower network 
traffic between the central system and IoT devices improves battery lifetime of IoT devices. To model business 
processes according to this decentralised approach, business modellers need a unified framework where they can also 
specify IoT devices behaviour and its interactions with the central system. BPMN already provides the concepts to 
define the behaviour of various participants by using different pools; their interactions are specified through 
collaboration diagrams. 

Caracas and Bernauer [1, 2, 3] use standard BPMN to model both central and IoT behaviour. However, IoT device 
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deploy and execute it in IoT devices. 
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As BPMN-based approaches the related work presents, we use pool elements to distinguish and model both central 
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Read Rainfall that corresponds to an external invocation in Callas. They match the underlying IoT devices hardware 
and their definition includes enough information to derive its signature, i.e., the task name, its return type, and the 
type of its parameters.  

To specify the IoT devices that will execute processes, we use the BPMN resource class, whose parameters are 
applied in queries at runtime for resource assignment. This way, we also avoid integrating information about IoT 
devices in a non-standard way into BPMN models. Figure 3 presents a simplified example based on our use case 
scenario, that can be reused in other business processes. 

 
<resource id="IoTdevice" name="IoTdevice"> 
   <resourceParameter id="deviceType" name="deviceType" type="xs:string"/> 
   <resourceParameter id="address" name="address" type="xs:string"/> 
   <resourceParameter id="operations" name="operations" type="ns1.xsd:tOperations"/> 
</resource> 
… 
<performer id="performer" name="performer"> 
     <resourceRef>IoTdevice<resourceRef> 
     <resourceParameterBinding parameterRef="deviceType"> 
       <formalExpression>irrigationDevice<formalExpression> 
     </resourceParameterBinding> 
</performer> 

Figure 3 - Example of using the BPMN resource class to perform the binding with IoT devices 

3.2. Translating BPMN to Callas code 

Unlike the approaches of the related work that translate IoT devices behaviour to platform-specific code, we 
translate it into Callas bytecode [15]. By choosing the Callas sensor programming language, we take advantage of 
some of its characteristics and functionalities. For instance, Callas takes, as a pattern, the path followed by the Java 
programming language, and proposes a virtual machine for IoT devices that abstracts hardware specificities and makes 
executable code portable among IoT devices from different manufacturers. The Callas language is founded on a well-
established formal semantics and, along with its virtual machine, guaranties statically that well-typed programs are 
free from certain runtime errors (type-safety) and that its virtual machine is sound, that is, its semantics corresponds 
to that of the Callas language. It includes some domain-specific sensor operations, such as for sending and for 
receiving messages from the network. These Callas operations are supported directly at the Callas virtual machine 
level, and may have different implementations depending on the hardware where it is deployed.† Other interactions 
with IoT devices hardware are performed by calling language external functions. This typically corresponds to 
operating system calls or to direct implementations (on the bare metal) of functions on the Callas virtual machine. The 
operations made available by each kind of device is described by a type in the Callas language, allowing the compiler 
to verify if the source code is adequate to run on a specific target device. A distinguished feature of the language is its 
ability to remotely deploy executable code, that we use to install the code in IoT devices, remotely. We also consider 
this feature as the first step to support ad-hoc changes [21] in IoT business process parts. 

Figure 4 presents the Callas source code that implements the IoT Irrigation pool behaviour described in Figure 3. 
The program starts by declaring two module types: Nil, an empty module type used to represent void function returns; 
and the Sensor module that defines the message signatures that flow on IoT devices. All sensors in the network 
implement this same interface. The Sensor module implementation spans from line 9 to line 20. Each function is 
implemented using the def construct. The startWSNIrrigation function reads the rainfall sensor (using the readRainfall 
external function) and binds it to the isRaining variable. Then, in case it is not raining, the function continues by 
invoking the irrigate external function. The system irrigates for 20 minutes, stops by calling the stopIrrigation 

 

 
† Currently the CVM is available for SunSpot, TinyOS, Arduino, VisualSense, and Unix platforms. More information can be found in the 

Callas website http://www.dcc.fc.up.pt/callas/. 
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function, and checks whether the water valve is sealed. It sends and alerts to the central process in case there is a water 
leak (send waterLeakAlertfunction). 

The main program (lines 22–27) loads the module into the device’s memory and installs a timer to call 
startWSNIrrigation every day. 

 
defmodule Nil: 1 
  pass 2 
 3 
defmodule Sensor: 4 
  Nil startWSNIrrigation () 5 
   Nil waterLeakAlert () 6 
 7 
# declare module Sensor 8 
module m of Sensor: 9 
  def startWSNIrrigation (self): 10 
    isRaining = extern readRainfall () 11 
    if not isRaining : 12 
      extern irrigate () 13 
      sleep (20∗60∗1000) 14 
      extern stopIrrigation () 15 
      curFlowmeter = extern readFlowmeter () 16 
      if curFlowmeter > 0 17 
         send waterLeakAlert () 18 
  def waterLeakAlert (self): 19 
    pass 20 
 21 
mem = load # load the sensor memory 22 
newMem = mem || m  # update with Sampler module m 23 
store newMem               # replace the sensor memory 24 
 25 
# invoke tasks every day 26 
startWSNIrrigation () every 24∗60∗60∗1000 27 

Figure 4 - The Callas code of the use case scenario 

The translation from BPMN to Callas is divided into three phases: (1) parse of BPMN XML files; (2) syntactic and 
semantic validations; and (3) translation into Callas. 

For the parsing part, we take the BPMN XML file and create an abstract syntax tree (AST) representation. At this 
phase, we rule out programs with constructs that are not compliant with the BPMN subset we define for modelling 
IoT devices behaviour. 

The second phase traverses the AST multiple times for validations. As for additional syntactic validations, it 
verifies that (a) the control flow is plausible for being translated into a block-structured language, and that (b) the 
domain-specific script tasks are valid. The former checks that tasks and events only have one input and one output 
sequence flow and that every possible control flow path from an outgoing exclusive gateway arrives at the 
corresponding incoming exclusive gateway. Otherwise, it denotes a control flow only possible to represent using a 
goto statement (absent in Callas). This validation is challenging, since we need to figure out the correspondence 
between the outgoing and the incoming exclusive gateways, and that control flow may include various exclusive 
gateways (corresponding to nested if statements in structured languages). As for the latter, valid domain-specific script 
tasks have well-known names fixed in advance associated with information specific per each task. 

Semantic validation checks that the domain-specific tasks are used correctly on what concerns the types of the data 
objects being used and that these types are in conformance with the domain-specific task signatures (also provided in 
advance). 

The translation from the AST into Callas proceeds as follows: 
 Event elements: (a) message received events are translated into function calls and the process triggered by 

these events are translated into function definitions. We figure out the function signature from the types of the 
values in the message. The function name can be set arbitrarily, since the whole interaction process is going to 
be generated automatically at compile time and set for both participants (the BPMN server and the IoT 
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Read Rainfall that corresponds to an external invocation in Callas. They match the underlying IoT devices hardware 
and their definition includes enough information to derive its signature, i.e., the task name, its return type, and the 
type of its parameters.  

To specify the IoT devices that will execute processes, we use the BPMN resource class, whose parameters are 
applied in queries at runtime for resource assignment. This way, we also avoid integrating information about IoT 
devices in a non-standard way into BPMN models. Figure 3 presents a simplified example based on our use case 
scenario, that can be reused in other business processes. 

 
<resource id="IoTdevice" name="IoTdevice"> 
   <resourceParameter id="deviceType" name="deviceType" type="xs:string"/> 
   <resourceParameter id="address" name="address" type="xs:string"/> 
   <resourceParameter id="operations" name="operations" type="ns1.xsd:tOperations"/> 
</resource> 
… 
<performer id="performer" name="performer"> 
     <resourceRef>IoTdevice<resourceRef> 
     <resourceParameterBinding parameterRef="deviceType"> 
       <formalExpression>irrigationDevice<formalExpression> 
     </resourceParameterBinding> 
</performer> 

Figure 3 - Example of using the BPMN resource class to perform the binding with IoT devices 

3.2. Translating BPMN to Callas code 

Unlike the approaches of the related work that translate IoT devices behaviour to platform-specific code, we 
translate it into Callas bytecode [15]. By choosing the Callas sensor programming language, we take advantage of 
some of its characteristics and functionalities. For instance, Callas takes, as a pattern, the path followed by the Java 
programming language, and proposes a virtual machine for IoT devices that abstracts hardware specificities and makes 
executable code portable among IoT devices from different manufacturers. The Callas language is founded on a well-
established formal semantics and, along with its virtual machine, guaranties statically that well-typed programs are 
free from certain runtime errors (type-safety) and that its virtual machine is sound, that is, its semantics corresponds 
to that of the Callas language. It includes some domain-specific sensor operations, such as for sending and for 
receiving messages from the network. These Callas operations are supported directly at the Callas virtual machine 
level, and may have different implementations depending on the hardware where it is deployed.† Other interactions 
with IoT devices hardware are performed by calling language external functions. This typically corresponds to 
operating system calls or to direct implementations (on the bare metal) of functions on the Callas virtual machine. The 
operations made available by each kind of device is described by a type in the Callas language, allowing the compiler 
to verify if the source code is adequate to run on a specific target device. A distinguished feature of the language is its 
ability to remotely deploy executable code, that we use to install the code in IoT devices, remotely. We also consider 
this feature as the first step to support ad-hoc changes [21] in IoT business process parts. 

Figure 4 presents the Callas source code that implements the IoT Irrigation pool behaviour described in Figure 3. 
The program starts by declaring two module types: Nil, an empty module type used to represent void function returns; 
and the Sensor module that defines the message signatures that flow on IoT devices. All sensors in the network 
implement this same interface. The Sensor module implementation spans from line 9 to line 20. Each function is 
implemented using the def construct. The startWSNIrrigation function reads the rainfall sensor (using the readRainfall 
external function) and binds it to the isRaining variable. Then, in case it is not raining, the function continues by 
invoking the irrigate external function. The system irrigates for 20 minutes, stops by calling the stopIrrigation 

 

 
† Currently the CVM is available for SunSpot, TinyOS, Arduino, VisualSense, and Unix platforms. More information can be found in the 
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function, and checks whether the water valve is sealed. It sends and alerts to the central process in case there is a water 
leak (send waterLeakAlertfunction). 

The main program (lines 22–27) loads the module into the device’s memory and installs a timer to call 
startWSNIrrigation every day. 

 
defmodule Nil: 1 
  pass 2 
 3 
defmodule Sensor: 4 
  Nil startWSNIrrigation () 5 
   Nil waterLeakAlert () 6 
 7 
# declare module Sensor 8 
module m of Sensor: 9 
  def startWSNIrrigation (self): 10 
    isRaining = extern readRainfall () 11 
    if not isRaining : 12 
      extern irrigate () 13 
      sleep (20∗60∗1000) 14 
      extern stopIrrigation () 15 
      curFlowmeter = extern readFlowmeter () 16 
      if curFlowmeter > 0 17 
         send waterLeakAlert () 18 
  def waterLeakAlert (self): 19 
    pass 20 
 21 
mem = load # load the sensor memory 22 
newMem = mem || m  # update with Sampler module m 23 
store newMem               # replace the sensor memory 24 
 25 
# invoke tasks every day 26 
startWSNIrrigation () every 24∗60∗60∗1000 27 

Figure 4 - The Callas code of the use case scenario 

The translation from BPMN to Callas is divided into three phases: (1) parse of BPMN XML files; (2) syntactic and 
semantic validations; and (3) translation into Callas. 

For the parsing part, we take the BPMN XML file and create an abstract syntax tree (AST) representation. At this 
phase, we rule out programs with constructs that are not compliant with the BPMN subset we define for modelling 
IoT devices behaviour. 

The second phase traverses the AST multiple times for validations. As for additional syntactic validations, it 
verifies that (a) the control flow is plausible for being translated into a block-structured language, and that (b) the 
domain-specific script tasks are valid. The former checks that tasks and events only have one input and one output 
sequence flow and that every possible control flow path from an outgoing exclusive gateway arrives at the 
corresponding incoming exclusive gateway. Otherwise, it denotes a control flow only possible to represent using a 
goto statement (absent in Callas). This validation is challenging, since we need to figure out the correspondence 
between the outgoing and the incoming exclusive gateways, and that control flow may include various exclusive 
gateways (corresponding to nested if statements in structured languages). As for the latter, valid domain-specific script 
tasks have well-known names fixed in advance associated with information specific per each task. 

Semantic validation checks that the domain-specific tasks are used correctly on what concerns the types of the data 
objects being used and that these types are in conformance with the domain-specific task signatures (also provided in 
advance). 

The translation from the AST into Callas proceeds as follows: 
 Event elements: (a) message received events are translated into function calls and the process triggered by 

these events are translated into function definitions. We figure out the function signature from the types of the 
values in the message. The function name can be set arbitrarily, since the whole interaction process is going to 
be generated automatically at compile time and set for both participants (the BPMN server and the IoT 
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devices). Upon message reception, the Callas virtual machine takes the responsibility of invoking the correct 
message handler function; (b) timers are directly supported by Callas. For each timer in the model we define a 
correspondent timer in Callas that invokes a function encoding the timer behaviour; (c) the end event is 
twofold: when it happens inside a process, it is translated into a return statement inside the function that 
models the process; when it marks the end of the top-level process there are multiple ways to interpret it. The 
simplest is just to ignore the event, since we can think of a IoT program as a never-ending program, always 
ready to handle new requests. The other extreme is to end the Callas virtual machine, but then we need to get 
explicit access to the IoT device hardware to reset it, or put in place an additional software procedure to reset 
the IoT devices remotely. We have decided to follow the former option. 

 Activity elements: send and receive tasks have a direct correspondence with the send and receive constructs 
from the language. The script tasks we support are predefined and implemented as part of a Callas library for 
the BPMN subset. Function readRainfall is an example of a script tasks (vide Figure 4). 

 Gateway elements: Exclusive gateways are represented by if statements. In case the gateway has more than 
two alternatives, it is translated into a series of nested if−else statements. Merging exclusive gateway is 
ignored during the translation process, since its behaviour is captured by the Callas sequential composition 
statement. It is just used during validation as described above. 

 Connecting object elements: sequence flows are modelled by Callas control flow mechanisms, which is 
sequential composition, branching, looping, and function calls. The validation phase guarantees that the IoT 
BPMN model can be represented by these control flow primitives. Message flows are initiated with a send 
task, concluded with a receive task, and the flow itself is supported by the underlying data layer of the 
communication protocol stack of IoT devices. 

 Data elements: data objects and their associations are modelled by Callas program variables that store objects 
and, when used in expressions, represent data associations, capturing the data flows specified at the BMPN 
model. 

During the whole translation procedure, we keep track of each BPMN element identification, defined in the XML 
model file. We use them to map the errors we unveil during the validation and the translation phases, and report them 
to modellers in the BPMN design tool context. 

Figure 4 contains the result from translating the IoT Irrigation pool modelled in Figure 2. 

3.3. Deployment and execution 

Deployment and execution phases include the installation of Callas bytecode in IoT devices as well as the creation 
of the web services to support the communication between the process execution engine (jBPMN) and IoT devices. 

The steps our deployment algorithm performs are the following: 

1. generate the Callas code and deploy it to the IoT device by invoking the install code service. For that, we 
provide the target IoT device identification taken from the IoT device database, by using a query based on the 
parameters of the resource, and the bytecode produced during the Callas compilation; 

2. remove IoT pools from the BPMN model file, since this behaviour is going to be performed by IoT devices, 
instead of the jBPM server; 

3. update the BPMN model file by setting send message tasks (or throw events) that target the IoT pool to use 
IoT web services, providing its address; and 

4. for each receive message tasks (or catch event) that initiates at an IoT pool, we take its address and pass it to 
the IoT devices so then can deliver messages using the jBPM RESTful API. 

3.4. Prototype 

In our prototype, we use the Eclipse IDE [9] and the jBPM [20], a BPMN server from JBoss. Our irrigation use 
case is composed of two components: the IoT devices and the application. For the IoT side, the one installed in the 
garden, we devised a hardware board for controlling irrigation. The board uses the ATmega644PA processor from 
Atmel corporation. We adapted the Callas virtual machine for this processor and programmed a firmware that controls 
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the garden’s irrigation following a programmable schedule. The devices address directly jBPM via its RESTful API; 
likewise, the application can address each IoT device using its service address. The application includes several 
irrigation related processes modeled and deployed with our proposal. 

4. Conclusion and Future Work 

The IoT opens an opportunity to create a new generation of business processes that can benefit from IoT ubiquity, 
taking advantage of their computational power, networking, and sensing capabilities. IoT devices can even execute 
parts of the business logic. 

The work we present in this paper allows modellers to define IoT behaviour within business process and with the 
same level of abstraction, by only using standard BPMN. By translating BPMN, the IoT behaviour part, into Callas, 
we generate neutral-platform portable code, which can also be sent to IoT devices remotely. Our approach opens new 
opportunities to bring together process modelling and information provided by IoT devices. Modellers do not need to 
cope with IoT specificities, and use BPMN without any extensions; Callas allows to abstract from the hardware, 
making the generated code able to run on different devices, if these devices offer the required functionalities. 
Moreover, the Callas ability for remote reprogramming facilitates code deployment and adds support for dynamic ad- 
hoc business process changes. 

As future work, we want to support the automatic decomposition of business process to determine which process 
parts can be executed by IoT devices. 
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devices). Upon message reception, the Callas virtual machine takes the responsibility of invoking the correct 
message handler function; (b) timers are directly supported by Callas. For each timer in the model we define a 
correspondent timer in Callas that invokes a function encoding the timer behaviour; (c) the end event is 
twofold: when it happens inside a process, it is translated into a return statement inside the function that 
models the process; when it marks the end of the top-level process there are multiple ways to interpret it. The 
simplest is just to ignore the event, since we can think of a IoT program as a never-ending program, always 
ready to handle new requests. The other extreme is to end the Callas virtual machine, but then we need to get 
explicit access to the IoT device hardware to reset it, or put in place an additional software procedure to reset 
the IoT devices remotely. We have decided to follow the former option. 

 Activity elements: send and receive tasks have a direct correspondence with the send and receive constructs 
from the language. The script tasks we support are predefined and implemented as part of a Callas library for 
the BPMN subset. Function readRainfall is an example of a script tasks (vide Figure 4). 

 Gateway elements: Exclusive gateways are represented by if statements. In case the gateway has more than 
two alternatives, it is translated into a series of nested if−else statements. Merging exclusive gateway is 
ignored during the translation process, since its behaviour is captured by the Callas sequential composition 
statement. It is just used during validation as described above. 

 Connecting object elements: sequence flows are modelled by Callas control flow mechanisms, which is 
sequential composition, branching, looping, and function calls. The validation phase guarantees that the IoT 
BPMN model can be represented by these control flow primitives. Message flows are initiated with a send 
task, concluded with a receive task, and the flow itself is supported by the underlying data layer of the 
communication protocol stack of IoT devices. 

 Data elements: data objects and their associations are modelled by Callas program variables that store objects 
and, when used in expressions, represent data associations, capturing the data flows specified at the BMPN 
model. 

During the whole translation procedure, we keep track of each BPMN element identification, defined in the XML 
model file. We use them to map the errors we unveil during the validation and the translation phases, and report them 
to modellers in the BPMN design tool context. 

Figure 4 contains the result from translating the IoT Irrigation pool modelled in Figure 2. 

3.3. Deployment and execution 

Deployment and execution phases include the installation of Callas bytecode in IoT devices as well as the creation 
of the web services to support the communication between the process execution engine (jBPMN) and IoT devices. 

The steps our deployment algorithm performs are the following: 

1. generate the Callas code and deploy it to the IoT device by invoking the install code service. For that, we 
provide the target IoT device identification taken from the IoT device database, by using a query based on the 
parameters of the resource, and the bytecode produced during the Callas compilation; 

2. remove IoT pools from the BPMN model file, since this behaviour is going to be performed by IoT devices, 
instead of the jBPM server; 

3. update the BPMN model file by setting send message tasks (or throw events) that target the IoT pool to use 
IoT web services, providing its address; and 

4. for each receive message tasks (or catch event) that initiates at an IoT pool, we take its address and pass it to 
the IoT devices so then can deliver messages using the jBPM RESTful API. 

3.4. Prototype 

In our prototype, we use the Eclipse IDE [9] and the jBPM [20], a BPMN server from JBoss. Our irrigation use 
case is composed of two components: the IoT devices and the application. For the IoT side, the one installed in the 
garden, we devised a hardware board for controlling irrigation. The board uses the ATmega644PA processor from 
Atmel corporation. We adapted the Callas virtual machine for this processor and programmed a firmware that controls 
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the garden’s irrigation following a programmable schedule. The devices address directly jBPM via its RESTful API; 
likewise, the application can address each IoT device using its service address. The application includes several 
irrigation related processes modeled and deployed with our proposal. 

4. Conclusion and Future Work 

The IoT opens an opportunity to create a new generation of business processes that can benefit from IoT ubiquity, 
taking advantage of their computational power, networking, and sensing capabilities. IoT devices can even execute 
parts of the business logic. 

The work we present in this paper allows modellers to define IoT behaviour within business process and with the 
same level of abstraction, by only using standard BPMN. By translating BPMN, the IoT behaviour part, into Callas, 
we generate neutral-platform portable code, which can also be sent to IoT devices remotely. Our approach opens new 
opportunities to bring together process modelling and information provided by IoT devices. Modellers do not need to 
cope with IoT specificities, and use BPMN without any extensions; Callas allows to abstract from the hardware, 
making the generated code able to run on different devices, if these devices offer the required functionalities. 
Moreover, the Callas ability for remote reprogramming facilitates code deployment and adds support for dynamic ad- 
hoc business process changes. 

As future work, we want to support the automatic decomposition of business process to determine which process 
parts can be executed by IoT devices. 
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