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a b s t r a c t

In recent years, 3D point cloud has gained increasing attention as a new representation for objects. However,
the raw point cloud is often noisy and contains outliers. Therefore, it is crucial to remove the noise and outliers
from the point cloud while preserving the features, in particular, its fine details. This paper makes an attempt to
present a comprehensive analysis of the state-of-the-art methods for filtering point cloud. The existing methods
are categorized into seven classes, which concentrate on their common and obvious traits. An experimental
evaluation is also performed to demonstrate robustness, effectiveness and computational efficiency of several
methods used widely in practice.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The 3D point cloud [1–3], a new primitive representation for objects,
has became increasingly prevalent in many research fields [2], such as
object recognition [4] and reconstruction [5,6], due to its simplicity,
flexibility and powerful representation capability. In contrast to triangle
meshes, the point cloud does not require to store or maintain the
polygonal-mesh connectivity [7] or topological consistency [8]. Pro-
cessing and manipulating point cloud therefore can demonstrate better
performance and lower overhead. These prominent advantages make
the research on processing point cloud a hot topic.

The rapid development of low-cost sensors, such as Kinect [9–11]
and time of flight cameras [5,12], makes it easy to obtain point cloud
for growing communities. The point cloud acquired with these sensors,
however, inevitably suffers from noise contamination and contains
outliers [13,14] due to the limitations of sensors [5], the inherent noise
of the acquisition device [15], the lighting or reflective nature of the
surface or artifact in the scene [16]. Therefore, it is necessary to perform
filtering operations on raw point clouds to obtain accurate point clouds
that are suitable for further processing.

In recent years, although a large number of methods contributing to
3D filtering have been proposed, most of these are devised for meshes
and only a few approaches directly operate on point cloud. In addition,
there is no survey paper giving an insightful analysis of these filtering
methods for point cloud.

Compared with the existing literature, the main contributions of
this work are as follows: (i) To the best of our knowledge, this is
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the first review paper in the literature that focuses on algorithms for
filtering 3D point cloud at present. (ii) This paper provides readers
with a comprehensive review of the state-of-the-art methods covered
in early work. (iii) A comparative summary of traits of these methods
is demonstrated in table form. (iv) This paper carries out an experiment
concerning on performance comparison of several widely used methods.

The remainder of this paper is organized as follows. Section 2
presents an overview of filtering approaches for 3D point cloud. And
then experimental results and discussion are illustrated in Section 3.
Conclusions are drawn in Section 4.

2. Methods for filtering point cloud

Filtering is an area of intensive research and the crucial step of
the processing pipeline for a wide range of applications. The main
filtering approaches for 3D point cloud can be categorized into the
following seven groups, where four classifications (statistical-based,
neighborhood-based, projection-based and PDEs-based filtering) are
from [17].

2.1. Statistical-based filtering techniques

In the context of filtering point cloud, many techniques utilize the
adaptation of the statistical conceptions, which are suitable for the
nature of the point cloud.
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Fig. 1. Denoise point sets via L0 minimization. (a) Original model; (b) input; (c) L0 minimization, primitively shown in [23].

Schall et al. [18] filtered point cloud using a kernel based clustering
approach. They first accumulated the local likelihoods 𝐿𝑖 computed
on every point 𝑝𝑖 to define the likelihood function 𝐿 modeling the
probability for the noisy point cloud. Next, they moved the points to
positions of high probability utilizing an iterative scheme motivated by
mean shift technique to smooth the point cloud. This method achieves
effectiveness in filtering and robustness in outlier detection. However,
sharp features are not treated with emphasis in their method.

Narváez et al. [15] proposed a new weighted variant of the principal
component analysis method for denoising point cloud, which used
weighting factors assignment by inversely proportional repartition of
the sum of distance to the mean. Then, the factors and the weighted
mean are used to estimate a weighted covariance matrix. By realizing
an eigen-analysis of the matrix, a fitting plane, expanded by the eigen-
vectors corresponding to the largest eigen-values, and a normal vector
to this plane oriented in the direction of eigen-vector corresponding to
the smallest eigen-value are obtained at each point. The variations make
the algorithm robust to the noise and outliers. In addition, the operator
𝑝′ = 𝑝+ 𝑡𝑛𝑝 [19] is applied to shift the mean along the normal direction
to preserve shape features.

Jenke et al. [20] first employed Bayesian statistics for denoising
point cloud. They found a measurement model 𝑃 (𝐷|𝑆), which specified
the probability distribution of estimated point cloud 𝑆 agreeing with
measured data 𝐷. Then, they defined three prior probabilities, such as
density priors, smoothness priors and priors for sharp features, to form
𝑃 (𝑆) = 1

𝑍 𝑃𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑆)𝑃𝑠𝑚𝑜𝑜𝑡ℎ (𝑆)𝑃𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 (𝑆)⋅𝑤(𝑆), 𝑍 was a normalization
constant. Finally, they maximized a posteriori 𝑃 (𝑆|𝐷) to remove noise
while preserving features.

𝑆𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑃 (𝑆|𝐷) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑃 (𝐷|𝑆)𝑃 (𝑆) (1)

Kalogerakis et al. [21] provided a robust statistical framework to fil-
ter point clouds. In their framework, an Iteratively Least Squares (IRLS)
approach estimates curvature tensor and assigns weights to samples at
each iteration to refine each neighborhood around every point. The
computed curvatures and the final statistical weights are utilized to
correct normal. The robustly estimated curvatures and normal can drive
the outlier rejection and denoise point cloud in a feature-preserving
manner based on a global energy minimization process.

Avron et al. [22] introduced L1-sparsity paradigm to denoise the
point cloud. Firstly, a re-weighted L1 minimization process is used
to restore point orientations. Then, point position is reconstructed by
assuming a local planarity criterion so as to preserve shape features.
Although, this method can achieve reasonable results, points on an
edge are sometimes not faithfully recovered [23]. Meanwhile, since
L0 is a sparser solution than L1, Sun et al. provided an L0 minimization
method, which is directly used to denoise point cloud by applying
a similar L0 optimization procedure to estimate normals followed by
repositioning points along the normal directions in order to better
maintain the sharp features (see Fig. 1).

Orts-Escolano et al. [24] first used a 3D filtering and downsampling
technique based on Growing Neural Gas (GNG) [25–27] network. This
is a growth process to produce a GNG network to represent a raw point

Fig. 2. GNN representation of point cloud, primitively shown in [4].

cloud using a set of 3D neurons and interconnection among them. This
method can preserve the topology of point cloud and deal with outliers
in point cloud. Therefore, filtered point cloud using GNG can improve
keypoints detection performance [28] and yield better recognition
results [4,29]. This method produced a GNG network mapping to the
point cloud (shown in Fig. 2).

2.2. Neighborhood-based filtering techniques

Neighborhood-based filtering techniques determine the filtered po-
sition of a point using similarity measures between a point and its
neighborhood which has a strong influence on the efficiency and
effectiveness of the filtering approach [17]. As described in the following
methods, the similarity can be defined by positions of points, normals
or regions.

The bilateral filter, originally introduced by Tomasi and Man-
duchi [30], is an edge-preserving [31] smoothing filter, which is
extended to 3D meshed denoising [32–34]. However, these methods
require a mesh generation process, which itself suffers from noise [35].
In order to tackle this problem, the bilateral filter is applied directly on
the point cloud [6,36–38] based on point positions and intensity. The
𝑤𝑠 and 𝑤𝑟 are the spatial and range weight, respectively,

𝑤𝑠 = exp
(

−
(𝑖 − 𝑥)2 + (𝑗 − 𝑦)2

2𝜎2𝑠

)

(2)

𝑤𝑟 = exp
(

−
(𝐼 (𝑖, 𝑗) − 𝐼 (𝑥, 𝑦))2

2𝜎2𝑟

)

(3)

where (𝑖, 𝑗) is the neighborhood of (𝑥, 𝑦), 𝐼(𝑖, 𝑗) presents the intensity at
(𝑥, 𝑦), 𝜎𝑠 and 𝜎𝑟 are the standards of Gaussian functions.

In order to reduce time complexity, Xu et al. [39] replaced the
weight of gray domain in the bilateral filter with a binary function (4)
to achieve a better performance. However, this kind of filters deals with
the point cloud containing intensity components. As a consequence,
normal [35,40–43], being as one of the important attributes of point
cloud, is considered in the process of bilateral filter of which the weight
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Fig. 3. Denoise point cloud via a normal based bilateral filter. (a) Noisy model; (b) filtered result.

Fig. 4. Denoise point sets via WLOP. (a) Input noisy model; (b) filtered result.

is defined as a function of spatial location and normal information of
points, shown in Eq. (5).

𝑤𝑟 =
{

1 |𝐼(𝑥, 𝑦) − 𝐼(𝑖, 𝑗)| ≤ 3, 𝐼(𝑥, 𝑦) ≠ 0
0 |𝐼(𝑥, 𝑦) − 𝐼(𝑖, 𝑗)| > 3, 𝐼(𝑥, 𝑦) ≠ 0

(4)

𝑤 = 𝑓 [𝑑 (𝑝, 𝑞)] × 𝑔
[

𝑐
(

𝐧𝑝,𝐧𝑞
)]

(5)

where f and g are the Gaussian function with 𝜎𝑓 and 𝜎𝑔 . 𝑑(𝑝, 𝑞)
defines certain distance (e.g. Euclidean distance) between point p and its
neighbor q. 𝑐(𝐧𝑝,𝐧𝑞) indicates the normal relation at points 𝑝 and 𝑞, such
as inner product of normal vector

⟨

𝐧𝑝,𝐧𝑞
⟩

[35],‖‖
‖

(𝑝 − 𝑞) ⋅ 𝐧𝑝𝐧𝑞
‖

‖

‖

[40],
(

𝐧𝑝 − 𝐧𝑞
)2 [41] and 𝐧𝑝 ⋅

(

𝐧𝑝 − 𝐧𝑞
)

[42] (see Fig. 3).
Motivated by the mean shift filtering for images, Hu et al. [44]

formulated a 3D mean shift based anisotropic filter algorithm by taking
the vertex normal, curvature as well as position into account. According
to the similar modes of points produced via mean shift procedure, they
designed a cluster scheme to provide an adaptive neighbor searching
method to determine the neighborhoods of each point. Finally, they
applied a trilateral filtering to the adaptive neighborhoods to denoise
the point cloud whilst preserving features.

Based on the similar idea as bilateral filtering, Schall et al. [17]
first extended non-local means method proposed by Buades et al. [45]
for image filtering to 3D point cloud. They introduced a new non-
local similarity measure 𝛷𝑠 which took the local square neighborhoods
around points into account. 𝛷𝑠

(

𝑝𝑖, 𝑝𝑗
)

= 𝑒−𝑆𝑖𝑚
(

𝑝𝑖 ,𝑝𝑗
)2∕𝑠2 , 𝑆𝑖𝑚

(

𝑝𝑖, 𝑝𝑗
)

=
∑

𝑜∈𝑂
|

|

|

(𝑝𝑖+𝑜 − 𝑝𝑗+𝑜) ⋅ 𝑑𝑖
|

|

|

2
∕ ‖𝑂‖, where 𝑝𝑗 is a point of neighborhood 𝑁(𝑝𝑖),

o denotes the offset between the center point and an arbitrary neigh-
borhood point. 𝑑𝑖 is the displacement direction of point 𝑝𝑖, which can
either be an estimated normal or the line-of-sight of camera lying on the
types of noise. This method yields a more accurate filtering result and
possesses a better feature preservation characteristic.

Huhle et al. [12] took color information and intra-patch similarity
into account to propose a robust non-local means filter. This method first
detects outliers in the input data and then performs a feature-preserving
smoothing processing. Experimental results show that this denoising
algorithm exhibited a superior performance.

Wang et al. [46] presented an effective algorithms consisting of
two steps: outliers filtering and noise smoothing. They designed a
connectivity-based approach based on the properties of the relative
deviation of the local neighborhood and the average local neighborhood
to remove sparse outliers. After the process, they used a clustering-based
scheme to further eliminate the small cluster outliers. Furthermore, they
performed normal filtering by iteratively updating weighted normal of
point. Points are updated to match the filtered normal. Experimental
results show that this method obtains satisfactory results.

2.3. Projection-based filtering approaches

Projection-based filtering approaches adjust the position of each
point in a point cloud via different projection strategies to filter point
cloud.

Inspired by the concept of L1 median [47–50] from statistics, Lipman
et al. [51] introduced a parameterization-free projection operator, that
was, Locally Optimal Projection (LOP) operator [52]. The rationale of
this method is to iteratively project a subset of the input point cloud
onto this point cloud to reduce noise and outliers. However, if the input
point cloud is highly non-uniform, projection by LOP tends to become
non-uniformity, which is undesirable in shape features preservation and
normal estimation.

Huang et al. [49] incorporated locally adaptive density weights
of each point into LOP, that was WLOP (see Fig. 4), to produce an
evenly distributed points set. An important parameter which controls
the amount of smoothness in LOP is h, the support size of the weight
function 𝛩. Too large value of h causes the shrinkage of the point cloud
while too small value results in little effect of denoising. To solve this
problem, Ye et al. [53] projected only z coordinates of the point-set, then
x and y could be calculated through re-projection. This method not only
obtains smoothness and the preservation of geometric structure, but also
removes isolated outlier points.

To address problems mentioned above, Liao et al. [54] integrated a
feature preservation weight 𝜃𝑟 (𝑥) = 𝑒−

(

𝐧𝑇𝑖
(

𝑝𝑖−𝑞𝑗
))2∕𝜎2𝑝 into the formula,

which penalized large variation in geometry similarity, into the term
E1 of L1 median, while retained the repulsion term E2 unchanged to
form the feature-preserving locally optimal projection (FLOP).
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Fig. 5. The projection of MLS, originally shown in [19].

Since LOP is an isotropic operator, Huang et al. [55] replaced
𝜃
(

‖

‖

‖

𝑝𝑖 − 𝑞𝑗
‖

‖

‖

)

in the term E1 with following equation

𝛩
(

𝐧𝑖, 𝑝𝑖 − 𝑞𝑗
)

= 𝑒−
(

𝐧𝑇𝑖
(

𝑝𝑖−𝑞𝑗
))2∕𝜎2𝑝 (6)

where 𝐧𝑖 denoted normal at point 𝑝𝑖, which was estimated based on an
anisotropic neighborhood followed by being smoothed using bilateral
normal smoothing. This anisotropic LOP could obtain better sharp
feature preservation.

Since the above methods require high computational effort, Preiner
et al. [56] designed an efficient variant of the locally optimal projection
operator. They employed the Gaussian Mixture Model formed by regu-
larizing the hierarchical EM algorithm to cluster points to represent the
point cloud’s density. Then, they redefined and evaluated the attractive
force to obtain the continuous LOP (CLOP). Finally, CLOP was applied
to the Gaussians instead of points to achieve speedups.

There are many approaches built upon the work over Moving
Least Squares by Levin [57–59]. Alexa handled noise problem by
iteratively projecting the points onto the MLS surface [19,60] de-
fined by two steps (see Fig. 5). The first step finds a local refer-
ence plane 𝐻 =

{

𝑥 ∈ 𝑅3
| < 𝐧, 𝑥 > −𝐷 = 0

}

by locally minimizing
∑

𝑝∈𝑃 (< 𝐧, 𝑝 > −𝐷)2𝑒−‖𝑟−𝑞‖∕ℎ2, where q is the projection of r onto H and
h is a global scale factor controlling the degree of smoothing. A local
polynomial approximation with respect to the reference domain is then
computed (see Fig. 6). However, in terms of irregularly sampled point
cloud, it is difficult to find a suitable h. Pauly et al. [61] collected the
k-nearest neighbors and dynamically chose h=r/3 to ensure that points
in the k-neighborhood contributed to the least-squares optimization.

The drawback of MLS is that the process involves a non-linear
optimization for finding the reference plane [8]. It is computational
expensive. Alexa and Adamson [62] proposed a simpler projection

procedure, in which local reference planes were defined by a weighted
average position at x. 𝑎 (𝑥) =

∑

𝑖𝜃
(

‖

‖

𝑥 − 𝑝𝑖‖‖
)

𝑝𝑖∕
∑

𝑖𝜃
(

‖

‖

𝑥 − 𝑝𝑖‖‖
)

and
a normal was computed using weighted averages of input normal
𝐧𝑖. 𝐧 (𝑥) =

∑

𝑖𝜃
(

‖

‖

𝑥 − 𝑝𝑖‖‖
)

𝐧𝑖∕
‖

‖

‖

∑

𝑖𝜃
(

𝑥 − 𝑝𝑖
)

𝐧𝑖
‖

‖

‖

. Amenta and Kil [63]
presented an explicit version of MLS surface definition in terms of
the critical points of an energy function e𝑀𝐿𝑆 on lines determined by
a vector field 𝒏(𝑥) = argmin 𝑒𝑀𝐿𝑆 and gave a simple procedure that
produced a point of the MLS surface, which was not considered in Levin’s
paper.

In fact, MLS is a low-pass filter, which could smooth shape features
of point cloud. Thoughtfully, based on M-estimator procedure and
moving least squares method, Mederos et al. [64] gave a new smoothing
operator 𝑄(𝑟) = 𝑟 + 𝑡𝑟𝒏𝑟 computed by using an effective numerical
optimization procedure to preserve salient features, where n𝑟 and t 𝑟
were determined by the fitting of a plane H in the neighborhood of
point r. Fleishman et al. [65] introduced a robust moving least squares
technique based on forward-search paradigm to deal with noise, outliers
and sharp features. Their work classifies the neighborhood of the point
into subsets of outlier-free smooth regions of the surface, and then the
moving least squares projection mechanism is operated on points. But
this method requires very dense point clouds and is time-consuming.
Adamson and Alexa [66] adopted cell complexes to preserve the shape
features by decomposing the object into cells of different dimensions,
while this decomposition demanded effort by the users.

From the above approaches, it can be seen that the plane fitting
operation is unstable in regions of high curvature if the sampling
rate is below a threshold. Guennebaud and Gross [67] thus performed
algebraic sphere fitting to improve stability where planar MLS fails.

Fua et al. [68] fitted a local quadric patch to a neighborhood of every
point. They then iteratively smoothed the raw point clouds by using
these estimated surfaces. In order to deal with outliers, a metric was
defined to measure whether or not two points belong to the same local
surface. This process was curvature-preserving and could not smooth
out relevant features.

Wang et al. [69] used the mean shift clustering and adaptive scale
sampling consensus to compute the best tangent planes for all points
so as to detect and remove outliers. Subsequently, they dichotomized
the feature and non-feature points and denoised them, respectively, by
projecting them onto the corresponding quadratic surfaces fitted using
their neighborhoods, which were determined based on the normal-based
region growing technique.

2.4. Signal processing based method

Signal processing methodology can also be extended to point cloud
filtering. Based on Taubin’s method [70] that applied the Laplacian
operators to filter the mesh, Linsen [71] developed a filtering operator

Fig. 6. Denoise point sets via MLS. (a) Input noisy model; (b) filtered result.
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containing three features: locality, non-shrinkage and including geomet-
rical aspects. Pauly et al. [72] introduced the discrete approximation of
Laplacian to point cloud. In order to handle shrinkage, their method
approximates the local volume change and compensates the shrinkage
by displacing the neighbors of point p with (𝐩 − 𝐩′)∕𝑘,𝐩′ = 𝐩 + 𝜆△ 𝐩,
where △𝐩 is discrete approximation of the Laplacian at point p. This
method, however, could smooth features and lead to the vertex drift.

Motivated by Fourier transformation, Pauly and Gross [73] used
spectral processing to filter point cloud. They applied a discrete Fourier
transform to obtain a spectral decomposition of point cloud. The
elaborate filtering operation was then carried out by manipulating the
frequency spectrum via the Wiener filter.

Rosman et al. [74] first constructed the collaborative patch P𝑖 using
a set of similar patches for each patch 𝑃𝑖 based on certain distance
measurement, and then their algorithm included two phases. Phase I
prevents shrinkage using the eigen-functions of the Laplace–Beltrami
operator of the collaborative patch, followed by Wiener filtering based
on the denoised estimation from phase I.

2.5. PDEs-based filtering technique

PDE (Partial Differential Equations), one of the most important
tools widely used in computer vision and computer graphic, has been
successfully applied to many applications tasks such as image or mesh
denoising. PDEs-based techniques for filtering point cloud can be con-
sidered as an extension of that to the triangular meshes.

By assembling the local finite matrices constructed over small point
neighborhoods into a single matrix, Clarenz et al. [75] presented a
framework for processing point cloud via PDEs. They discretized and
solved an anisotropic geometric diffusion equation for filtering point
cloud. This method could smooth out the noise whereas features were
preserved or enhanced.

Extending Taubin’s work [76], Lange and Polthier [77] took the
directional curvatures, principal curvatures and the Weingarten map
into account to obtain an anisotropic geometric mean curvature flow
method to filter point cloud. First, they used directional curvatures to
produce a Weingarten map by discretizing an integral formula. Next,
they computed the eigen-values and eigen-vectors corresponding to
principal curvatures and directions respectively. Finally, they defined
an anisotropic Laplacian for mean curvature flow technique by applying
curvature information to modify Laplacian. This method can detect
features such as edges but need to choose edge quotients manually.

Based on covariance analysis and constructed directional curvature,
Xiao et al. [78] proposed an anisotropic curvature flow approach. The
corresponding equation they used is 𝜕𝑢∕𝜕𝑡 = 𝑔

(

−𝑘𝐧
)

+ (1 − 𝑔) (𝐼 − 𝑢),
where G𝑢 is a Gaussian kernel, 𝑘 denotes the directional curvature. The
terms 𝑔

(

|

|

|

𝑘𝐻
(

𝐺𝑢 × 𝑢
)

|

|

|

)

and 1-g work as a moderated selector of the dif-
fusion process. I–u is a forcing term to eliminate shrinkage. Experimental
results show that their method achieves a better performance in noise
removal, feature preservation, anti-shrinking and anti-point drifting.

To extend many processing methods on images into 3D point cloud,
Lozes et al. [79] constructed weighted arbitrary graphs for representing
point cloud, which needed to consider local neighborhood information.
The transposition of framework of PDEs, such as 𝑝-Laplacian oper-
ator [80] and PDEs morphological operators, was adapted to these
arbitrary graphs (that is PDEs on weighted graphs [81]) to filter point
cloud.

Because PDEs-based techniques need to compute the partial differen-
tial properties, it is time consuming to use these methods to filter point
cloud.

2.6. Hybrid filtering technique

Hybrid strategies usually use two or more filtering techniques to-
gether to deal with the raw point clouds.

Liu et al. [82] developed an iterative framework to process point
cloud. They first applied a Weighted Locally Optimal Projection (WLOP)
operator to efficiently filter out noise. Then, they used a mean-shift-
based outlier removal operator to detect and eliminate outliers. How-
ever, the limitations of their algorithm are its difficulty in recovering
sharp features and its computational costs.

Zaman et al. [16] proposed a density-based approach for denoising
point cloud. First, they used particle-swam optimization technique to
select the bandwidth for approximation of kernel density estimation
(KDE). Then, mean-shift clustering algorithm was utilized to the KDE to
remove outliers. Finally, the noise in the remaining points was reduced
by applying bilateral filter. The result showed that this method is robust
with highly noisy point cloud.

2.7. Other methods

There are many other methods used for filtering point cloud. Szeliski
and Tonnesen et al. [83] developed oriented particles (point clouds).
Each point, having a position and its own local coordinate frame, defined
both a normal and a local tangent plane of the represented surface. They
devised a set of potential functions to group these points into surface-like
arrangements. Their method could shape the surface by moving points
around.

Voxel Grid (VG) filtering method first defines a 3D voxel grid
(3D boxes in 3D space) on a point cloud. Then, in each voxel, a
point is chosen to approximate all the points that lie on that voxel.
Normally, the centroid of these points or the center of this voxel is
used as the approximation. The former is slower than the later, while its
representative of underlying surface is more accurate. The VG method
usually leads to geometric information loss.

Quadtree-based filtering method creates a quadtree as a data struc-
ture to organize a point cloud. This representation can improve the
speed of neighborhood search, which is beneficial to the efficiency of
the filtering algorithms. And then, the filtering strategies or methods
(like neighborhood-based approaches or projection-based methods) are
used to filter the point clouds.

Digne et al. [84] introduced a similarity based filtering to denoise
point cloud. They decomposed the input point clouds into a smooth part
S𝑠𝑚𝑜𝑜𝑡ℎ yielded by using the mean curvature motion and a high frequency
term →

𝑉
. And then a non-local strategy, filtering high frequency based

on L2-distance similarity between local descriptors computed for each
point, was used to denoise →

𝑉
to achieve shape denoising. Nevertheless,

this algorithm relied on point densities and cannot differentiate texture
and structured noise.

Table 1 presents a summary of the filtering methods in terms of noise
removal, feature preservation, outlier removal and other performance.
These methods are listed chronologically by year of publication.

3. Experimental results and discussion

After a comprehensive analysis of the major 3D point cloud filtering
algorithms, we now proceed to conduct experiments aiming at com-
paring and evaluating the performance of selected point cloud filtering
methods.

3.1. Selected methods

In our experiments, we select 7 different filtering methods which
are widely cited and used in comparison. These algorithms have been
already briefly introduced in Section 2 and include: Voxel Grid filter
(VG), Normal-based Bilateral Filter (NBF), Moving Least Square (MLS),
Weighted Locally Optimal Projection (WLOP), Edge Aware Resample
(EAR) and L0 minimization (L0). These filtering algorithms are tested on
different point cloud models corrupted with Gaussian noise to evaluate
corresponding performance.
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Table 1
Methods for 3D point cloud filtering.

No. Reference Category(section) Noise
removal

Feature
preserving

Outliers
removal

Performance

1 P. Fua et al. [68] 1996 Projection(1.3) ✓ ✓ ✓ Be inherently local and parallel
2 Szeliski et al. [83] 1998 Other(1.7) ✓ ✓ × Be helpful for rendering
3 Alexa et al. [19] 2001 Statistical(1.1) ✓ × × Controls the fidelity of point cloud
4 Linsen et al. [71] 2001 SP(1.4) ✓ × × handles a number of measuring errors
5 Pauly and Gross [73] 2001 SP(1.4) ✓ ✓ × Be efficient, robust and amenable to

hardware acceleration
6 Pauly et al. [72] 2002 SP(1.4) ✓ × ✓ Guarantees bounded curvature and

stability
7 Amenta et al. [63] 2004 Projection(1.3) ✓ × ✓ Be better than MLS [19]
8 Mederos et al. [64] 2003 Projection(1.3) ✓ ✓ ✓ Outperforms MLS [19]
9 Clarenz et al. [75] 2004 PDEs(1.5) ✓ ✓ × Be quite suitable for surface fairing

application
10 Jones et al. [40] 2004 Neighborhood(1.2) ✓ ✓ × Preserves much more features

contributing to rendering
11 Miropolsky A. et al. [35] 2004 Neighborhood(1.2) ✓ ✓ × This method is simple, fast and accurate
12 Fleishman et al. [65] 2005 Projection(1.3) ✓ ✓ ✓ Handles complex shapes and suppresses

the shrinkage
13 Lange and Polthier [77] 2005 PDEs(1.5) ✓ ✓ × Well enhances geometric features (edges

and corners)
14 Schall et al. [18] 2005 Statistical(1.1) ✓ ✓ × Works well in combination with surface

reconstruction method
15 Adamson and Alexa [66] 2006 Projection(1.3) ✓ ✓ ✓ Be new and more flexibility
16 Esmeide A. et al. [15] 2006 Statistical(1.1) ✓ ✓ ✓ Shrinkage prevention and Bias

correction
17 Hu et al. [44] 2006 Neighborhood(1.2) ✓ ✓ × Avoids local shape corruption and

Outperforms bilateral fitlering
18 Jenke et al. [20] 2006 Statistical(1.1) ✓ ✓ × Works robustlyin practice
19 Xiao et al. [78] 2006 PDEs(1.5) ✓ ✓ × Better than bilateral filter and Laplacian

method [71]
20 Lipman et al. [51] 2007 Projection(1.3) ✓ × ✓ Outperforms MLS [19]
21 Huhle et al. [12] 2008 Neighborhood(1.2) ✓ ✓ ✓ Yields unbiased results
22 Kalogerakis et al. [21] 2008 Statistical(1.1) ✓ ✓ ✓ Works effective point clouds with

varying amounts of noise and outliers
23 Schall et al. [17] 2008 Neighborhood(1.2) ✓ ✓ × Outperforms bilateral filter and Be

flexibly applicable to noisy models
24 Huang et al. [49] 2009 Projection(1.3) ✓ ✓ ✓ Does not require normal estimation,

local plane fitting and other parametric
representation

25 Avron et al. [22] 2010 Statistical(1.1) ✓ ✓ × Outperforms LOP [51] and RMLS [65]
26 Ye et al. [53] 2011 Projection(1.3) ✓ ✓ ✓ Avoids shrinkage and improves

LOP [51]
27 Digne et al. [84] 2012 Other(1.7) ✓ ✓ × Outperforms NL means [17] and

Bilateral filter
28 Liu et al. [82] 2012 Combination(1.6) ✓ × ✓ Outperforms MLS [19] and WLOP [49]
29 Huang et al. [55] 2013 Projection(1.3) ✓ ✓ ✓ Outperforms MLS [19] and RMLS [65]
30 Liao et al. [54] 2013 Projection(1.3) ✓ ✓ ✓ Accelerates LOP [51]
31 Orts-Escolano et al. [24] 2013 Statistical(1.1) ✓ ✓ ✓ Outperforms voxel grid filter
32 Rosman et al. [74] 2013 SP(1.4) ✓ ✓ × Outperforms NL means [17], Bilateral

filter and MLS [19]
33 Wang et al. [46] 2013 Neighborhood(1.2) ✓ ✓ ✓ Outperforms WLOP [49], RMLS [65]

and [84]
34 Wang et al. [69] 2013 Projection(1.3) ✓ ✓ ✓ Outperforms RMLS [65] in terms of

sharp edges and corners preservation
35 Lozes et al. [79] 2014 PDEs(1.5) ✓ ✓ × Enables a better visualization of the

point cloud
36 Ma, S. et al. [36] 2014 Neighborhood(1.2) ✓ ✓ × Gets more accurate results
37 Preiner et al. [56] 2014 Projection(1.3) ✓ ✓ × Be more accuracy than WLOP [49] and

Speedups using GPU
38 Sun et al. [23] 2015 Statistical(1.1) ✓ ✓ × Outperforms WLOP [49], EAR [55] and

RMLS [65]
39 Zaman et al. [16] 2016 Combination(1.6) ✓ ✓ ✓ Deals with highly noisy data robustly

VG, NBF and MLS are available in the Point Cloud Library(PCL)
Version 1.7.2. WLOP and EAR were implemented in C++, while the
others (namely RMLS and L0) were programmed by MATLAB R2016a.
The experiments are carried out on a PC with Intel(R) Core(TM) i7-4790
CPU @ 3.60 GHz and 16 GB memory.

3.2. Efficiency

A comprehensive evaluation of the considered filtering algorithms is
given with respect to computational efficiency. We calculate the running

time required by each method to filter a model of a point cloud. Since
the number of points is one of the main factors that would affect the
computational time, models with various numbers of points are chosen
to test the performance of these methods.

3.3. Measures

In order to evaluate the quality of results, two error metrics 𝛿 and
𝐷𝑚𝑒𝑎𝑛 are used. 𝛿 represents the averaged angle over all angles between
the ground truth point normals and the resulting point normals. 𝐷𝑚𝑒𝑎𝑛
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Table 2
Timings for our method and other filtering methods on different models (in ms).

Model Points VG NBF MLS RMLS WLOP EAR L0

Office chair 29,148 86 8,269 7,776 13,556 14,962 71,082 309,610
i-H Bunny 34,834 95 5,428 8,015 17,239 17,735 87,920 297,046
Julius 36,201 165 11,516 9,875 19,741 21,125 73,998 318,776
Sofa 48,668 222 14,836 15,863 30.636 24,923 98,276 420,314
Coffee-mug 49,017 313 12,750 11,161 23,824 25,096 122,659 341,659
Bowl 53,166 283 13,853 13,662 25,440 27,285 101,910 365,420
Iron 85,574 324 24,144 22,558 44,632 46,702 175,409 559,228
Armadillo 172,974 767 20,225 23,803 50,069 99,650 365,790 1,211,477
Dragon 437,645 865 514,836 80,013 164,247 227,273 940,147 975,000
Table 460,400 2,050 590,851 89,597 185,530 261,235 995,090 1,087,200

Table 3
Error metrics for different methods.

Model Error VG NBF MLS RMLS WLOP EAR L0

Chair 𝛿 32.125 20.336 8.962 8.932 8.904 8.785 8.752
𝐷𝑚𝑒𝑎𝑛 0.427 0.307 0.133 0.132 0.134 0.132 0.130

i-H bunny 𝛿 10.223 6.021 5.862 6.105 5.710 5.553 5.559
𝐷𝑚𝑒𝑎𝑛 0.185 0.092 0.089 0.099 0.089 0.085 0.086

Sofa 𝛿 12.850 10.126 10.388 7.211 5.334 5.186 5.032
𝐷𝑚𝑒𝑎𝑛 0.174 0.169 0.167 0.150 0.087 0.087 0.080

Julius 𝛿 13.139 10.647 3.409 3.372 2.166 3.378 3.364
𝐷𝑚𝑒𝑎𝑛 0.181 0.177 0.058 0.058 0.038 0.058 0.049

Coffee-mug 𝛿 12.962 12.729 7.655 7.375 6.447 6.498 6.487
𝐷𝑚𝑒𝑎𝑛 0.210 0.201 0.120 0.116 0.100 0.101 0.101

Bowl 𝛿 25.494 21.676 6.149 6.003 7.667 7.311 7.386
𝐷𝑚𝑒𝑎𝑛 0.501 0.312 0.086 0.074 0.107 0.102 0.104

Iron 𝛿 11.504 7.513 5.844 5.915 6.182 6.180 5.837
𝐷𝑚𝑒𝑎𝑛 0.193 0.116 0.091 0.093 0.097 0.096 0.090

Armadillo 𝛿 9.071 3.616 3.599 4.406 5.124 5.139 5.005
𝐷𝑚𝑒𝑎𝑛 0.117 0.052 0.052 0.061 0.097 0.075 0.066

Dragon 𝛿 26.375 23.036 20.816 21.090 20.816 17.646 16.494
𝐷𝑚𝑒𝑎𝑛 0.421 0.359 0.299 0.303 0.310 0.262 0.202

Table 𝛿 32.481 29.313 17.010 17.449 28.540 21.918 15.998
𝐷𝑚𝑒𝑎𝑛 0.553 0.502 0.277 0.285 0.463 0.358 0.254

is the average distant from the resulting points to the corresponding
ground truth points.

3.4. Results and discussion

Table 2 gives the running time of different methods over different
point cloud models with different numbers of points. Some observations
can be found among these algorithms. Firstly, voxel grid approach is the
most efficient filter, which is nearly two or three orders of magnitude
faster compared with others. Secondly, it is worth pointing out that
when the number of points in models is less than 200,000, NBF can
achieve almost the same performance in terms of efficiency as MLS,
while with the increase of points, NBF becomes very time-consuming.
RMLS and WLOP are two or three times slower than MLS and NBF on
the whole. Finally, due to different strategies for normal estimation,
normal filtering and point updating, L0 and EAR, therefore, are the most
computationally expensive algorithms.

The error metrics for different methods are presented in Table 3.
According to the error metrics, it is evident that there is an obvious
difference between ground truth point clouds and filtered ones by VG,
indicating that VG cannot obtain the results as expected. The filtering
effectiveness of NBF is similar to VG in some extend apart from the
Armadillo model. In addition, for most point cloud models, EAR and
L0 achieves a better filtering performance with relatively lower 𝛿 and
𝐷𝑚𝑒𝑎𝑛.

Fig. 7 shows the filtered results of these four methods on bowl models
with Gaussian noise (𝜎 = 0.005). It can be seen that the bowl is still
noisy after filtering by NBF and VG, while MLS, WLOP and EAR can
produce good visual results. Experimental results tested on sofa models

with Gaussian noise (𝜎 = 0.01) are illustrated in Fig. 8. WLOP, EAR and
L0 can preserve the shape feature better than other methods. And it can
be seen from Fig. 9 that EAR and L0 yield a better results compared to
the others in terms of noise removal and feature preserving.

Overall, as for real-time systems on point clouds with a large number
of points, VG can be recommended as a better choice regarding to
computational efficiency. However, its filtering effect is unsatisfactory.
In contrast, EAR and L0 demonstrate a sufficient performance in terms
of noise removal, together with feature preserving, yielding a relatively
accurate models for further processing (e.g. object recognition). It has
to be noted that they are both computationally expensive. MLS can
be considered as a relatively good trade-off which provides a balance
between running efficiency as well as the filtering effectiveness.

4. Conclusion

This paper has placed a strong emphasis on the comprehensive
review of the state-of-the-art algorithms for filtering 3D point cloud.
Although there are a few existing research on point cloud filtering, it
is believed that filtering on the raw point cloud, being as a crucial step
of point cloud processing pipeline, remains a challenging task. A brief
discussion of future research directions are presented as follows.

(1) Combination of color and geometric information: For point
clouds, especially these containing color information, a pure color or
pure geometric attributes based method cannot work well. Hence, it is
expected to combine the color and geometric information in the filtering
process to further increase the performance of a filtering scheme.

(2) Time complexity reduction: Because point clouds contain a large
number of points, some of which can be up to hundreds of thousands
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Fig. 7. (a) Noisy bowl model; (b) filtering result with VG; (c) NBF; (d) MLS; (e) RMLS; (f) WLOP; (g) EAR; (h) L0.

Fig. 8. (a) Noisy sofa model; (b) filtering result with VG; (c) NBF; (d) MLS; (e) RMLS; (f) WLOP; (g) EAR; (h) L0.

or even millions of points, computation on these point clouds is time

consuming. It is necessary to develop filtering technologies to filter point

cloud effectively to reduce time complexity.

(3) Filtering on point cloud sequence: Since object recognition from
a point cloud sequence will become the future research direction. And
filtering the point cloud sequence will help to improve the performance
and accuracy of object recognition.
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Fig. 9. (a) Noisy table model; (b) filtering result with VG; (c) NBF; (d) MLS; (e) RMLS; (f) WLOP; (g) EAR; (h) L0.
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