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Summary

This paper addresses the sliding mode control problem for a class of uncer-
tain Takagi-Sugeno fuzzy singular systems with state delay and subject to input
nonlinearity. Our purpose is focused on designing an adaptive sliding mode
controller for such a complex system. First, a new fuzzy integral-type sliding
function is designed. Then, an adaptive sliding mode control scheme is estab-
lished such that the resulting closed-loop system is insensitive to all admissible
uncertainties and satisfies the reaching condition. Moreover, delay-dependent
sufficient conditions are derived such that the admissibility and the L2-L∞ per-
formance requirement of the sliding mode dynamics can be guaranteed in the
presence of time delays, external disturbances, and sector nonlinearity input.
Finally, the validity and applicability of the proposed theory are illustrated by a
numerical example.
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1 INTRODUCTION

A singular model, also known as a descriptor model, is a mathematical representation that can provide a convenient and
natural description of several physical plants. Singular space-state systems are a generalization of standard space-state
systems, which are composed of ordinary differential equations, describing the dynamical part of the physical process
and algebraic equations to include the interrelationships between the different components in the system.

In studying singular systems, the system regularity and absence of impulses or causality (for discrete systems) must
be guaranteed.1,2 We emphasize that the delays often occur between different components of many practical systems.3,4

Thus, the study of singular systems with time delays becomes an extremely important topic of control engineering. In
view of the generality of singular models and the time-delay phenomenon, many fundamental control problems have
gained much research attention and many relevant results have been reported (see, for example, other works2,5-9 and the
references therein).

It becomes increasingly apparent that fuzzy control provides appealing advantages in several applications. As a pow-
erful method to study nonlinear systems, the Takagi-Sugeno (TS) model–based fuzzy control has become a widespread
approach to deal with complex nonlinear systems.10,11 Based on the TS fuzzy model, there has been considerable research
work appearing to address the control problem of nonlinear singular systems in the presence of time delays.12-17

On a different research front, sliding mode control (SMC) is one of different robust control schemes used to cope with
model uncertainties and nonlinearities by taking advantage of the concepts of sliding mode surface design and equivalent
control.18,19
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Sliding mode control, considered as variable structure control, uses a discontinuous control to drive and then constrain
the state trajectories to lie within a neighborhood of a specific switching surface on which the system meets the required
control specifications. The key feature and advantages of the SMC approach include (1) insensitivity to variations of uncer-
tainties, (2) disturbance rejection capability, and (3) tracking ability. During the past decades, various SMC approaches
have been successfully applied for solving many practical control problems.

The integral SMC has been addressed for uncertain systems in the works of Ding et al20 and Chang21 and for stochas-
tic systems in the works of Gao et al22 and Wu and Ho.23 Recently, the second-order integral SMC approach has been
investigated for uncertain systems with control input delay in the work of Zhang et al.24 The problem of SMC of the TS
fuzzy singular system with time-delay was considered in our other work25 and in the work of Wang and Fei26 with the
assumption that the local input matrices are constant, ie, Bi = B.

On the other hand, most of the proposed approaches for SMC are based on the assumption that the systems under
consideration are characterized by linear inputs. However, in practice, due to the physical limitation, the control input
seems to have a nonlinear character such as sectors, saturation, and deadzone. Therefore, the input nonlinearities can
deteriorate the systems' performances and their effects must be taken into account in analyzing and designing any control
scheme. Recently, attention has been paid to input nonlinearity,27-31 but few works have been undertaken for singular
systems.

Enlightened by the aforementioned reasons, it is necessary to develop a new robust control strategy to deal with
nonlinear singular systems where the real factors such as time delay, input nonlinearity, and external disturbance are
unavoidable and often disrupt the desired performances.

In this paper, the TS fuzzy approach is adopted to investigate the SMC problem for a class nonlinear singular systems
in the presence of the aforementioned factors. Precisely, the main contributions can be summarized as follows:

• consideration of a nonrestrictive TS fuzzy singular system where the local input matrices are different and the input is
nonlinear;

• proposition and construction of a new sliding function and establishing sufficient conditions to ensure the robust
admissibility and the L2-L∞ performance of the corresponding sliding mode dynamics by means of the feasibility of a
convex optimization problem;

• design of a sliding mode controller for the reaching motion such that trajectories of the resulting closed-loop system
can be driven onto a prescribed sliding surface and maintained there for all subsequent times.

The remainder of this paper is organized as follows. In Section 2, system description and preliminaries are presented. The
main results are developed in Section 3. In Section 4, a numerical example is provided to show the effectiveness of the
proposed scheme, and the conclusions are drawn in Section 5.

Notation. The notations in this paper are quite standard except where otherwise stated. The superscript T stands
for matrix transposition; X ∈ Rn denotes the n-dimensional Euclidean space, whereas X ∈ Rn×m refers to the set
of all n × m real matrices; X > 0 (respectively, X ≥ 0) means that the matrix X is real symmetric positive definite
(respectively, positive semidefinite); l2[0,∞) is the space of square summable vectors; 𝜆min(A) and 𝜆max(A) denote the
maximum and minimum eigenvalues of a matrix A, respectively; I and 0 represent the identity matrix and a zero
matrix with appropriate dimension, respectively; diag· · · stands for a block-diagonal matrix, sym(X) stands for X+XT;||.|| denotes the Euclidean norm of a vector and its induced norm of a matrix. In symmetric block matrices or long
matrix expressions, we use a star ∗ to represent a term that is induced by symmetry. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for algebraic operations. To avoid clutter, in the following, 𝜇i
denotes 𝜇i(𝜃).

2 SYSTEM DESCRIPTION AND PRELIMINARIES

In this study, we consider a nonlinear singular system with state delay described by the following TS fuzzy model:

Ri ∶ If 𝜃1(t) is Fi
1and if 𝜃2(t) is Fi

2 · · · if 𝜃s(t) is Fi
s, then⎧⎪⎨⎪⎩

Eẋ(t) = Ai(t)x(t) + Ahi(t)x (t − h(t)) + Bi (𝜙 (u(t)) + 𝑓i (t, x(t))) + Bwiw(t)
z(t) = Cix(t) + Chix (t − h(t))
x(t) = 𝜑(t), t ∈ [−hM , 0], i = 1, 2, … , r,

(1)
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where x ∈ Rn is the state and u(t) = [u1,u2, … ,um]T ∈ Rm is the control input. 𝜙(u) = [𝜙1(u1), 𝜙2(u2), … , 𝜙m(um)]T,
where 𝜙l(ul) is a continuous nonlinear function for l = 1, 2, … ,m. w(t) ∈ Rw is the external disturbance input, fi(t, x(t))
represents the system nonlinearity and any model uncertainties in the system including external disturbances, z(t) ∈ Rs is
the controlled output, F i

𝑗
( j = 1 … s) are fuzzy sets, 𝜃(t) = [𝜃1(t), … , 𝜃s(t)] is the premise variable vector. It is assumed that

the premise variables do not depend on the input variables u(t), which is needed to avoid a complicated defuzzification
process of fuzzy controllers. Delay h(t) is time varying and satisfies

hm ≤ h(t) ≤ hM , ḣ(t) ≤ hd, (2)

where hm and hM are constants representing the bounds of the delay and hd is a positive constant. 𝜑(t) is a compatible
vector-valued initial function in [−hM, 0] representing the initial condition of the system. The system disturbance, w(t),
is assumed to belong to L2[0,∞), ie, ∫ ∞

0 wT(t)w(t)dt < ∞. This implies that the disturbance has finite energy. Matrix
E ∈ Rn×n may be singular with rank (E) = q < n. Ai(t) = Ai+ΔAi and Ahi = Ahi+ΔAhi are time-varying system matrices.
Matrices Ai, Ahi, Bi, Bwi, Ci, and Chi are constant with appropriate dimensions, and Bi is of full column rank.

The following assumptions are made in this study.

Assumption 1.

1. ΔAi(t) and ΔAhi(t) are real matrices representing norm-bounded parameter uncertainties and satisfy[
ΔAi(t) ΔAhi(t)

]
= MiF(t)

[
Ni Nhi

]
, (3)

where Mi, Ni, and Nhi are known real constant matrices and F(t) is unknown time-varying matrix function
satisfying FT(t)F(t) ⩽ I.

2. Nonlinear function fi(t, x(t)), or the so-called matched uncertainty, satisfies

𝑓i (t, x(t)) ≤ 𝜌i||x(t)||, (4)

where 𝜌i is a positive unknown constant.
3. Exogenous signal w(t) is bounded by upper bound w̄||w(t)|| ≤ w̄. (5)
4. Nonlinear input 𝜙(u) applied to the system satisfies 𝜙(0) = 0 and

uT𝜙(u) ≥ 𝛼uTu, (6)

where 𝛼 is a positive constant.
5. Matrix pair [Ai,Bi] is controllable for all i = 1, 2, … , r.

Remark 1. As in our other work25 and in the work of Wang and Fei,26 it is assumed that Bi = B, i = 1, 2, … , r. This
restrictive assumption is not considered in this present study.

The overall fuzzy model is inferred as follows:⎧⎪⎪⎨⎪⎪⎩
Eẋ(t) =

r∑
i=1
𝜇i (𝜃(t)) {Ai(t)x(t) + Ahi(t)x(t − h(t)) + Bi (𝜙 (u(t)) + 𝑓i (t, x(t))) + Bwiw(t)}

z(t) =
r∑

i=1
𝜇i (𝜃(t)) {Cix + Chix (t − h(t))} ,

(7)

where 𝜇i(𝜃(t)) is the normalized membership function defined by

𝜇i (𝜃(t)) =

s∏
𝑗=1

Fi
𝑗

(
𝜃𝑗(t)

)
r∑

i=1

s∏
𝑗=1

Fi
𝑗

(
𝜃𝑗(t)

) , i = 1, 2, … , r

and Fi
𝑗
(𝜃𝑗(t)) represents the membership degrees of 𝜃j(t) in fuzzy set Fi

𝑗
. Note that normalized membership𝜇i(𝜃(t)) satisfies

𝜇i (𝜃(t)) ≥ 0, i = 1, 2, … , r
r∑

i=1
𝜇i (𝜃(t)) = 1. (8)
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Before stating the main results, we need to introduce some definitions and some lemmas, which will be used in the
next section.

Consider the following unforced linear singular system with time delay:

Eẋ = Ax(t) + Ahx(t − h(t)), 0 ≤ h(t) ≤ hMx(t) = 𝜑(t), t ∈ [−hM , 0]. (9)

Definition 1. (See the work of Dai1)

1. System (9) is said to be regular if det(sE − A) ≠ 0.
2. System (9) is said to be impulse free if deg(det(sE − A)) = rank(E).
3. System (9) is said to be admissible if it is regular, impulse free, and stable.

Singular time-delay system (9) may have an impulsive solution. However, the regularity and nonimpulse of (E,A)
guarantee the existence and uniqueness of an impulse-free solution to (9) on [0,∞).

Lemma 1. (See the work of Gu et al4)
For any constant matrix M > 0, any scalar hm and hM with 0 < hm < hM, and vector function x(t) ∶ [−hM ,−hm] → Rn

such that the integrals concerned are well defined, then the following holds:

−hr∫
t−hm

t−hM

xT(s)Mx(s)ds ≤ −∫
t−hm

t−hM

xT(s)dsM∫
t−hm

t−hM

x(s)ds

with hr = hM − hm.

Lemma 2. (See the work of Petersen32)
Let M, N, Δ be matrices with Δ satisfying ΔTΔ ≤ I and scalar 𝜀 > 0. Then, the following inequality holds:

sym(MΔN) ≤ 𝜀MMT + 𝜀−1NTN. (10)

3 MAIN RESULT

In this section we aim to design a sliding mode controller for the aforementioned fuzzy singular system (7). The SMC
design involves 2 basic steps. First, we design a fuzzy integral sliding surface as a function of the system state such that
the sliding mode dynamics restricted to the surface is admissible and satisfies the L2-L∞ performance. The second step is
to synthesize a suitable sliding mode controller to globally drive the system state trajectories to the predefined switching
surface and maintain it there for all subsequent time.

3.1 Integral sliding mode surface
Choose the following fuzzy switching function:

Ri ∶ If 𝜃1(t) is Fi
1 and if 𝜃2(t) is Fi

2 · · · if 𝜃s(t) is Fi
s, then

si(t) = Gi (E x(t) − E x(0)) −Gi∫
t

0
(Ai + BiKi)x (𝜏) + Ahi x (𝜏 − h(𝜏)) d𝜏, (11)

where Gi ∈ Rm×n is a constant matrix satisfying GiBi is nonsingular, and Ki ∈ Rm×n is a real matrix to be designed.
Then, the overall sliding surface can be described as

s(t) =
r∑

i=1
𝜇isi(t). (12)

According to the SMC theory, when the system trajectories reach onto the switching surface, we have ṡi(t) = 0. Then, the
ith equivalent control law can be obtained as follows:

𝜙e(u) = −Kix(t) − 𝑓i (x(t)) − (GiBi)−1
Gi (ΔAi x(t) + ΔAdi(t)x (t − h(t)) + Bwi w(t)) . (13)
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Substituting (13) into (1), we obtain the following ith fuzzy sliding mode dynamics:

Ri ∶ If 𝜃1(t) is Fi
1 and if 𝜃2(t) is Fi

2· · · if 𝜃s(t) is Fi
s, then{

Eẋ = Ai(t)x(t) + Ahi(t)x(t) + Bwiw(t)
z(t) = Cix(t) + Chix (t − h(t)) ,

(14)

and the overall sliding mode dynamics can be described by⎧⎪⎪⎨⎪⎪⎩
Eẋ(t)x =

r∑
i=1
𝜇i

{
Ai(t)x(t) + Ahi(t)x(t) + Bwiw(t)

}
z(t) =

r∑
i=1
𝜇i {Cix(t) + Chix (t − h(t))} ,

(15)

where

Gi = I − Bi(GiBi)−1
Gi, Ai(t) = Ai + ΔĀi, Ai = Ai + BiKi, Ahi = Ahi + ΔAhi, (16)

Bwi = GiBwi, Mi = GiMi,
[
ΔAi ΔAhi

]
= MiF(t)

[
Ni Nhi

]
.

3.2 L2-L∞ sliding mode dynamics analysis
In this subsection, we will develop a sufficient delay-dependent condition that ensures for sliding mode dynamics (15) to
be robustly admissible with L2-L∞ performance.

Definition 2. Sliding mode dynamics (15) is said to be admissible with L2-L∞ performance if it is admissible and for
prescribed positive scalar 𝛾 , the following norm is satisfied under a zero initial condition:

||Tzw(s)||L2-L∞ = sup
0≠w(t)∈L2

||z(t)||∞||w(t)||2 < 𝛾. (17)

Theorem 1. Let hm, hM, and hd be given positive scalars. Sliding mode dynamics of (15) is admissible with L2-L∞ norm
bound 𝛾 , if there exist matrices R, P > 0, Q1 > 0, Q2 > 0, Q3 > 0, Z1 > 0, Z2 > 0, Z3 > 0, and Gj, ( j = 1, … , 5) and
positive scalars 𝛾 , 𝜀, and 𝜖 such that the following inequalities hold:

Ψ1i(E,Ai,Ahi,Bwi,X ,G𝑗) =
⎡⎢⎢⎢⎣
Φi + sym(Φ1) hrX Γ1 𝜖Γ2

∗ −hrZ3 0 0
∗ ∗ −𝜖I 0
∗ ∗ ∗ −𝜖I

⎤⎥⎥⎥⎦ < 0 (18)

Ψ2i(E,Ai,Ahi,Bwi,Y ,G𝑗) =
⎡⎢⎢⎢⎣
Φi + sym(Φ1) hrY Γ1 𝜖Γ2

−hrZ3 0 0
∗ ∗ −𝜖I 0
∗ ∗ ∗ −𝜖I

⎤⎥⎥⎥⎦ < 0 (19)

Ψ3i(E,Ci,Chi) =
⎡⎢⎢⎣
−ETP ∗ CT

i
∗ −𝜀I CT

hi
∗ ∗ −𝛾I

⎤⎥⎥⎦ < 0, (20)

where

Φi =

⎡⎢⎢⎢⎢⎢⎣

Φ11i Φ12i Φ13i Φ14i Φ15i G1B̄wi
∗ Φ22i Φ23i Φ24i Φ25i G2B̄wi
∗ ∗ Φ33i 0 −G3 G3B̄wi
∗ ∗ ∗ Φ44i −G4 G4B̄wi
∗ ∗ ∗ ∗ Φ55i G5B̄wi
∗ ∗ ∗ ∗ ∗ −𝛾I

⎤⎥⎥⎥⎥⎥⎦
Γ1 =

[
GT 0

]TMi, G =
[

GT
1 GT

2 GT
3 GT

4 GT
5
]T
,

Γ2 =
[

Ni Nhi 0 0 0 0
]T



6 KCHAOU ET AL

Φ11i = Q1 + Q2 + Q3 + sym(G1Ai) − ETZ1E − ETZ2E, Φ12i = A
T
i GT

1 + G2Ahi

Φ13i = ETZ1E + A
T
i GT

3 , Φ14i = ETZ2E + A
T
i GT

4

Φ15i = P + SRT + A
T
i GT

5 − G1, Φ22i = −(1 − hd)Q2 + sym(G2Ahi)
Φ23i = AT

hiG
T
3 , Φ24i = AT

hiG
T
4

Φ25i = −G2 + AT
hiG

T
5 , Φ33i = −Q1 − ETZ1E

Φ44i = −Q3 − ETZ2E, Φ55i = −sym(G5) + h2
mZ1 + h2

MZ2 + hrZ3.

Φ1 =
[

0 XE − YE YE −XE 0
]

Proof. The proof of this theorem is divided into 2 parts. The first one is concerned with the regularity and the
impulse-free characterizations, and the second one treats the stability property of system (15).

First, we consider the nominal case of (15) (ie, ΔAi(t) = 0, ΔAhi(t) = 0, and ΔBwi(t) = 0).
Using the following notation:

A =
r∑

i=1
𝜇iĀi Ah =

r∑
i=1
𝜇iAhi Bw =

r∑
i=1
𝜇iBwi C =

r∑
i=1
𝜇iCi, Ch =

r∑
i=1
𝜇iChi, (21)

system (15) can be written as ⎧⎪⎨⎪⎩
Eẋ(t) = A x(t) +Ahx(t − h(t)) + Bww(t)
z(t) = C(t)x(t) +Chx(t − h(t))
x(t) = 𝜑(t), t ∈ [−hM , 0].

(22)

Since rank(E) = q ≤ n, there always exist 2 nonsingular matrices M and N ∈ Rn×n such that

Ê = MEN =
[

Iq 0
0 0

]
. (23)

Then, R can be characterized as R = MT
[

0
Φ̂

]
, where Φ̂ ∈ R(n−q)×(n−q) is any nonsingular matrix.

We also define

Â = MAN =
[

Â11 Â12
Â21 Â22

]
, Ŝ = N

TS =
[

Ŝ11
Ŝ21

]
,

P̂ = M
−TPM−1 =

[
P̂11 P̂12
P̂21 P̂22

]
, Ẑl = M

−TZlM
−1 =

[
Ẑ11l Ẑ12l
Ẑ21l Ẑ22l

]
, l = 1, 2. (24)

It follows from (18) that [
𝜙11i 𝜙12i
∗ 𝜙22i

]
< 0, (25)

where

𝜙11i = sym(G1Ai) − ETZ1E − ETZ2E

𝜙12i = P + SRT + A
T
i GT

5 − G1

𝜙22i = − sym(G5).

Premultiplying and postmultiplying (25) by [ I A
T
i ] and its transpose, respectively, we obtain

sym
(

SRTAi + PAi

)
− ETZ1E − ETZ2E < 0. (26)

Since 𝜇i(𝜃) ≥ 0 and
∑r

i=1 𝜇i(𝜃) = 1, it yields

sym
(

SRT
A + PA

)
− ETZ1E − ETZ2E < 0. (27)
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Premultiplying and postmultiplying (27) by NT and N, respectively, and then using expressions (23) and (24) yield

sym
(

Ŝ21Φ̄TÂ22
)
< 0, (28)

and A22 is thus nonsingular. Hence, according to Definition 1, singular time-delay system (22) is regular and impulse
free for any time delay h(t) satisfying (2).

In the following, we will prove that system (22) is asymptotically stable. For this purpose, we construct a candidate
Lyapunov functional as

V(xt) = V1(xt) + V2(xt) + V3(xt)
V1(xt) = xt(t)PTEx(t)

V2(xt) = ∫
t

t−hm

xT(s)Q1x(s)ds + ∫
t

t−h(t)
xT(s)Q2x(s)ds + ∫

xt

t−hM

xT(s)Q3x(s)ds (29)

V3(xt) = hm∫
0

−hm
∫

t

t+𝜃
ẋT(s)ETZ1Eẋ(s)dsd𝜃 + hM∫

0

−hM
∫

t

t+𝜃
ẋT(s)ETZ2Eẋ(s)dsd𝜃

+ ∫
−hm

−hM
∫

t

t+𝜃
ẋT(s)ETZ3Eẋ(s)dsd𝜃.

Evaluating the derivative of V(xt) along the solutions of system (22), it yields

V̇1(xt) = 2xT(t)PTEẋ(t)
V̇2(xt) ≤ xT(t)(Q1 + Q2 + Q3)x(t) − xT(t − hm)Q1x(t − hm) − (1 − hd)xT(t − h(t))Q2x(t − h(t))

− xT(t − hM)Q3x(t − hM)

V̇3(xt) = h2
mẋT(t)ETZ1Eẋ(t) + h2

MẋT(t)ETZ2Eẋ(t) + hrẋT(t)ETZ3Eẋ(t) − hm∫
t

t−hm

ẋT(s)ETZ1Eẋ(s)ds

− hM∫
t

t−hM

ẋT(s)ETZ2Eẋ(s)ds − ∫
t−hm

t−hM

ẋT(s)ETZ3Eẋ(s)ds. (30)

From Lemma 1, one can obtain

− hm∫
t

t−hm

ẋT(s)ETZ1Eẋ(s)ds ≤ −
[

x(t) − x(t − hm)
]TETZ1E

[
x(t) − x(t − hm)

]
− hm∫

t

t−hM

ẋT(s)ETZ2Eẋ(s)ds ≤ −
[

x(t) − x(t − hM)T ]ETZ2E
[

x(t) − x(t − hM)
]

(31)

and

−∫
t−hm

t−hM

ẋT(s)ETZ3Eẋ(s)ds = −∫
t−h(t)

t−hM

ẋT(s)ETZ3Eẋ(s)ds − ∫
t−hm

t−h(t)
ẋT(s)ETZ3Eẋ(s)ds. (32)

Defining 𝜉(t) =
[

xT(t) xT(t − h(t)) xT(t − hm) xT(t − hM) ẋT(t)ET ]T , for any appropriately dimensioned matrix X, the
following inequality holds:

∫
t−h(t)

t−hM

[
𝜉(t)

Eẋ(s)

]T [ XZ−1
3 XT X
∗ Z3

] [
𝜉(t)

Eẋ(s)

]
ds ≥ 0. (33)

Then, it is easy to verify

−∫
t−h(t)

t−hM

ẋT(s)ETZ3 Eẋ(s)ds ≤ (hM − h(t))𝜉T(t)XZ−1
3 XT𝜉(t) + 2𝜉T(t)XE (x(t − h(t)) − x(t − hM)). (34)

Similarly, for any matrix Y, we obtain

−∫
t−hm

t−h(t)
ẋT(s)ETZ3Eẋ(s)ds ≤ (h(t) − hm)𝜉T(t)YZ−1

3 Y T𝜉(t) + 2𝜉T(t)YE(x(t − hm) − x(t − h(t)). (35)
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From (34)-(35), it can be seen that

−∫
t−hm

t−hM

ẋT(s)ETZ3Eẋ(s)ds ≤ 𝜉T(t)
{
𝜌(t)hrXZ−1

3 XT(1 − 𝜌(t))hrYZ−1
3 Y T (36)

+ 2
[

0 XE − YE YE −XE 0
]}
𝜉(t),

where 𝜌(t) = hM−h(t)
hr

.
From (22), the following equation holds for any matrices Gj, j = 1, 2, … , 5 with the appropriate dimensions

2𝜉T(t)G[−Eẋ(t) +Ax(t) + Ahx(t − h(t))] = 0. (37)

Besides, it is clear that
2xT(t)SRTEẋ(t) = 0. (38)

Considering (30)-(38), we obtain

V̇(xt) ≤ 𝜉T(t)
r∑

i=1
𝜇i
(
𝜌(t)Ψ̄1i + (1 − 𝜌(t))Ψ̄2i

)
𝜉(t), (39)

where
Ψ1i = Φi + sym(Φ1) + hrXZ−1

3 XT (40)

Ψ2i = Φi + sym(Φ1) + hrYZ−1
3 Y T (41)

and

Φi =

⎡⎢⎢⎢⎢⎣
Φ11i Φ12i Φ13i Φ14i Φ15i
∗ Φ22i Φ23i Φ24i Φ25i
∗ ∗ Φ33i 0 −G3
∗ ∗ ∗ Φ44i −G4
∗ ∗ ∗ ∗ Φ55i

⎤⎥⎥⎥⎥⎦
(42)

since 0 ≤ 𝜌(t) ≤ 1, 𝜌(t)Ψ1i + (1 − 𝜌(t))Ψ2i is a convex combination of Ψ1i and Ψ2i. If (18)-(19) are satisfied, then by
applying the Schur complement, we can verify and obtain that 𝜌(t)Ψ1i + (1 − 𝜌(t))Ψ2i < 0. Hence, V̇(xt) ≤ −𝜆||𝜉(t)||2,
which implies that nominal singular system (22) with w(t) = 0 is asymptotically stable. Let us now prove that the
system has the L2-L∞ performance. For this purpose, consider the following performance index:

J0 = V(xt) − 𝛾∫
t

0
wT(s)w(s)ds, (43)

where V(xt) is defined as in (29). For any nonzero w(s) ∈ L2, t > 0 and zero initial state condition𝜑(t) = 0, t ∈ [−hM, 0],
we have

J0 = V(xt) − V(0) − 𝛾∫
t

0
wT(s)w(s)ds = ∫

t

0
V̇(xs) − 𝛾wT(s)w(s)ds. (44)

Define 𝜁 (t) =
[
𝜉T(t) wT(t)

]T . The following null equation holds:

2𝜁T[GT 0]T × [−Eẋ +Ax(t) +Ahx(t − h(t)) + Bww(t)] = 0. (45)

By following the same procedure as used above, we can verify that

V̇(xt) − 𝛾wT(t)w(t) ≤ 𝜁T(t)
r∑

i=1
𝜇i

(
𝜌(t)Ψ̂1i + (1 − 𝜌(t))Ψ̂2i

)
𝜁 (t), (46)

where Ψ̂1i = Φi+sym(Φ1)+hrXZ−1
3 XT and Ψ̂1i = Φi+sym(Φ1)+hrYZ−1

3 Y T . Using the Schur complement equivalence
of (18) and (19), we can verify that

V̇(xt) − 𝛾wT(t)w(t) < 0. (47)
Thus, J0 < 0, and therefore, we can obtain the following inequality:

xT(t)ETPx(t) ≤ V(xt) < 𝛾∫
t

0
wT(s)w(s)ds. (48)

Furthermore, using the Schur complement equivalence to (20), it yields[ CT
i

CT
hi

] [ CT
i

CT
hi

]T

< 𝛾

[
ETP 0

0 𝜀I

]
. (49)
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Note that

zT(t)z(t) =
r∑

i=1
𝜇i(𝜃)

{[
x(t)

x(t − h(t))

]T [ CT
i

CT
hi

] [ CT
i

CT
hi

]T [ x(t)
x(t − h(t))

]}
≤ 𝛾xT(t)ETPx(t) ≤ 𝛾V(xt) (50)

< 𝛾2∫
t

0
wT(s)w(s)ds ≤ 𝛾2∫

∞

0
wT(s)w(s)ds.

Taking the maximum value of ||z(t)||2∞, we have ||z(t)||2∞ < 𝛾2||w(t)||22 for any 0 ≠ w(t) ∈ L2. Consider now the
uncertain case. By following the same procedure as used above, it is easy to verify that[

Φi + sym(Φ1) hrX
∗ −hrZ3

]
+ sym

(
Γ1F(t)ΓT

2
)
< 0, (51)[

Φi + sym(Φ1) hrY
∗ −hrZ3

]
+ sym

(
Γ1F(t)ΓT

2
)
< 0. (52)

Then, according to Lemma 2, inequalities (18)-(19) hold using the Schur complement. This completes the proof.

3.3 L2-L∞ sliding mode dynamics synthesis
In this section, we focus our attention on design gains Ki in (12) such that sliding mode dynamics (15) is robustly
admissible with L2-L∞ norm bound 𝛾 .

Let xs(t) = Kix(t).The sliding mode dynamics (15) can be written as⎧⎪⎪⎨⎪⎪⎩
E ̇̃x =

r∑
i=1
𝜇i
{

Ãix̃(t) + Ãhix̃(t − h(t)) + B̃wiw(t)
}

z(t) =
r∑

i=1
𝜇i
{

C̃ix̃(t) + C̃hix̃(t − h(t)) + D̃wiw(t)
}
,

(53)

where x̃(t) =
[

xT(t) xT
s (t)

]T and

Ẽ =
[

E 0
0 0

]
, Ãi =

[
Ai Bi
Ki −I

]
, Ãhi =

[
Ahi 0
0 0

]
, B̃wi =

[
Bwi
0

]
, C̃i =

[
Ci 0

]
,

C̃hi =
[

Chi 0
]
, M̃i =

[
M

T
i 0

]T
, Ñi =

[
Ni 0

]
, Ñhi =

[
Nhi 0

]
. (54)

Theorem 2. Let 𝛾 > 0, hm > 0, hM > 0, hd > 0, and 𝜆j, ( j = 0, 1, … , 5) be given scalars. Sliding mode dynamics of (15)
is admissible with L2-L∞ performance 𝛾 , if there exist matrices R, P > 0, Q1 > 0, Q2 > 0, Q3 > 0, Z1 > 0, Z2 > 0, Z3 > 0,
Gj11, Gj21, ( j = 1, … , 5), Yi, and Fi, i = 0, 1, … , r such that the following inequalities hold:

Ψ1i
(

Ẽ,A𝑗i,Ah𝑗i,Bw𝑗i,X ,G𝑗i
)
< 0 (55)

Ψ2i
(

Ẽ,A𝑗i,Ah𝑗i,Bw𝑗i,Y ,G𝑗i
)
< 0 (56)

Ψ3i
(

Ẽ, C̃i, C̃hi
)
< 0, (57)

where

A𝑗i =
[

G𝑗,11Ai + IYi G𝑗,11Bi − IFi

G𝑗,21Ai + 𝜆iYi G𝑗,21Bi − 𝜆iFi

]
, Ah𝑗i =

[
G𝑗,11Ahi 0
G𝑗,21Ahi 0

]
,

Bw𝑗i =

[
G𝑗,11Bwi

G𝑗,21Bwi

]
, G𝑗i =

[
G𝑗,11 IFi

G𝑗,21 𝜆iFi

]
. (58)

Furthermore, Ki = F−1
i Yi
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Proof. Under the conditions of Theorem 2, a feasible solution satisfies the condition Φ55i = −sym(G𝑗i) + h2
mZ1 +

h2
MZ2 + hrZ3 < 0. This implies that Gji is nonsingular, and thus, Fi is also nonsingular. Applying Theorem 1 to system

(53) with the following particular structures of matrices Gji:

G𝑗i =
[

G𝑗,11i IFi

G𝑗,21i 𝜆iFi

]
, I =

[
Im

0(n−m)×m

]
, ( 𝑗 = 1, … , 5, i = 1, 2, … , r), (59)

conditions (55)-(57) hold by setting Yi = FiKi. This completes the proof.

Remark 2. In order to obtain the minimum value of L2-L∞ performance, the minimum allowed 𝛾 satisfying the LMIs
in Theorem 2 can be computed by solving the following optimization problem:

minimize 𝛾 subject to LMIs (55)-(57). (60)

Remark 3. In (53), we construct an augmented dynamic system with a new state matrix showing a decoupling between
control matrices Bi and controller gains Ki. This allows us to avoid the bilinearity problem and to study the general
case of fuzzy singular systems with no common control matrices.

3.4 Adaptive SMC law synthesis
After establishing the appropriate switching surface (12), an adaptive SMC law will be designed to guarantee the
reachability of the specified sliding surface s(t) = 0 even though uncertainties and input nonlinearity are presented.

To achieve the control objective, the following fuzzy dynamic SMC law is employed:

Ri ∶ If 𝜃1(t) is Fi
1 and if 𝜃2(t) is Fi

2 · · · if 𝜃s(t) is Fi
s, then

u(t) = −𝛼̂(t)(𝜓 i + 𝜒) s(t)||s(t)|| (61)

or, equivalently,

u(t) = −𝛼̂(t)(Ω + 𝜒) s(t)||s(t)|| , (62)

where 𝜓 i is designed as

𝜓i = ||Gi|| (||Mi||||Ni||||x(t)|| + ||Mi||||Nhi||||x(t − h(t))|| + ||Bwi||w̄(t)) + ||Kix(t)|| + 𝜌̂(t)||x(t)||, (63)

Ω =
∑r

i=1 𝜇i𝜓i, and χ > 0 is a small constant.
The aforementioned adaptive gains are designed as

̇̂𝛼(t) = 𝜅1𝛼̂
3(t)Ω||s(t)||, ̇̂𝜌(t) = 𝜅2||x(t)||||s(t)|| (64)

with 𝛼̂(0) = 𝛼0 and 𝜌̂(0) = 0. Note that 𝛼0 is a bounded positive initial value of 𝛼̂(t), and 𝜅1 and 𝜅2 are adjustable positive
constants.

This proposed control scheme will drive the state to reach the sliding surface s(t) = 0. This fact is stated in Theorem 3.

Theorem 3. If the adaptive control input u(t) is designed as (62), with adaptive law (64), then the trajectory of system
(7) converges to the sliding surface s(t) = 0.

Proof. Consider the following Lyapunov function:

Vs(t) =
1
2

sT(t)s(t) + 1
2𝜅1

𝛼̃2(t) + 1
2𝜅2

𝜌̃2(t), (65)

where 𝛼̃(t) = 𝛼̂−1(t) − 𝛼, 𝜌̃(t) = 𝜌̂(t) − 𝜌̄, and 𝜌̄ = maxi𝜌i.
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FIGURE 1 Rolling disk

According to (12), we get

ṡ(t) =
r∑

i=1
𝜇iGi {(ΔAi(t) − BiKi)x(t) + ΔAhi(t)x(t − h(t))) + Bwi(t)w(t) + Bi (𝜙(u(t)) + 𝑓i(t, x(t)))} . (66)

Without loss of generality, we can choose Gi = B†
i = (BT

i Bi)−1BT
i . Hence, GiBi is nonsingular. By taking the derivative

of Vs(t), we get

V̇s(t) = sT(t)ṡ(t) − 1
𝜅1
𝛼̃(t)

̇̂𝛼(t)
𝛼̂2(t)

+ 1
𝜅2
𝜌̃(t) ̇̂𝜌(t)

= sT(t)
r∑

i=1
𝜇iGi {ΔAi(t)x(t) + ΔAhi(t)x(t − h(t))) + Bwi(t)w(t)}

+ sT(t)

(
𝜙(u(t)) +

r∑
i=1
𝜇i(𝑓i(t, x(t)) − Kix(t))

)
− 𝛼̂(t)𝛼̃(t)Ω||s(t)|| + 𝜌̃(t)||x(t)||||s(t)||

≤ ||s(t)|| r∑
i=1
𝜇i {||Gi|| (||Mi||||Ni||||x(t)|| + ||Mi||||Nhi||||x(t − h(t))|| + ||Bwi||w̄) + ||Kix(t)||}

+ 𝜌̄||x(t)||||s(t)|| + 𝜌̃||x(t)||||s(t)|| − 𝛼̂(t)𝛼̃(t)Ω||s(t)|| + sT(t)𝜙(u(t)). (67)

Using (62) and Assumption 1.4, it can be derived that

uT(t)𝜙(u(t)) = −𝛼̂(t)(Ω + χ) sT(t)||s(t)||𝜙(u(t)) ≥ 𝛼uT(t)u(t) = 𝛼𝛼̂2(t)(Ω + χ)2. (68)

Since (Ω + χ) > 0, we get
sT(t)𝜙(u(t)) ≤ −𝛼𝛼̂(t)(Ω + χ)||s(t)||. (69)

Substituting (69) into (67), we obtain

V̇s(t) = (Ω − 𝛼̂(t)𝛼̃(t)Ω − 𝛼𝛼̂(t)(Ω + χ)) ||s(t)|| < 0, ∀||s(t)|| ≠ 0. (70)

Noting that 𝛼𝛼̂(t) + 𝛼̂(t)𝛼̃(t) = 1 and 𝛼̂(t) > 0, it is easy to verify that

V̇s(t) < 0, ∀t > 0. (71)

This means the system trajectories converge to the predefined sliding surface and are restricted to the surface for all
subsequent time, thereby completing the proof.

Remark 4. It is well known that discontinuous term s(t)||s(t)|| induces the chattering phenomenon. A solution to reduce

this phenomenon is to substitute discontinuous function by some continuous and smooth functions as s(t)
𝜖+||s(t)|| , where

𝜀 is a small positive scalar value.

4 A NUMERICAL EXAMPLE

In order to illustrate the efficiency of the approaches proposed in this paper, an example is illustrated in this section.
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Example 1. The following nonlinear singular model, represented by a set of differential and algebraic equations,
describes a disk rolling on a surface without slipping (see Figure 1). The disk is connected to a fixed wall with a
nonlinear spring, a linear damper, and a delayed resonator. K1 and K2 are the spring coefficients, both being positive.
The damping coefficient of the damper is b, which is also positive. The coefficient of the resonator is Cr. The radius
of the disk is r, its inertia is given by J, and the mass of the disk is m. The position of the center of the disk along the
surface is given by x1, whereas x2 refers to the translational velocity of the same point. The angular velocity of the disk
is denoted by x3. The control input is denoted by u and is a torque applied at the center of the disk. The contact force
between the disk and the surface is denoted by x4. Finally, w(t) is the external disturbance.

⎧⎪⎪⎨⎪⎪⎩

ẋ1 = x2

ẋ2 = −
(

K1
m

x1 +
K2
m

x3
1

)
− b

m
x2 + 1

m
x4 −

Cr
m

x2(t − d(t)) + 0.1w(t)

ẋ3 = − r
J
x4 + 1

J
(1 + c0cos(x2)) (gu(u(t))u(t) + 𝑓 (t, x(t))

0 = x2 − rx3 = 0

(72)

As in the work of Sjoberg and Glad,33 this model can be written as

⎧⎪⎪⎨⎪⎪⎩

ẋ1 = x2

ẋ2 = −
(

K1
m

x1 +
K2
m

x3
1

)
− b

m
x2 + 1

m
x4 −

Cr
m

x2(t − d(t)) + 0.1w(t)

0 = x2 − rx3

0 = −
(

K1
m

x1 +
K2
m

x3
1

)
− b

m
x2 +

(
r2

J
+ 1

m

)
x4 − r

J
(1 + c0cos(x2)) (gu(u(t))u(t) + 𝑓 (t, x(t)) ,

(73)

In this example, it assumed that gu(u(t)) = (0.4 + 0.3sin(5u(t)) and 𝑓 (t, x(t)) = (0.1x2
1 + 0.2

√|x2|)e−t. We select K1 =
K2 = K±ΔK = 100± 10 Nm−1, b = 30 kg/s, Cr = 10 kg/s, c0 = 0.1, m = 40 kg, r = 10 cm, and J = 3.2 kgm−2.

For |x1(t)| ≤ 𝜓 , the following TS singular fuzzy model is obtained using the sector nonlinearity approach:

⎧⎪⎪⎨⎪⎪⎩
Eẋ =

3∑
i=1
𝜇i(x1(t)) {(Ai + ΔAi)x(t) + Ahix(t − h(t)) + Bwiw(t) + Bi (gu(u(t))u(t) + 𝑓 (t, x(t))}

z(t) =
3∑

i=1
𝜇i(x1(t)) {Cix(t) + Chix(t − h(t))}

E =
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ , A1 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

− K
m
(3 + 𝜓2) − b

m
0 1

m

0 1 −r 0
− K

m
(3 + 𝜓2) − b

m
0
(

r2

J
+ 1

m

)
⎤⎥⎥⎥⎥⎦
, Ahi =

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 −Cr

m
0 0

0 0 0 0
0 −Cr

m
0 0

⎤⎥⎥⎥⎥⎦
A2,3 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

− K
m

− b
m

0 1
m

0 1 −r 0
− K

m
− b

m
0
(

r2

J
+ 1

m

)
⎤⎥⎥⎥⎥⎦
, B1,3 =

⎡⎢⎢⎢⎣
0
0
0

r2

J
(c0 − 1)

⎤⎥⎥⎥⎦ , B2 =
⎡⎢⎢⎢⎣

0
0
0

r2

J
(−c0 − 1 − 𝜓2)

⎤⎥⎥⎥⎦ , Bwi =
⎡⎢⎢⎢⎣

0
0.1
0
0

⎤⎥⎥⎥⎦ ,

where

C11 = C12 =
[

0.5 0.5 0 0
]
, Ch1 = Ch2 =

[
0 0.5 0 0

]
(74)

𝜇1(x1(t)) =
x2

1(t)
𝜓2 + 2

, 𝜇2(x1(t)) =
1 + cos(x2(t))
𝜓2 + 2

, 𝜇3(x1(t)) =
𝜓2 − x2

1(t) − cos(x2(t)) + 1
𝜓2 + 2

.
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The time-varying delay is given as h(t) = 0.1+ 0.2e−0.5t. A straightforward calculation gives hm = 0.1, hM = 0.3, and
hd = 0.2. Assume that the uncertain matrices are as follows:

Mi =
[

0.25 0 0 0
]T
, Ni =

[
1 0 1 0

]
, Nhi = 0 i = 1, 2, 3.

Our aim is to design an SMC in the form of (62) such that the sliding mode dynamics is robustly admissible with a
guaranteed L2-L∞ noise attenuation level. Set

Gi = B†
i , 𝜆1 = 1.5, 𝜆2 = 0.1, 𝜆3 = 0, 𝜆4 = 0, 𝜆5 = 0.05, 𝜀 = 16.3, 𝜀 = 11.

Using the YALMIP toolbox with the SeDuMi solver, problem (60) has a feasible solution with the following parameters:

P =

⎡⎢⎢⎢⎢⎢⎣

20.0303 2.7591 −36.7289 −0.9480 4.2078
2.7591 9.3207 −3.7401 0.1988 −0.3779

−36.7289 −3.7401 75.4059 1.3429 −7.3582
−0.9480 0.1988 1.3429 8.4966 −0.7397
4.2078 −0.3779 −7.3582 −0.7397 8.6754

⎤⎥⎥⎥⎥⎥⎦
, S =

⎡⎢⎢⎢⎢⎢⎣

24.1147 12.4407 −2.1241
−30.4363 −7.6372 1.7454
−24.9101 2.8102 7.2274
−0.4127 −8.9164 0.7416
4.1052 1.4332 −7.2607

⎤⎥⎥⎥⎥⎥⎦
.

The minimum allowed 𝛾∗ = 0.054 and the associate controller gains are

K1 =
[
−0.2390 −0.3485 −0.0840 −0.0094

]
, K2 =

[
−0.2163 −0.3621 −0.0810 −0.0106

]
,

K3 =
[
−0.2253 −0.3671 −0.0910 −0.0110

]
. (75)

The existence of a feasible solution shows that there exists a desire sliding surface in (12) such that the resulting sliding
mode dynamics in (15) is admissible with L2-L∞ performance.

The remaining task is to design a sliding mode controller such that the system trajectories can be driven onto the
predefined sliding surface and maintained there for all subsequent time. For simulation purposes, we take exogenous
input 𝜔(t) = cos(2.5t)e−0.5t and uncertain matrix function F(t) = 0.5 + 0.5sin(2t).

With 𝜒 = 0.75, 𝛼0 = 2.5, 𝜅1 = 0.1, and 𝜅2 = 0.1, the adaptive SMC law can be designed according to (62)-(64).
To prevent the control signal from chattering, we replace s(t)||s(t)|| with s(t)

0.1+||s(t)|| .
The simulation results depicted in Figure 2 show that

• for initial condition 𝜑(t) = [0.1, 0, 0, 0]T, t = −0.2, … , 0, Figures 2A to 2E depict respectively, the system state tra-
jectories, the control input, the resulting sliding surface, and the adaptive law when the SMC is applied. We observe
that the system is stable despite the presence of actuator nonlinearity, parameter uncertainties, and external
disturbances.

• Figures 2D and 2E show that the adaptive laws converge to some values depending on initial condition values
𝛼̂(0) and 𝜌̂(0) and on the adaptation gains 𝜅1 and 𝜅2. However, we can note that 𝛼̂(t) and 𝜌̂(t) do not necessarily
converge to nominal values 𝛼 and 𝜌, respectively.

• From Figure 2F, the ratio of ||z(t)||∞||w(t)||2 is less than 0.012 under zero initial condition, which reveals that the L2-L∞

disturbance attenuation level is less than required 𝛾∗ = 0.054.
• The proposed scheme can obtain better convergence performance by driving the system trajectories to the specified

sliding surface asymptotically instead of to some neighbor of the surface.
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FIGURE 2 Simulation results for rolling disk system. A, State trajectories; B, Input trajectory; C, Surface trajectory; D, Adaptive law;
E, Adaptive law; F, Ratio trajectory [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSIONS

This paper addresses the problems of SMC for a class of fuzzy singular systems with state delay and nonlinearity input.
A fuzzy integral sliding function is proposed and a delay-dependent sufficient condition is derived to guarantee that the
sliding mode dynamics is robustly admissible with L2-L∞ disturbance rejection performance. Moreover, an adaptive SMC

http://wileyonlinelibrary.com
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law is designed such that the trajectories of the resulting closed-loop system can be driven onto a prescribed sliding surface
and maintained there for all subsequent time. The existence and the effectiveness of theoretical developments have been
verified by a numerical example. The proposed controller shows that it has the ability to eliminate the model uncertainties
and to reduce the chattering on the sliding surface. It should be emphasized that the computational simplicity of the
suggested method can be an another prominent feature of this work.

As future work, we will further investigate the problem of fault estimation and fault-tolerant control for nonlinear
singular systems via the SMC scheme.
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