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Abstract
In this review paper, we first introduce different sensors used in geometric sensing for obtaining the geometric information 
of various objects or parts. Next, two types of measurement errors are defined. Then, we discuss the existing methods for 
removing or correcting short-range and long-range measurement errors as well as noise at geometric discontinuity. Finally, 
some conclusions are drawn and future research directions are provided.

Keywords Measurement noise · Geometric noise · Noise reduction · Geometric discontinuity · Laser scanning · Geometric 
information rectification

1 Introduction

Geometric sensing (GS) is a key procedure to generate 
digital models by acquiring the geometric information 
of existing objects via sensor technology. The geometric 
information obtained from GS can be used to reconstruct 
digital models in various disciplines such as measurement, 
computer-aided design/analysis/manufacturing, control, and 
gaming. A laser scanner is one type of geometric sensor 
and produces digital data of object surface on the basis of 
triangulation principle (Fig. 1a), in which the laser emitter, 
camera, and each surface point form a measurement trian-
gle. The edge length between the laser emitter and camera 
is known, and two angles at the laser emitter corner and the 
camera corner can be determined for each surface point. 
Thus, the location of the surface point (i.e., one end node of 
the triangle) is accurately computed based on trigonometry 
for objects at a short range of distance (less than several 
meters).

Three-dimensional flash LIDAR (LIght Detection And 
Ranging) is a 3D camera technique based on laser–radar par-
adigm. It captures both 3D point cloud and intensity (albedo) 
data. No extra camera is needed in this case for obtaining 
intensity information, as illustrated in Fig. 1d. LIDAR is 
based on the time-of-flight principle in which the distance 
of each surface point is determined by timing the round-trip 
time of a pulse of laser light. Since the speed of light is 
known, the travel distance of light pulse from each pixel of 
the sensor to the corresponding surface point is easily com-
puted. Each pixel of the sensor acts like a “3D smart” pixel 
which records both time of flight and intensity of surface 
point. Another type of sensor based on the time-of-flight 
principle is 3D laser rangefinder, which detects the distance 
of only one point in its direction view. The rangefinder needs 
to rotate itself or to use a system of rotating mirrors for 
detecting the range along different directions, as illustrated 
in Fig. 1c. A typical laser rangefinder can measure 10,000 
points per second for objects at a long-distance range (up to 
the order of kilometers) with a relatively low accuracy (the 
order of millimeters), compared with the accuracy of a tri-
angulation laser scanner (the order of tens of micrometers).

The time-of-flight rangefinder performs poorly at the 
edge or corner of an object, because the light scattering due 
to geometric discontinuity at the edge may send back false 
information about two different locations for one laser pulse 
or because laser light pulses seldom hit the exact edge and 
corner. Similarly, the triangulation scanner loses its meas-
urement accuracy at the edge or corner of an object because 
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of edge flare caused by geometric discontinuity. Even an 
averaging operation on multiple measurement points still 
generates a wrong estimation at the location of the edge or 
corner point. Laser triangulation sensors, one type of the 
most popular non-contact optical sensors for 2-m close range 
measurement [1–3], have a very low measurement accuracy 
because of coherent or speckle noise [4] and varying surface 
reflectance. This hinders their applications in tolerance-sen-
sitive metrology and reverse engineering. This paper will 
present the efforts and advances in existing studies for tack-
ling the aforementioned problems.

The rest of this paper is organized as follows. In Sect. 2, 
three major problems of measurement errors are introduced. 
Long-range measurement noise and its rectification are dis-
cussed in Sect. 3, followed by the correction of short-range 
measurement noise in Sect. 4. Section 5 is dedicated to 
the measurement errors at geometric discontinuity, and in 
Sect. 6, computational efficiency is discussed. Some con-
cluding remarks and future research directions are provided 
in Sect. 7. Because of a broad scope covered by this paper, 
it is impossible for the authors to mention all the published 
papers in this field. Our main goal is to present a relatively 
complete high-level picture about the state-of-the-art rather 
than giving an exhaustive list of existing studies.

2  Errors caused by measurement noise

Among all the types of geometric sensing techniques (laser 
scanning, time-of-flight range finding, structural lighting, 
stereo vision, etc.), there are three major unsolved problems, 
as illustrated in Fig. 2. The ghost points in Fig. 2a lead to a 
number of measurement outliers. These outliers can be con-
sidered as long-range measurement error. Depending upon 
the correlation among the outliers, we have isolated outliers 
and non-isolated clusters. The former is easy to be handled, 
while the latter poses a technical challenge especially when 
a cluster of outliers is non-isolated, i.e., the cluster is closely 
attached to the main surface of the scanned part.

The second major problem is that measurement errors 
tend to be much greater at C1 discontinuity, where sharp 
edges or corners are located, as illustrated in Fig. 2b. This 
is caused by light scattering at a sharp edge or corner. In the 
case of rangefinder, a laser beam will normally miss its col-
lision with a point that is exactly on a sharp edge. Figure 3 
illustrates two possible types of errors caused by independ-
ent piecewise fitting.

The third problem in Fig. 2c would result in some miss-
ing data. Semantic feature extrapolation and geometric 

Fig. 1  Examples of geometric sensing principles and sensors

Fig. 2  Major problems with geometric sensing [4]



Engineering with Computers 

1 3

discontinuity knowledge database are two possible ways to 
tackle it. This problem is out of the scope of this paper. In 
addition, Fig. 4 shows a serious threat to geometric sensing 
caused by the multiple reflections on shinny metallic sur-
faces of mechanical parts and the scattering of light inside 
translucid materials. Besides the outliers, a large quantity 
of small-range measurement noise may be generated. In the 
next section, the existing efforts in removing or correcting 
long-range measurement outliers are reviewed.

There were very few investigations on the distribution of 
measurement errors over a surface of a scanned part. Chan 
[5] produced a color error map of a laser probe, Hymarc 
45C in Fig. 5a, which demonstrates the spatial distribution 
of measurement error on a rectangular face of a calibration 
target. Shen [6] demonstrated measurement error of an LDI 

laser scanner in Fig. 5b in which the error was enlarged by 
50 times in vertical direction. The measurement error of 
the laser probe is at least 10–20 times larger than that of a 
touch probe. Therefore, the accurate correction of laser sen-
sor measurement is crucial for metrology and quality con-
trol. Several researchers investigated the effect of different 
operation parameters on the digitizing errors of laser scan-
ners [7–11]. Some simulation models for laser probes were 
established [10, 12, 13]. Measurement error of touch probes 
or laster sensors may be caused by multiple factors, includ-
ing operator, material, surface property, and sensor itself.

3  Methodologies for handling long‑range 
measurement error—outliers

Many previous studies have been dedicated to reducing or 
removing measurement outliers. In this paper, we categorize 
these studies into the two following groups.

3.1  Approaches with an assumption of rare outliers

A mono-oriented grouping method was proposed by Xie 
et al. [15] for identifying long-range outliers. The “mono-
oriented” group was defined as all the grid points of a volu-
metric grid in the group with the same orientation, as illus-
trated in Fig. 6. Discrete data points were first organized into 
an octree via the volumetric grid. Next, the grid points were 
clustered into mono-oriented groups via an active contour 
method. By assuming that outliers exist only in rare cases, 
each outlier cluster can be identified by two neighboring 
mono-oriented groups with the same orientation. The same 
orientation infers that the middle part must be an outlier 
cluster.

3.2  Approaches with an assumption of discrete 
outliers

A novel spectral surface reconstruction method was designed 
by Kolluri et al. [16] for handling noisy point clouds, as 
shown in Fig. 7. Their key idea was the use of spectral 
graph partitioning and Delaunay triangulation. First, a set 

Fig. 3  Potential problems caused by piecewise fitting

Fig. 4  Outlier cluster on a translucid surface

Fig. 5  Measurement error distribution

Fig. 6  Outlier cluster at the middle of two mono-oriented groups. 
(Source: Fig. 10b in [15])
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of Delaunay tetrahedrons is formed by a set of data points 
and eight bounding box vertices, and the data points also 
serve as dual Voronoi vertices. Next, a subset of the Voronoi 
vertices is selected as poles from which a pole graph, G, is 
generated and represented by a pole matrix, L. The graph 
is cut into two parts (inside and outside) by the eigenvector 
corresponding to the smallest eigenvalue of L. Consequently, 
each pole in the inside and outside part is labeled as “inside” 
and “outside,” respectively. Then, all the remaining Voronoi 
vertices (i.e., non-pole vertices) form another graph, H. The 
partitioning of H is based on a different goal to make a rela-
tively smooth surface with low genus. The Voronoi vertices 
of H are also labeled as either inside or outside. Finally, a 
surface reconstruction proceeds along the interface between 
inside and outside tetrahedrons. If all neighboring tetrahe-
drons of a data point belong to outside (or inside, but not 
both), this point is removed as an outlier. Unfortunately, only 
discrete point outliers were suited to this method  (Fig. 8).

3.3  Technical challenges

One very difficult challenge is non-isolated outlier clusters, 
as shown in Fig. 9a, where outliers are clustered and not 
separated from the main surface of a scanned part. In other 
words, these outliers are connected to each other as well as 
the main surface of physical objects. This type of outliers 
frequently exists in real-world laser scanning of mechanical 
components and cannot be processed by most of existing 
approaches. For instance, this non-isolated property is a big 
challenge to distance-based criteria [17], because distance 
between outliers in a cluster could be very small and the dis-
tance between the cluster and the main surface can be small 
too. As a result, distance becomes a less effective metric to 
spate outliers from regular data points. In another exam-
ple, the non-isolated connection also causes a trouble to the 
projection method [18] where a moving least square fitting 
plane or patch could be easily misaligned by non-isolated 
outlier clusters. Although the method in [18] can handle 
isolated outlier clusters, it is not suited to dealing with the 
non-isolated outlier clusters.

Shen et al. [19] were the scholars who first proposed a 
solution to tackle this type of outliers. There are three techni-
cal components in their approach:

A minimum variance principle is used to make a pre-
liminary label on each data point. The minimum variance 
principle implies that a larger data variance likely leads to a 
statistically dispersed point cloud, which probably belongs 
to outliers. The smallest eigenvalue ( �3 ) of a covariance 
matrix in a local point neighborhood is used as the mini-
mum variance.

Fig. 7  Spectral partition for removing discrete outliers. (Source: 
Fig. 1 in [16])

Fig. 8  Three criteria proposed by Weyrich et al. [17]

Fig. 9  Spectral moving removal of non-isolated outlier clusters [19]
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A bi-means clustering of a normalized histogram is uti-
lized to separate all the data points into two groups : poten-
tial outliers and potential data points. The task of identifying 
outliers is transformed to a data-clustering problem with two 
target categories: regular data points and outliers. This bi-
means clustering can be carried out by a number of existing 
algorithms such as Lloyd’s algorithm [20].

A surface propagation for a geometric coherence check 
is carried out to find all the estimated data points as well as 
estimated outliers. The propagation starts from a data point 
with low variance.

Figure 9 demonstrates the effectiveness of the spectral 
moving removal method for non-isolated outlier clusters. 
The original data model in the left sub-figure contains 
1,919,242 data points, and 11,921 outliers are removed in 
Fig. 9b. The execution time of the method was 2.3 min, 
which is faster than the method in [16].

Wang and Feng further advanced the method in [19] by 
proposing a majority voting method [21]. The concept of 
majority voting has been used in shape recognition and scene 
classification. In [21], regular data points serve as voters on 
classifying irregular points. With respect to each irregular 
point, only its neighboring regular points are selected as vot-
ers, while the regular points far away are not used. Based on 
the voting result, the current point is classified as a good data 
point if the majority of voters give a favorable vote. Other-
wise, it is considered as an outlier. Intuitively, this approach 
is more robust, because it is based on probability to decide 
the classification. One precondition to use this algorithm is 
that a certain portion of original data points can be identi-
fied as regular data points before the processing of irregular 
data points.

In summary, the research in the area of outlier removal 
tends to be matured in the past decade. The best algorithms 
have achieved a reasonably good accuracy of removal. One 
remaining challenge is the slow execution speed associated 
with those high-accuracy methods. This is crucial to the 
real-time applications, where time is a crucial factor.

4  Methodologies for handling short‑range 
measurement error—noise

For short-range measurement errors (i.e., local noise), many 
studies were conducted in the past. Different methods are 
grouped into five subsections below. Many approaches 
require a surface mesh as a precondition for handling this 
type of measurement errors. If an input is a set of discrete 
data points, an extra step is needed to convert the discrete 
data points into a surface mesh [22–24] for those methods 
that require a surface mesh.

4.1  Signal processing

In this group of approaches, signal-processing techniques 
were used to handle the short-range measurement errors. 
Typical methods include Laplacian [25–27], bilaplacian 
[28], mean filter [29], median filter [30, 31], alpha-trimming 
mean-median filter [32], Gaussian filter [33, 34], Weiner 
filter [35–37], band-pass filtering [37, 38], and Fourier trans-
form [39, 40].

Laplacian [25–27] is one of the earliest methods in this 
field. In a discrete case in Fig. 10a, the discrete Laplacian 
can be expressed by 

where CV is the current vertex, and Vi (i = 0.4) refers to 
neighboring vertices with respect to CV . The basic idea of 
Laplacian smoothing is to use VL as a correction vector to 
smooth out the position of CV . In other words, CV is updated 
by VL during a Laplacian smoothing process. To avoid overs-
moothing, a small-value (less than 1 and greater than 0) 
coefficient, � , is used, such that �VL will be the correction 
vector. Note that the Laplacian smoothing does not converge 
no matter how small � is. The benefit of using a small value 
� is that users can then use the number of iterations as a 
parameter to control the smoothing process.

The consequence of oversmoothing is volume shrinkage 
of the digital model. This can be eliminated via a volume-
preserving Laplacian smoothing proposed by Taubin [25] and 
Vollmer [27]. The basic idea of Vollmer’s approach is to push 
the vertices of a smoothed mesh back towards their previous 
location, as illustrated in Fig. 10b. For the sake of clarity, a 
two-dimensional mesh is drawn in this figure, in which Q1 
through Q5 are mesh vertices at their original positions. V2, 
V3, and V4 are the correction vectors of the conventional 
Laplacian smoothing for vertices Q2, Q3, and Q4, respec-
tively. To achieve a volume-preserving goal, vector V for each 
vertex is further modified by a vector B (Fig. 10b) as follows: 

(1a)Δf = VL =

4∑
i=0

[
Vi − CV

]
,

(1b)CV = CV + �VL,

(2)
�i = −

�

|||NeighborQi

|||

∑
j∈NeighborQi

�j,

Fig. 10  Laplacian filter on a surface mesh



 Engineering with Computers

1 3

where NeighborQi
 refers to a set of neighboring vertices of 

vertex �i . 
|||NeighborQi

||| means the number of neighboring 

vertices around �i . � is an another small-value constant, and 
its absolute value should be smaller than �.

One way to implement a mean filter in surface meshes 
[30] is to utilize the information of surface normal for each 
triangle, as shown in Fig. 11a. The mean of surface normal 
vectors of neighboring triangles is defined as a new vector 
M for each current triangle : 

where Ti and Tj represent two triangles. A
(
Tj
)
 and �

(
Tj
)
 

are the area and surface normal of triangle Tj , respectively. 
�Ti

 is the mean surface normal of triangle Ti , and is used to 
construct a correction vector for vertex i: 

 where �̃�Tj
 is the normalized vector of �Ti

 , and �
(
Tj
)
 is the 

contribution of triangle Tj to the overall correction vector �� 
at vertex P. Neighbor(�) refers to a set of all neighboring 
triangles with respect to vertex P, as illustrated in Fig. 11b. 
�Tj

 is the centroid of triangle Tj . ��Tj
 is a vector from vertex 

P to centroid �Tj
 , and ⋅ refers to a vector dot product. Equa-

tion (4a) is the main formula for the mean filter of surface 
meshes [30].

(3)�Ti
=

1∑
j∈Neighbor(Ti)

A
�
Tj
�

�
j∈Neighbor(Ti)

A
�
Tj
�
�
�
Tj
�
,

(4a)�� =
1∑

j∈Neighbor(�) A
�
Tj
� �

j∈Neighbor(�)

A
�
Tj
�
�
�
Tj
�
,

(4b)𝐕
(
Tj
)
=
(
�̃�Tj

⋅ 𝐏𝐂Tj

)
�̃�Tj

,

(4c)�̃�Tj
=

𝐌Tj

𝐌Tj

,

Gaussian filter is commonly used in image denoising 
through a convolution of an image with a Gaussian function : 

where x and y are the two-dimensional coordinates. In image 
processing, these two are the coordinates on an image plane. 
In the case of surface mesh, x and y two mean coordinates 
of a local coordinate system with x–y plane as the tangent 
plane at a particular surface point. � is the standard devia-
tion, which is a parameter in the surface smoothing process. 
If it is considered as a variable, then we have an adaptive 
Gaussian smoothing scheme. In such a case, � can be a func-
tion of surface curvature. One way to implement a Gaussian 
filter on surface mesh is to modify the previous mean filter 
by adding a weighting factor into Eq. (3): 

where D
(
Tj
)
 is the weighting factor for triangle Tj . xj and 

yj refer to the coordinates of the centroid of triangle Tj in a 
local coordinate system with its origin at the centroid of Ti . 
The remaining part of the Gaussian filter is similar to that 
of the previous mean filter.

The evaluation of different signal-processing filters can 
be conducted on the basis of an L2 error metric of vertex 
position or surface normal between denoised mesh and 
the ground truth without noise. This means that synthetic 
noise is added to the mesh of ground truth for generating 
test cases. It is relatively difficult to carry out a quantitative 
comparison among different smoothing algorithms on sur-
face meshes obtained from real-world sensors. In such cases, 
qualitative visual evaluation is still feasible.

Generally speaking, numerical experiments indicate that 
a mean or Gaussian filter performs better than Laplacian 
smoothing on continuous surfaces, while a median filter 
excels at the sharp edges or corners. There is no substantial 
difference between mean and Gaussian filters in the con-
text of the previous implementations. Volume-preserving 
Laplacian smoothing is an exception and performs reason-
ably well. Different filters are normally implemented in an 
iterative way, in which there is no true convergence. In other 
words, users need to specify the number of iterations for a 
smoothing process.

(5)G(x, y) =
1

�
√
2�

exp

�
−
x2 + y2

2�2

�
,

(6)

�Ti
=

1∑
j∈Neighbor(Ti)

D
�
Tj
�
A
�
Tj
� �

j∈Neighbor(Ti)

D
�
Tj
�
A
�
Tj
�
�
�
Tj
�
,

(7)D
�
Tj
�
= G

�
xj, yj

�
=

1

�
√
2�

exp

�
−
xj
2 + yj

2

2�2

�
,

(a) Determination of (b) Determination of 

Ti

N(Ti) M(Ti)

N(Tj)

Tj

P

CTi
Ti

M(Ti)

M(Tj)

Tj

P

CTi C
TjVP

Fig. 11  Mean filter on a surface mesh
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4.2  Second‑order geometric flow

Geometric flow is a gradient flow associated with a func-
tional on a manifold. Mean curvature flow is a typical 
example of geometric flow on hypersurfaces in a Riemann-
ian manifold (such as smooth surfaces in three-dimensional 
Euclidean space). The basic idea of curvature flow is that 
the evolution rate of a surface is controlled by the magni-
tude of curvatures at different surface points. Since it can 
be described by a parabolic partial differential equation, 
smoothing effect is expected. The surface curvature flow is 
expressed as 

where �i and ni are the curvature and surface normal at a sur-
face point, and xi . � can be minimum principle curvature ( �2),  
maximum principle curvature ( �1), Gauss curvature ( �1�2), 
or mean curvature ( �1+�2

2
).

In the cases of surface meshes, discrete curvatures and 
surface normal can be estimated by a least-squares fitting 
over a neighborhood of a surface point [41]. Alternatively, 
curvature normal may be effectively computed by an ana-
lytical formula based on angles and vertex coordinates in a 
one-ring neighborhood [42]. The curvature flow is closely 
related to a diffusion process represented by 

where Δ is a Laplace operator, and can be approximated by 
Eq. (1).

Existing methods of the second-order geometric flow 
include mean curvature flow [42–46], area decreasing [47], 
and Laplacian of mean curvature [48]. The mean curvature 
flow was often used on implicit surfaces [49–51]. In com-
puter vision, curvature flows were used on curves [52–54]. 
In general, the mean curvature flow based on a one-ring 
neighborhood, although efficient, is less accurate, compared 
to the least-squares fitting approach. At sharp edges or cor-
ners, it needs a special treatment on the anisotropicity (see 
Sect. 5.1).

(8)
�xi

�t
= −�ini,

(9)
�x

�t
= Δx,

4.3  Multiresolution analysis

Multiresolution analysis was frequently used on triangle 
meshes [28, 38, 55–57]. The main purpose of this approach 
is to provide a multiresolution tool for editing surface 
meshes at different resolutions and surface smoothing can be 
a by-product of a subdivision process, which is a recursive 
procedure to replace each surface element (triangle or quad-
rilateral) with the same type of multiple smaller elements.

Loop subdivision surface [58] represents a smooth sur-
face that is obtained from a recursive subdivision process 
to refine an irregular triangle mesh into a piecewise linear 
approximation of the underlying smooth surface. Note that 
approximation rather than interpolation is used to achieve 
local modification property without impacting the global 
shape. The underlying concept is use of spline refinement. 
At each level of subdivision, there are two main sub-tasks:

division of each surface element into smaller ones 
(Fig. 12a);

update on the coordinates of vertices via masks in either 
Figs. 12b or 12c.

Recursive execution of the above two steps leads to a 
convergence to the target smooth surface, as illustrated 
in Fig. 13. Note that extraordinary vertices (such as cor-
ner points) need a special treatment and the right mask in 
Fig. 12b can be extended to the cases, where there are n 
neighboring vertices.

Catmull–Clark subdivision surface is an earlier algo-
rithm based on quadrilaterals [59]. Figure 14 illustrates the 
division of a quadrilateral into four smaller ones and masks 
for computing new coordinates of vertices at each level of 
subdivision.

Fig. 12  Loop subdivision surface (Source: Doug James)

Fig. 13  Example of loop subdivision surface (Source: Wikipedia)
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Subdivision normally starts from a coarse mesh and ends 
with a dense smooth mesh. If an input is a set of discrete 
data points, we need to convert the point cloud to a surface 
mesh first and then simplify the mesh to a coarse mesh [60, 
61]. Alternatively, a reverse subdivision process can be used 
[62]. The reverse subdivision starts from a dense curve or 
surface and ends with a coarse curve or surface, as illustrated 
in Fig. 15.

In general, multiresolution analysis is more suited to 
surface editing or simplification rather than smoothing. To 
achieve smoothing, discrete data points need to be converted 
to surface mesh first and the quality of the mesh should be 
good. Some algorithms demand a regular surface mesh as 
a precondition, which can be considered as a limitation to 
this approach.

4.4  Least‑squares fitting

Moving least-squares fitting [63] is a typical approach to 
remove surface noise, compared to a global least-squares 
fitting of the entire surface. As a local fitting, it is flexible 
to handle arbitrary shapes. The moving least-squares fitting 
within each local neighborhood consists of two main tasks:

a. determination of a local coordinate system;
b. update on the coordinates of all the discrete points 

within the neighborhood.

The neighborhood of a vertex p can be constructed from 
its two-ring vertices of a surface mesh or K nearest neighbor-
ing points in a k-d tree. The k-d tree is a space-partitioning 
data structure for organizing discrete data points in 3D space 
[64] and particularly suited for non-uniformly distributed 
points, compared to an octree. Principal component analysis 
[65] can be applied for estimating the surface tangent plane 
at vertex p through a covariance matrix over its neighboring 
discrete data points: 

where Nbhd(�) represents a set of neighboring vertices 
around vertex p. ⊗ is an outer product operator of two 
vectors. The eigenvectors 

(
�1, �2, �3

)
 and eigenvalues (

�1 ≥ �2 ≥ �3
)
of the matrix in Eq. (10) can be computed by 

Jacobi transformation [66]. The third eigenvector, �3 , rep-
resents a normal vector of the tangent plane, while�1 and 
�2 are a pair of base vectors for the tangent plane. A local 
coordinate system (x–y–z) is then formed as a coordinate 
system 

(
�1 − �2 − �3

)
.

With the determined local coordinate, a quadric patch 
may be used to perform a local least-squares fitting around 
vertex p: 

where coordinates (x, y, z) are measured in 
(
�1, �2, ��

)
 direc-

tions, respectively. A higher order (greater than 2) surface 
patch is not necessary under the constraint of computational 
efficiency, while a linear patch is too simple to be accurate. 
The linear least-squares estimation [41] of six coefficients ai 
for the quadric patch in Eq. (11) is expressed as 

*** 

(10)�� =
∑

�∈Nbhd(�)

(� − �)⊗ (� − �),

(11)z = f (x, y) = a1x
2 + a2xy + a3y

2 + a4x + a5y + a6,

(12a)�� = �,

(12b)� =

⎡
⎢⎢⎢⎣

x2
1
x1y1 y2

1
x1 y1 1.0

x2
2
x2y2 y2

2
x2 y2 1.0

⋯

x2
n
xnyn y2

n
xn yn 1.0

⎤
⎥⎥⎥⎦
,� =

⎡
⎢⎢⎢⎣

z1
z2
⋯

zn

⎤
⎥⎥⎥⎦
,� =

⎡
⎢⎢⎢⎣

a1
a2
⋯

a6

⎤
⎥⎥⎥⎦
,

Fig. 14  Catmull–Clark subdivision surface. (Source: Doug James)

Fig. 15  Smooth reverse subdivision that starts from (a) and ends with 
(d) [62]
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in which n is the number of vertices, Neighbor2−ring(�) . If the 
inverse of �T� exists, Eq. (12a) can be solved by Cholesky 
decomposition: 

Otherwise, a singular value decomposition [66] can be 
used to solve Eq. (12a). Thus, the Cholesky decomposition is 
tried first and can be used as a conditional flag to determine 
which one to use. In all of our numerical experiments, there 
was no single case of failure for the Cholesky decomposi-
tion of �T�.

After a local surface patch is computed, geometric cor-
rection of discrete data points within the neighborhood of 
vertex p may be conducted in either surface normal direc-
tion or z coordinate direction, as illustrated in Fig. 16a. The 
correction is essentially to bring each data point back to the 
surface of the local least-squares fitted patch. The efficacy of 
the moving least-squares fitting can be seen in Fig. 16b, c, in 
which a noisy monkey saddle surface is effectively corrected 
a smooth surface.

Overall, the main strengths of the moving least-squares 
fitting include

a. It is well suited to handling discrete noisy data points 
with arbitrary underlying smooth surface.

b. It possesses a salient property of convergence with 
an iterative implementation, compared to other exist-
ing methods. Figure 17 demonstrates the convergence 
of the moving least-squares fitting with quadric local 
patches and monkey saddle case in Fig. 16b, in which 
MQ, MN, MD, GS, BL, and VL represent the moving 
least-squares fitting, mean filter, median filter, Gaussian 
filter, bilateral filter, and volume-preserving Laplacian, 
respectively.

The main weaknesses of the moving least-squares fitting 
are

a. Its computational time is greater than most of existing 
methods by a factor of 2–10. Thus, it is suited only in the 

(12c)� =
(
�T�

)−1
�T�,

cases, where the accuracy is crucial as in high-precision 
industrial inspection and manufacturing.

b. It is not suited to geometric discontinuity (sharp edges 
and corners) without a special treatment. The special 
treatments are discussed in next section.

As a real-valued function, radial basis function (RBF) can 
be used in surface smoothing and reconstruction [67–73] via 
least-squares fitting. In essence, the surface of an object can 
be approximated by 

where N is the number of radial basis functions �
(
� − �i

)
 

and �i represents each center for different RBFs. �i refers 
to a weight and the set of all weights can be estimated by 
linear least squares.

Carr [74] used the following equation for reconstructing 
3D objects: 

(13a)s(�) =

N∑
i=1

�i�(� − �i),

(13b)s(�) = p(�) +

N∑
i=1

�i�(� − �i),

Fig. 16  Moving least-squares fitting of discrete data points [41]

Fig. 17  Convergence of different denoising algorithms [41]
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where p(x) is a low-degree polynomial and �
(
� − �i

)
 takes 

a form of polyharmonic function. With noisy data, the fol-
lowing optimization problem is formulated: 

in which parameter � is positive for controlling a balance 
between smoothness of the first term and data fidelity of the 
second term. �i refers to the position of a noisy data point. 
Figure 19 shows the smoothing effect of � when it increases.

Ohtake proposed another variation of radial basis func-
tions for approximating 3D scattered data [70]. An object 
surface is approximated by 

 where ∁ refers to a set of RBF centers, �i . pi(�) is a poly-
nomial for local base approximation for center i, and �i is a 
weight for center i for describing local details. ��i

(
� − �i

)
is 

a local radial basis function (Gaussian in particular) at center 
i with �i as a parameter of Gaussian kernel. To consider the 
partition of unity, ��i

(
� − �i

)
 can be replaced by 

A local RBF approximation is expressed as 

where �j is the unit normal of data point �j near the �-neigh-
borhood of center �i . dj is a weight that is proportional to the 
sum of pj − �i

2 and �i refers to K nearest neighbors of �j . 
�j ∈ [0, 1] is a confidence coefficient of �j . Equation (14c) 
means that the correction of data points is limited to the 
normal direction of each point.

(13c)min
s∈BL(2)(ℝ3)

�s2 +
1

N

N∑
i=1

(
s
(
�i
)
− �i

)2
,

(13d)

s
2 = ∫

ℝ3

[(
�2s(x)

�x2

)2

+

(
�2s(x)

�y2

)2

+

(
�2s(x)

�z2

)2

+ 2

(
�2s(x)

�x�y

)2

+2

(
�2s(x)

�x�z

)2

+ 2

(
�2s(x)

�y�z

)2
]
dx,

(14a)s(�) =
∑
�i∈∁

[pi(�) + �i]��i

(
� − �i

)
,

(14b)Φ�i
(� − �i) =

��i (� − �i)∑
j ��j (� − �j)

(14c)min
∑
j

dj��(pj − �i) �j,

(14d)dj = �j

K∑
i=1

pj − �i
2,

Another global RBF approximation is 

in which N and M represent the number of data points 
and the number of RBF centers, respectively. Treg = 10−5 . 
f (�) = 0 refers to a zero-level set that approximates the data 
point set ℘ =

{
�i
}
.

5  Methodologies for reducing measurement 
error at geometric discontinuity

When laser scanning sensor, LIDAR, and digital ranger 
finder are used to measure arbitrarily-shaped objects, sharp 
edges or corners of these objects often cause severe meas-
urement noise. Then, the shape evaluation of the objects 
is significantly influenced by the existence of these noisy 
points at geometric discontinuity. Figure 18 demonstrated 
two most prominent types of geometric discontinuities: C0 
and C1 discontinuity. All the other higher order geometric 
discontinuities are less important in considering a curve as 
being approximately smooth. Classic optimization methods 
(such as gradient descent and quasi-newton methods) fail at 
geometric discontinuity, where no gradient information is 
available and the traditional piecewise least-squares fitting 
tends to generate a small magnitude gap ( C0 discontinuity).

5.1  Anisotropic diffusion

Many attempts have been tried to maintain sharp features 
in a smoothing process. Anisotropic diffusion is one typical 
approach that was first proposed by Perona and Malik [75] 
in image processing and later used in different applications: 
height fields [45], triangle meshes [43, 76–79], level-set sur-
faces [80], surface and function [81], surface reconstruc-
tion [18] via fitting [82–89] or fairing [90–93]. It essentially 
relies upon the partition of the problem domain into feature 

(14e)min

∑N

i=1
dif

�
�i
�2

L2
∑N

i=1
di

+
Treg

M

M�
i=1

�
�i

�i

�2

,

Fig. 18  Geometric discontinuity
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and non-feature regions, and smoothing operation is applied 
only within the feature regions. A weighting function is nor-
mally used to avoid an explicit partition with a very small 
weighting factor for feature regions, where no operation is 
expected. This approach is not well suited to cases, where a 
large magnitude of noise exists in feature regions. In contrast 
to the attenuation, some researchers added an enhancement 
in feature regions [43, 44, 77]. This may potentially cause 
over-preserving features.

The feature regions can be identified using discrete curva-
tures. The curvature is normally small along the direction of 
edge and becomes large in the direction that is perpendicu-
lar to the edge. When the anisotropic diffusion is extended 
from 2D images to 3D surface meshes, one weakness of the 
approach is that it is suited to some singular points such as 
the tip of a cone, as shown in Fig. 20a, where both maximum 
and minimum principal curvatures are the same making the 

directions of principal curvatures meaningless and mislead-
ing. As a result, no edge enhancement should be applied 
for, any edge sharpening treatment along the two directions 
(k1, k2) . Another example is shown in Fig. 20b, where three 
edges meet at one point but are not orthogonal to each other. 
The anisotropic diffusion will not perform correctly at the 
tip point, where the directions of two principal curvatures 
do not match with the directions of at least two edges. One 
remedy is that all the edges are explicitly identified and indi-
vidually processed by the concept of anisotropic diffusion.

5.2  Bilateral filter

Bilateral filter is another approach for maintaining sharp 
features in a smoothing process [94, 95]. It is basically a 
weighted Gaussian filter in which a feature-preserving 
weighting function is used. One variation of the weighting 
function is to penalize a large variation in the distance of 
neighboring vertices to the target tangent plane [95], and 
another variation is based on the distance between the center 
vertex and neighboring elements [94]. Both schemes work 
properly to a certain extent. However, there are some special 
cases, where the schemes do not perform well as expected. 
For instance, if the tangent plane in Fig. 21a is determined 
by the average of normal vectors of two neighboring planes, 
Fleishman’s approach tends to smooth out the feature. In 
another possible case, if the center vertex is at a short dis-
tance from the sharp feature, the scheme may or may not 
work depending upon the location of neighboring vertices. 
In Fig. 21b, vertex �2 contributes a vector �2 in an incor-
rect way. On the other hand, the second variation (Jones’s 
scheme) works correctly if the center vertex is on a feature 

Fig. 19  RBF approximation of 
noisy data points [74]

Fig. 20  Two cases of singular points, where anisotropic diffusion 
does not perform well [41]

Fig. 21  Three cases where bilat-
eral filtering does not perform 
well [41]
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edge. However, if the center vertex P is at some distance 
from the feature edge, Jones’ scheme does not work in an 
entirely correct way, because the distance d2 may be even 
smaller than the distance d1 in Fig. 21c, such that the center 
vertex P makes a wrong contribution to the predictor.

Overall, bilateral filter or anisotropic diffusion is used for 
sharp edge enhancement [33, 43, 45, 75–77, 79–81, 94–97], 
and most of these approaches are limited in visual effect. 
Both approaches are not aimed at precise noise correction 
near sharp edges or corners in the fields of metrology and 
reverse engineering, where the denoising accuracy plays an 
important role for a successful mission.

5.3  Median filter

The conventional median filter is a non-linear filter that may 
avoid the above problems of anisotropic diffusion and bilat-
eral filter at singular points. One way to implement it is a 
similar way as in the mean filter [30]. The only difference 
lies in Eq. (3), which is replaced with 

where �
(
Tj
)
 has the same meaning as that in Eq. (3). A 

variant to this method is a weighted median filter, in which 
the determination of the median in Eq. (15) is conducted via 
assigning different weights (positive integers) to neighboring 
triangles based on either edge-connected neighbor or vertex-
connected neighbor. The edge-connected neighbors should 
have a higher weight than the vertex-connected neighbors.

Since gradient information is not available at sharp fea-
tures, discrete integrations or averaging operations are inva-
lid at these locations. In the median filter, averaging opera-
tions are not necessary, and yet, it provides a reasonable 
quality of smoothing for high-curvature non-sharp feature 
regions. However, if the singular point itself contains a cer-
tain degree of noise, this filter does not perform well in such 
cases.

5.4  Piecewise least‑squares fitting

Piecewise least-squares fitting means that the surface of 
an object is partitioned into several sub-regions in each of 
which no geometric discontinuity exists except its bounda-
ries. Consequently, an independent fitting can be applied 
on each of these smooth regions. In [98], a moving least 
square fitting scheme was proposed for removing outliers 
and noise as a projection problem. This method performs 
well with any isolated outliers in the form of points and point 
clusters. Herein, “isolated” refers to the cases, where the out-
lier points or clusters are not attached to a main surface. A 
similar approach was reported in [18] with no sharp features 

(15)

�
T
i

= �
(
T
j

)
, j is the median of a set{

�
(
T
j

)
⋅ �

(
T
i

)
| j ∈ Neighbor

(
T
i

)}
,

considered. Wang [99] used a mean shift clustering method 
to determine the best tangent plane in feature-preserving 
surface reconstruction. It should be more flexible than prin-
cipal component analysis in analyzing a region around a cor-
ner point that is connected to three or more non-orthogonal 
faces.

One major problem with the piecewise regression is 
potential gaps at the location of discontinuity, as illustrated 
in Fig. 3a. Such a gap is extremely not desirable in the fields 
of metrology and reverse engineering, where precision has 
a high priority.

Reuter [100] developed an interactive approach that 
demanded users to specify sharp features manually as a 
precondition of the method. It becomes tedious for com-
plex objects with many sharp edges or corners. A singu-
larity indicator field (SIF) [101] was proposed to estimate 
the proximity of each point to discontinuity. It is essentially 
proportional to the distance between each data point and its 
projected surface point on the fitted smooth patch. A weight-
ing factor is determined from the value of SIF and is used in 
a local fitting process. One potential problem arises in the 
cases, where a significant amount of outliers exists, such 
that it is difficult to distinguish between outliers and singular 
points at geometric discontinuity on the basis of SIF.

5.5  Constrained least‑squares fitting

To overcome the gap problem of piecewise least-squares fit-
ting, one solution is to use a constrained fitting at geometric 
discontinuity. However, since gradient information is not 
available at sharp features, tradition optimization methods 
such as gradient method become useless. Evolutionary com-
putation is well suited in such cases where the approximate 
location of corner or edge points can be estimated by a high 
curvature [41] through principal component analysis. In 

Fig. 22  Approximate search space of a corner point
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the cases of two-dimensional and three-dimensional lines, 
a simple line propagation scheme was reported to find an 
approximate search space of corner points, as shown in 
Fig. 22 [102].

Within the approximate search space, an evolution-
ary computing method is well suited for the task of find-
ing the optimal corner point to minimize the constrained 
least-squares fitting error. Evolutionary computation is a 
population-based optimization methodology that mimics the 
growth or development in a population [103]. In an iterative 
process, the optimization of the problem is achieved via an 
evolution of a working set of individuals (i.e., population) 
[104]. Because few or no assumptions are made on problems 
to be optimized, it is well suited for the irregular and noisy 
problems in which no derivative information is available at 
geometric discontinuity. Three typical approaches of evolu-
tionary computing are (a) genetic algorithm (GA) [105], (b) 
evolution strategies [106, 107], and (c) evolutionary pro-
gramming [108, 109]. Particle swarm is another variation 
of evolutionary computing [110].

Figure 23a demonstrates the transformation of the coor-
dinate increments ( Δx,Δy,Δz ) of each 3D data point into an 
n-bit binary number (i.e., a chromosome). These binary bits 
can be generated using a random number generator. Fig-
ure 23b shows the result of genetic search, in which the cor-
ner point is the constraint for two coordinated least-squares 

fitting processes with 10% reduction in fitting error, com-
pared to the traditional fitting method.

Figure 24a, b illustrates the result of particle swarm for 
two test cases. A comparison between particle swarm and 
genetic algorithm is given in Fig. 24c. In general, particle 
swarm provides a more stable solution, compared to genetic 
algorithm in the context of constrained least-squares fitting 
with discrete data points. However, it is difficult to gener-
alize the constrained least-squares fitting for handling the 
intersection of arbitrary shapes. If feature lines or curves 
can be explicitly determined [111, 112], surface propagation 
then starts from the feature line or curve.

5.6  Hybrid smoothing

The basic idea of hybrid smoothing is to use two different 
algorithms, respectively, for feature and non-feature regions. 
Below is an example of implementing such an approach 
[41]:

1. Use a feature-preserving pre-smoothing (median filter) 
that does not require any threshold and implicitly retains 
the sharp features. Adopt G1 geometric discontinuity and 
curvature threshold as an indicator for partitioning fea-
ture and non-feature regions. Herein, feature regions 
refer to the areas in which either sharp edges or high 

Fig. 23  Genetic search for 
the optimal corner point of 
constrained least-squares fitting 
[102]

Fig. 24  Constrained least-squares fitting of circle–line intersection via particle swarm
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curvatures exist, while the remaining parts are called the 
non-feature regions.

2. Select a median filter for feature regions. In comparison 
with anisotropic diffusion algorithms, its main advan-
tage is no need for the information on the directions of 
principal curvatures. Such information is unavailable at 
some singular points (e.g., apex of a cone). It also avoids 
some pitfalls of bilateral filters at sharp edges.

3. Design a second-order predictor as an accurate indicator 
for guiding a surface smoothing process in non-feature 
regions. Here, the predicator is essentially a local quad-
ric patch as in Eq. (11). To use this equation, a local 
principal component analysis is needed to determine the 
surface normal direction (i.e., the direction of z in a local 
coordinate system). The main benefit of the proposed 
second-order predictor is a better accuracy and conver-
gence with curved surfaces than the first-order predic-
tors, mean curvature flow, and Gaussian predictors.

4. Apply the second-order predictor in non-feature regions 
and the median filter in feature regions.

In an algorithmic format, the above hybrid approach is 
represented by the following procedure that calls two rou-
tines for median and second-order filters, respectively. The 
details of these two routines are given in [41].

5.7  Global optimization

Global optimization means that a unified formula of opti-
mization is applied over the entire domain of discrete data 
points. A typical approach is l1-sparse reconstruction of 
sharp point set surface [113]. The optimization is divided 
into two parts. In part 1, the optimization of orientation is 
formulated as 

where N in and Nout are two sets of surface normal for input 
and output, respectively. pi and pj represent two data points i 
and j, while ni and nj refer to the surface normal at these two 
points. E is an adjacency set each element of which is a pair (
pi, pj

)
. �n is an angular threshold that is used to limit the 

change in the direction of normal at each surface point. �ij is 
a weight that has a smaller value at geometric discontinuity: 

in which �� is a angular parameter (e.g., 10°) and �ij refers 
to an angle between initial normal of pi and pj.

In part 2, the optimization of vertex position is formulated 
in a similar way: 

(16)

Nout = argmin
N

∑
(pi−pj)∈E

�ij
‖‖‖ni − nj

‖‖‖2, s.t. ∀i
‖‖‖ni − nin

i

‖‖‖2 ≤ �n,

(17)�ij = e
−
(

�ij

��

)4

,

Fig. 25  Hybrid smoothing on 
a synthetic noisy model (MN, 
MD, GS, BL, VL, MC, and MQ 
represent mean filter, median 
filter, Gaussian filter, bilateral 
filter, volumetric Laplacian, 
mean curvature flow, and hybrid 
smoothing, respectively)

ALGORITHM 1: Hybrid Denoising
(a) perform feature-preserving pre-smoothing of a noisy input mesh
(b) conduct partition of the resulting surface mesh obtained from step (a) and pass the partition information back to the input 

mesh
(c) loop over all elements in the noisy input mesh

(c.1) if an element is in a feature region,  execute median_filter( ) routine
(c.2) if the element is in a non-feature region, invoke second_order_filter( ) routine
(c.3) go back to the beginning of (c) and repeat in an iterative way

Figure 25 shows an example of the result of the hybrid 
smoothing. The efficacy of this method depends on the 
quality of the algorithms that is chosen for feature and non-
feature regions. It also relies on the accuracy of identifying 
the feature regions. (18)

CX
�
X,Nout,W,E

�
= argmin

X

�
(pi−pj)∈E

�ij
���n

out
ij

⋅
�
xi − xj

����
= argmin

t
‖At + f‖1, s.t. ∀i ‖t‖2 ⩽ �x,
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where t represents a set of parameters that are used to com-
pute movement of each point pi along its normal direction, 
ni , during the optimization of position. �x is a threshold that 
is used to limit the position change at each surface point. 
W =

{
�ij

}
 is a set of weights defined in Eq. (17) and nout

ij
 

represents the average of surface normal nout
i

 and nout
j

 . CX
ij
(…) 

refers to a global penalty function and X is a set of position 
vectors for all the points.

An interior-point solver was used to solve the above con-
vex optimization problems. Figure 26 illustrates the efficacy 
of this global optimization approach in the case of flat sur-
faces. However, l1 minimization poses a limit on its capa-
bility in handling curved surfaces. In general, the denoised 
effect on curved surfaces with this method is not as good as 
the moving least-squares with local quadric patches.

6  Computational efficiency

Computing efficiency is an important issue in comparing 
different algorithms for correcting measurement outliers and 
noise. Several typing cases are discussed below.

6.1  Non‑isolated outlier cluster

In [19], k-d tree was used as the main data structure for 
organizing discrete data points and guiding the surface prop-
agation. Although the approach delivers excellent results of 

outlier removal, the computing cost is approximately ten 
times slower than the traditional methods.

To improve the computational efficiency, the domain of 
a point cloud model is subdivided into a limited number of 
voxels (volume elements) through a uniform partition in a 
3D space [114]. A voxel is considered as the minimal unit of 
analysis and display. Specifically, all the numerical analyses 
are aimed at each single voxel and all the data points in a 
voxel are treated simultaneously as an outlier or true data 
point. This approach is proposed for three reasons:

Fig. 26  l
1
-sparse reconstruction of sharp point set surface [113]

Fig. 27  Comparison between fast voxel-based method and traditional spectral moving removal

Fig. 28  Comparison of smoothing methods (Algorithm 1: mean filter; 
2: median filter; 3: Gaussian filter; 4: bilateral filter; 5: mean curva-
ture flow; 6: volume-preserving Laplacian; 7: least-squares fitting)
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Principle of locality: as for the tasks of surface outlier 
removal, data points in a small voxel are highly likely to 
have similar properties.

A reasonable partition of voxels provides us an effective 
way to analysis data clusters statistically and locally.

It is cheap to partition data clusters into voxels and work 
on them.

A surface propagation is also voxel-based, i.e., it traverses 
from one voxel to another. The propagation is based on two 
driving forces: distance and angle. Normally, the number 
of data points is not constant across different voxels and 
the maximum number of data points per voxel is controlled 
around 20.

Figure 27 indicates that the fast voxel-based method 
achieves a similar removal effect on the non-isolated out-
lier cluster, as compared to the traditional spectral moving 
removal. However, the format takes only 3.9 s, while the 
latter uses 34 s, leading to a ten times speed up for the fast 
voxel-based method.

6.2  Smoothing algorithm

Figure 28 illustrates a comparison of different smoothing 
methods in terms of execution time with four test models. 
Least-squares fitting is the most time-consuming method, 
while Gaussian filter ranks the second. Laplacian and mean 
filters are the least time-consuming methods and bilateral fil-
ter is also very fast, because only a few iterations are needed.

6.3  Genetic algorithm versus particle swarm

Figure 29 shows the comparison between genetic algorithm 
and swarm particle on constrained least-squares fitting of 
3D laser scanning data. In general, both algorithms deliver 
similar accuracy in fitting error. The vertical axis in Fig. 29b 
refers to reduction in fitting errors of generic algorithm and 
swarm particle with respect to the traditional least-squares 
fitting. However, swarm particle is much faster than one 
implementation of genetic algorithm, as shown in Fig. 29a.

7  Concluding remarks and future directions

In this paper, we classify all the measurement errors into 
two categories: long-range outliers and short-range noise. 
An overview is given on existing methods for the geometric 
correction of discrete data points and/or the corresponding 
surface meshes. Since there are many excellent approaches 
in the past, it is impossible for the authors to present all of 
those methods. If one particular method is not cited, that 
does not mean the paper is unimportant.

For discrete long-range outliers, including isolated out-
lier clusters, existing methods are matured enough to handle 
those defects efficiently and cleanly. With respect to non-
isolated outlier clusters, several methods can be used to 
remove most of outliers, but it is extremely difficult, if not 
impossible, to correct all the outliers. Normally, a second 
pass of smoothing algorithm is required for the complete 
correction of those non-isolated clusters.

As to short-range noise, signal-processing methods 
are easy to implement as an excellent tool for incremen-
tal smoothing. However, one problem is poor convergence, 
which may lead to oversmoothing. Anisotropic diffusion and 
bilateral filter can be executed with a small number of itera-
tions and be used for feature enhancement. Their accuracy is, 
however, lower than that of piecewise least-squares fitting in 
dealing with sharp features. Constrained least-squares fitting 
can even further reduce the fitting error at geometric discon-
tinuity, but is limited to some special geometric primitives 
such as line segments and circular arcs. Hybrid smoothing 
and global optimization are other two approaches in han-
dling the smoothing of data points with sharp features. The 
accuracy of hybrid smoothing depends upon the identifica-
tion of feature regions as well as which algorithm is selected 
for feature and non-feature regions. Some global optimiza-
tion methods may be suited only to models with many planar 
surfaces with less desired effect on curved surfaces.

In terms of computational time, the data structure of a k-d 
tree is less efficient than a set of pseudo voxels in remov-
ing non-isolated outlier clusters. Swarm particle is more 

Fig. 29  Comparison between 
genetic algorithm and swarm 
particles
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stable and faster than genetic algorithm in constrained least-
squared fitting at geometric discontinuity.

With respect to future research, several possible direc-
tions are listed below:

Real-time design and modeling.
It is a desired feature to conduct real-time denoising dur-

ing laser scanning on the fly. General-purpose graphics pro-
cessing unit (GPGPU) and parallel computing are useful 
tools to achieve this goal.

Parallel smoothing and denoising.
Design of parallel denoising or smoothing algorithms is 

desired for big-data models.
Non-isolated outlier clusters at geometric discontinuity.
There is still a demand on good mechanisms or principles 

to handle the mingling between non-isolated outlier clusters 
and geometric discontinuity (sharp edges and corners).

Incomplete and dynamic point cloud.
Develop effective denoising algorithms for incomplete 

and dynamic point cloud data as in autonomous driving.
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