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Bat-inspired (BI) search is a recently developed numerical optimization technique that makes use of
echolocation behavior of bats in seeking a design space. This study intends to explore capabilities and
potentials of this newly developed method in the realm of structural optimization. A novel algorithm
is developed that employs basic principles of this method for structural optimization problems
specifically. Performance of the proposed algorithm is measured using one benchmark as well as three
practical truss structures that are sized for minimum weight subject to stress, stability and displacement
constraints according to American Institute of Steel Construction-Allowable Stress Design (AISC-ASD)
specification. The numerical results demonstrate efficiency of the proposed algorithm in practical
structural optimization.
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1. Introduction

The ongoing research in optimization has led to the
development of new optimization approaches that exhibit certain
advantages over more traditional techniques in various aspects.
The need for developing new optimization approaches stemmed
from the fact that the traditional techniques such as mathematical
programming approaches, which have been used overwhelmingly
for solving many engineering optimization problems in the past,
have remained either inefficient or insufficient when solving to-
day’s engineering problems of real-life. The large scale of engineer-
ing systems, presence of numerous design variables and practical
requirements of designs in actual applications complicated the
present day problems to the point that makes it difficult to handle
using traditional optimization methods. In general, traditional
optimization methods suffer from employing a gradient based
search algorithm that necessitates a continuous design space and
seeks local optima rather than the global optimum.

Recently, a group of optimization techniques referred to as
metaheuristic search algorithms have emerged to be robust tools
for dealing with today’s engineering problems of increased
complexity. The rising popularity of these techniques derives from
(i) the lack of dependency on gradient information; (ii) inherent
capability to deal with both discrete and continuous design
variables; and (iii) automated global search features to produce
near-optimum solutions (if not the global optimum) for compli-
cated problems. These novel and innovative approaches are
derivative-free methods and make use of the ideas inspired from
the nature. The basic idea behind these techniques is to simulate
biological and physical systems in nature, such as natural
evolution, immune system, swarm intelligence, annealing process,
etc., in a numerical algorithm [1–6]. The key difference between
these algorithms lies in the way the moves in the design space
are proposed based on an associated nature-inspired strategy.
There are many metaheuristic techniques available in the litera-
ture nowadays. A detailed review of these algorithms as well as
their applications in engineering optimization problems can be
found in Lamberti and Pappalettere [7], Saka [8], and Saka and
Doğan [9].

One latest addition to metaheuristic algorithms is the bat-in-
spired (BI) search, which was recently proposed by Yang [10].
The bat-inspired search makes use of echolocation behavior of bats
in searching for the optimum. In simple words, echolocation is
used to refer to the way bats use to navigate their surroundings.
Bats get to find their directions and detect prey and different types
of objects around them even in complete darkness. They achieve
this by emitting calls out to the environment and listening to the
echoes that bounce back from them. They can identify location of
other objects and instinctively measure how far they are away
from them by following delay of the returning sound. Yang [10]
idealized such echolocation behavior of bats and turned it into a
numerical algorithm for optimization problems. Efficiency of the
resulting algorithm was validated and compared with other exist-
ing algorithms using some single and multi-objective standard
functions of unconstrained optimization in Yang [10,11], respec-
tively. Besides, performance of the technique in benchmark prob-
lems of constrained engineering optimization was investigated in
Yang and Gandomi [12] and Gandomi et al. [13]. The results ob-
tained in these studies have clearly documented superiority of
the bat-inspired search over other techniques.
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This paper investigates the use and application of bat-inspired
search technique in the realm of structural optimization. The
objective of the study is to unveil capabilities and potentials of this
newly developed method in practical problems of structural opti-
mization. A novel bat-inspired (BI) algorithm is developed that em-
ploys fundamental principles of the technique to solve structural
optimization problems with discrete sizing variables. The perfor-
mance of the proposed algorithm is experimented and evaluated
using one benchmark and three practical truss structures that are
sized for minimum weight subject to stress, stability and displace-
ment constraints according to American Institute of Steel Con-
struction-Allowable Stress Design (AISC-ASD) specifications.
Optimized designs obtained with the proposed BI are compared
with those of other metaheuristic techniques. The results obtained
verify promising performance of the proposed algorithm in struc-
tural optimization problems.

The remaining sections of the paper are organized as follows.
The second section covers a mathematical statement of the struc-
tural optimization problem considered. In the third section the
proposed bat-inspired algorithm is introduced with particular
emphasis on its reformulations for discrete structural optimization
problems. Numerical examples proving efficiency of the proposed
algorithm are covered in the fourth section. A brief conclusion of
the study is given in the last section.

2. Optimum size design problem of steel trusses

Typically in practical design optimization of truss structures the
aim is to find a minimum cost or weight design by selecting cross-
sectional areas of structural members from a table of available sec-
tions such that the final design satisfies strength and serviceability
requirements determined by technical standards. For a given truss
structure composed of Nm members grouped into Nd sizing design
variables, the optimization problem can be formulated as follows.

2.1. Objective function

The objective is to find a vector of integer values I (Eq. (1)) rep-
resenting the sequence numbers of standard sections in a given
section table,

IT ¼ I1; I2; . . . ; INd

� �
ð1Þ

to generate a vector of cross-sectional areas A (Eq. (2)) for Nm mem-
bers of the structure,

AT ¼ ½A1;A2; :::;ANm � ð2Þ

such that A minimizes the following weight objective function:

W ¼
XNm

m¼1

qmLmAm ð3Þ

where W is the weight of the structure, qm, Lm, Am are unit
weight, length, and cross-sectional area of the mth member,
respectively.

2.2. Design constraints

The design constraints consist of the following limitations im-
posed on overall structural response and behavior of individual
members:

gm ¼
rm

rmð Þall
� 1 6 0; m ¼ 1; . . . ;Nm ð4Þ

sm ¼
km

kmð Þall
� 1 6 0; m ¼ 1; . . . ;Nm ð5Þ
djk ¼
dj;k

dj;k

� �
all

� 1 6 0; j ¼ 1; . . . ;Nj ð6Þ

In Eqs. (4)–(6), functions gm, sm and djk are the optimization
constraints on stresses, slenderness ratios, and displacements,
respectively; rm and (rm)all are the computed and allowable axial
stresses for mth member, respectively; km and kmð Þall are the slen-
derness ratio and its upper limit for mth member, respectively; Nj

is the total number of joints; and finally dj,k and (dj,k)all are the dis-
placements computed in kth direction of jth joint and its allowable
value, respectively. In the present study, these constraints are
implemented according to American Institute of Steel Construc-
tion-Allowable Stress Design (AISC-ASD) [14] code specifications.
The complete details of design formulations can be found in
Hasançebi et al. [15].

3. Bat-inspired algorithm for structural optimization

The bat-inspired algorithm is derived from the echolocation
behavior of bats. Echolocation is an advanced hearing based
navigation system used by bats and some other animals to detect
objects in their surroundings by emitting a sound to the environ-
ment. While they are hunting for preys or navigating, these ani-
mals produce a sound wave that travels across the canyon and
eventually hits an object or a surface and returns to them as an
echo. The sound waves travel at a constant speed in zones where
atmospheric air pressure is identical. By following time delay of
the returning sound, these animals can determine the precise dis-
tance to circumjacent objects. Further, relative amplitudes of the
sound waves received at each individual ear are used to identify
shape and direction of the objects. The information collected with
this way of hearing is synthesized and processed in the brain to de-
pict a mental image of their surroundings.

In general echolocation calls are characterized by three fea-
tures; namely pulse frequency, pulse emission rate and loudness
(intensity). When flying, bats emit echolocation calls with varying
frequencies between 25 kHz and 150 kHz depending on proximity
of the target [10]. Although low frequency sounds travel further
than high-frequency sounds, the latter give bats more detailed
and distinctive information about the surrounding objects. On
the other hand, the pulse rate corresponds to the number of pulses
emitted per second and it can also be adjusted by bats according to
the distance from the target object. It is known that bats increase
the rate of pulse to 200 pulses per second when approaching a tar-
get. Finally, bats decrease the intensity (loudness) of pulse from
120 dB (loudest) to 50 dB (quietest) as they come closer to their
prey. Yang [10] simulated echolocation behavior of bats and its
associated parameters in a numerical optimization algorithm.

It is important to mention that metaheuristic search techniques
offer a general solution methodology for a wide range of optimiza-
tion problems from different disciplines. On the other hand, each
optimization problem has unique features of its own, and in most
cases a problem-wise reformulation is necessary to achieve the
best performance of an algorithm for a particular class of problems.
In the following a novel bat-inspired algorithm developed specifi-
cally for structural optimization problems with discrete sizing vari-
ables is introduced. This algorithm employs the fundamental
principles of echolocation behavior of bats and thus it has strong
similarities with the numerical optimization algorithm developed
by Yang [10] in this sense. However, a major adaptation of the
technique is carried out in its formulation and outline to generate
an algorithm that performs efficiently for structural optimization
problems. The basic steps in implementation of the proposed BI
algorithm are described as follows.

Step 1. Initializing bat population (positions and velocities): A
population of l micro-bats (solutions) is randomly generated first,
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where l refers to the population size. Each micro-bat Bi has two
sets of components; a position (design) vector xi and a velocity vec-
tor vi, Eq. (7). The position vector retains values (positions) of the
design variables, while the velocity vector is used to vary these
positions during the search. The iteration counter t is set to zero
initially:

Bi ¼ xi;við Þ ð7Þ

Step 2. Echolocation parameters and their initializations: The next
step is to initialize an echolocation parameter set for the micro-
bats in the population. Each micro-bat incorporates a set of echo-
location parameters Xi = (fi, ri, li), which consists of a frequency fi,
a pulse rate ri and a loudness parameter li. All the three echoloca-
tion parameters are non-negative dynamic real quantities with the
following value ranges:

fmin 6 fi 6 fmax; rmin 6 ri 6 rmax; lmin 6 li 6 lmax ð8Þ

where fmin and fmax are the specified lower and upper bounds for
the frequency parameter fi, respectively; rmin and rmax are the spec-
ified lower and upper bounds for the pulse rate parameter ri, respec-
tively; and lmin and lmax are the specified lower and upper bounds
for the loudness parameter li, respectively. Yang [10] states that
the choice of upper and lower bounds for echolocation parameters
might have a significant influence on convergence characteristics of
the algorithm. In the present study the bounds fmin, fmax, lmax and
rmin are set to the following constants:

fmin ¼ 0:0; f max ¼ 1:0; lmax ¼ 1:0; and rmin ¼ 0:5 ð9Þ

whereas lmin and rmax are proposed to be calculated using the fol-
lowing equations:

lmin ¼
1ffiffiffiffiffiffiffiffi
nsec
p ð10Þ

rmax ¼ 1� 1
Nd
6 1:0 ð11Þ

In Eqs. (10) and (11), nsec is the number of sections in the discrete
set used for sizing the design variables, and Nd is the number of
discrete design variables. The echolocation parameters are initial-
ized such that the initial frequency f 0

i is set to a value randomly
chosen between fmin and fmax. Besides, the initial loudness l0

i is set
to its maximum value lmax = 1.0 whereas the initial pulse rate r0

i is
set to its minimum value rmin = 0.5 for every micro-bat in the
population.

Step 3. Evaluating micro-bats in the initial population: The initial
population is evaluated, where all micro-bats are analyzed with
the set of steel sections selected for the design variables, and force
and deformation responses are obtained under the loads. Objective
function values of the feasible micro-bats that satisfy all problem
constraints are directly calculated from Eq. (3). However, infeasible
micro-bats that violate some of the problem constraints are penal-
ized using an external penalty function approach, and their objec-
tive function values are calculated according to Eq. (12):

/ ¼W 1þ p
X

k

ck

 !" #
ð12Þ

In Eq. (12), / is the constrained objective function value, ck is the kth
problem constraint and p is the penalty coefficient used to tune the
intensity of penalization as a whole. This parameter is set to an
appropriate static value, such as p = 1.

Step 4. Storing the current population: The current population,
which consists of the best micro-bats (solutions) located so far in
the search process from the beginning, is stored and iteration
counter t is increased by one.
Step 5. Generating candidate micro-bats: l number of new
micro-bats is generated as candidate solutions for the design pop-
ulation. This is implemented using a procedure that employs two
probabilistic generation schemes referred to as random flying
and local search. Random flying provides a more explorative
search, allowing a micro-bat to fly to a new and possibly remote
position in the search space. On the other hand, a more exploitative
search is intended in a local search scheme, where a micro-bat se-
lected from the current population is perturbed in the close vicin-
ity of its current solution to browse neighboring points. A new
micro-bat is generated by applying either one of these two
schemes, which is determined probabilistically using the following
pseudo code.

i: = 1
repeat

if (ui P ri) then
– Select ith micro-bat Bi from the current population
– Fly Bi to a new position randomly

else
– Select any micro-bat Bk from the current population,

k 2 [1, l]
– Perform local search around Bk

i: = i + 1
until (i > l)

In the pseudo code shown above, a uniform random number ui

is sampled between 0 and 1 for each micro-bat Bi in the current
population, and it is compared with the pulse rate ri of the
micro-bat. If ui P ri, a new micro-bat is generated by flying Bi

randomly to a new position in the design space. Otherwise, a mi-
cro-bat (Bkk 2 [1, l]) is selected from the current population at
random and a local search is performed around this solution to
generate a new micro-bat. Probabilistically speaking, the odds of
generating a new micro-bat using random flying and local search
in this procedure are 1 � rave and rave, respectively, where rave rep-
resents the average pulse rate of the micro-bats in the current pop-
ulation. It should be noted that the initial value of pulse rate r0

i is
set to 0.5 in the proposed algorithm and it increases towards a va-
lue around rmax = 1 � 1/Nd in the course of the search process. It
follows that in the beginning of the search new candidate solutions
are originated using the two generation schemes under equal prob-
ability. However, as the search goes on, the role of local search is
augmented while that of random flying is diminished. In this
way, exploitative search progressively dominates in time to benefit
more from the previously visited good solutions than exploring
new design regions of the search space.

Random Flying: A new candidate solution is generated from a
micro-bat Bi through random flying by adjusting its frequency f 0

i

first and updating its velocity and position next. Unlike real bats
which exhibit random motion patterns, a micro-bat follows certain
rules for the velocity and position update, which are formulated in
Eqs. (13)–(15):

f t
i ¼ fmin þ fmax � fminð Þui ð13Þ

vt
i ¼ round vt�1

i þ xt�1
i � x�

� �
f t
i

� �
ð14Þ

xt
i ¼ xt�1

i þ vt
i ð15Þ

In Eq. (13), fmin and fmax are the lower and upper bounds im-
posed for the frequency range of micro-bats, respectively and
ui 2 [0,1] is a random number sampled anew for each micro-bat
according to a uniform distribution. In Eqs. (14) and (15), vt

i and
vt�1

i are the velocity vectors of the ith micro-bat at time steps
(iterations) t and t � 1, respectively; likewise xt

i and xt�1
i are the
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position vectors of the micro-bat at iterations t and t � 1, respec-
tively and x⁄ is the current global best solution representing the
best-so-far solution found during the optimization process.

Local Search: A local search is implemented on a randomly se-
lected micro-bat Bk from the current population. In the original
bat-inspired algorithm developed by Yang [10] for continuous var-
iable optimization problems, the local search is implemented using
Eq. (16)

xt
k ¼ xt�1

k þ ek;jl
t�1
ave ð16Þ

where ek,j is a uniform random number between �1 and 1 selected
anew for each design variable j of the micro-bat Bk, and lt�1

ave is the
average loudness of all micro-bats at time step t � 1. In the pro-
posed algorithm a reformulation of this equation is carried out for
discrete structural optimization problems as proposed in Eqs. (17)
and (18):

ek;j ¼ Nð0;rÞ �
ffiffiffiffiffiffiffiffi
nsec
p

ð17Þ

xt
k;j ¼

xt�1
k;j þ roundðek;j � lt�1

aveÞ : if uk;j P rk

xt�1
k;j : if uk;j < rk

(
ð18Þ

In Eqs. (17) and (18), nsec is the number of sections in the dis-
crete set used for sizing the design variables; xt

k;j and xt�1
k;j are the

values of jth design variable in the micro-bat Bk at time steps t
and t � 1, respectively; rk is the pulse rate of the micro-bat Bk,
and N(0,r) is a normally distributed random number with mean
0 and standard deviation r. The rationale behind using a normal
distribution in Eq. (17) is to facilitate occurrences of small step
sizes as compared to large ones during local search. Besides, the
term

ffiffiffiffiffiffiffiffi
nsec
p

in this equation is used to adjust extent of the region
scanned by the algorithm during local search in relation to the size
of the discrete set. It can be noted that the algorithm permits larger
step sizes, as the size of the discrete set increases.

It should also be noted that unlike Eq. (16) where all design
variables are subjected to transition (perturbation) during local
search, Eq. (18) motivates transitions over a selected number of de-
sign variables, which is indeed controlled probabilistically by the
pulse rate. Recalling that pulse rate is initially set to 0.5 for all mi-
cro-bats, a maximum of 50% of the design variables is then per-
turbed on average for each micro-bat at the start, and this ratio
decreases to 1 � rk in connection with an increase in pulse rate
as the search continues. This way, while the algorithm is converg-
ing towards the optimum the number of design variable transi-
tions is also restricted progressively towards a more exploitative
local search achieved by reduced search dimension. This can be
reasoned by the fact that unlike continuous variable optimization,
structural optimization problems may be highly sensitive to the
changes in design variables due to discrete nature of the sizing
variables. That is to say, even small changes in a few design vari-
ables may yield a solution with entirely different structural behav-
ior. Especially this becomes a more critical issue when the
algorithm is converging towards the optimum since the optimum
lies on or near the constraint boundaries in almost all practical
applications of structural optimization. Design transitions over
many design variables at these stages generally lead to large or
uncontrolled step sizes in discrete design space, resulting in either
infeasible or unsatisfactory design points. Hence, it is essential to
limit the number of design variable transitions in order to generate
successful moves when approaching towards the optimum.

Step 6. Evaluating candidate micro-bats: Once generated, the
candidate micro-bats are analyzed with the set of steel sections
selected for the design variables, and force and deformation
responses are obtained under the loads. Objective function values
of the feasible and infeasible candidate micro-bats are calculated
from Eqs. (3) and (12), respectively.
Step 7. Echolocation Parameters Update: After evaluating candi-
date micro-bats, echolocation parameters are updated for improv-
ing candidates that move to better points than before. The
rationale behind this is to automatically adopt a more useful set
of values for the echolocation parameters, similar to real bats
which adjust those parameters based on the distance from the tar-
get object. In the original BI algorithm developed by Yang [10], this
is performed by comparing the micro-bat with the global best de-
sign, which refers to the solution with the minimum objective
function value located so far by the entire micro-bat population.
Accordingly, every time when the global best design is improved
by a candidate micro-bat Bi, a uniform random number ui is sam-
pled in the range [0,1] and if it is smaller than the loudness li of
the micro-bat, then its echolocation parameters ri, li are updated
using the following equations:

l0i ¼ a � li ð19Þ

rtþ1
i ¼ rmax½1� expðctÞ� ð20Þ

where, li and l0i are the previous and updated values of the loudness
for micro-bat Bi, t is iteration number, rtþ1

i is the pulse rate of the
micro-bat Bi at iteration t + 1, rmax is the maximum value of the
pulse rate, and finally a and c are the adaptation parameters of
loudness and pulse rate, respectively.

In the proposed BI algorithm for structural optimization prob-
lems, two modifications have been carried out regarding this up-
date methodology. First of all, a micro-bat is allowed to update
its echolocation parameters each time when it produces a solution
that surpasses its individual best, not the global best necessarily.
The individual best refers to the best solution attained by the mi-
cro-bat itself during its iteration history. Unlike improving the glo-
bal best, the latter is much easily and frequently achieved by all
micro-bats enabling a recurrent echolocation parameter update
during the search. Secondly, a reformulation of Eq. (20) is proposed
for adaptation of pulse rate parameter as given in Eq. (21):

rtþ1
i ¼ 1� ð1� r0

i Þcðtþ1Þ
6 rmax ð21Þ

Eq. (21) facilitates a more gradual change of pulse rate parameter
from its initial (minimum) value of r0

i towards rmax, whereas in
Eq. (20) the pulse rate immediately approaches rmax in a few itera-
tions and remains stationary at this value thereafter. A graphical
comparison of Eqs. (20) and (21) is presented in Fig. 1 by choosing
rmax = 1.0, r0

i ¼ 0:5, c = 0.95 over an iteration number of 100. In the
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numerical applications performed here, a and c are set to 0.95 and
0.99 for all the examples, respectively.

Step 8. Selection: Selection is then carried out between current
and candidate micro-bats to form members of the next population
which will parent and guide generation of the subsequent micro-
bats. Selection methodology employed in the proposed algorithm
is borrowed from the well-known variant of evolution strategies
technique referred to as (l + l) – ES [16]. In this selection method-
ology current and candidate micro-bats are set into competition
together and the best l solutions from a total of l + l = 2l current
and candidate solutions are selected deterministically in reference
to their objective function values. It should be noted that this selec-
tion methodology comes up with a promise of guaranteed survival
for the micro-bats; that is to say the selected micro-bats at any
iteration represent the best solutions located by the algorithm
from the start.

Step 9. Termination: The steps 4 through 8 are implemented in
the same way until a termination criterion is met, which can be im-
posed as a maximum number of iterations or no improvement of
the best feasible design over a certain number of iterations.
Table 1
Comparison of optimum designs for 25-member truss problem.

Sizing variable Truss members PSO [15] HS [15] SA [15]

1 1 0.1 0.1 0.1
2 2–5 0.3 0.3 0.3
3 6–9 3.4 3.4 3.4
4 10,11 0.1 0.1 0.1
5 12,13 2.1 2.1 2.1
6 14–17 1.0 1.0 1.0
7 18–21 0.5 0.5 0.5
8 22–25 3.4 3.4 3.4

Weight (lb) 484.85 484.85 484.85

Number of analyses 1,600 2,100 6,624
4. Numerical examples

In this section performance of the proposed BI algorithm is
measured using four numerical problems chosen from optimum
design of pin-jointed steel trusses. These problems are (i) 25-bar
truss with 8 design variables, (ii) 354-bar braced dome with 22
design variables; (iii) 693-bar braced barrel vault with 23 design
variables; and finally (iv) 942-bar truss tower with 59 design vari-
ables. In all these problems the structures are sized for minimum
weight by selecting the members from a set of discrete sections.
The first example (25-bar truss) refers to a benchmark problem
of structural size optimization that has been long used in the lit-
erature to verify new techniques or methodologies. On the other
hand, the other three problems present practical design applica-
tion instances of real-size problems according to provisions of
AISC-ASD [14] specification. All the test problems have been stud-
ied formerly by the authors using a large set of metaheuristic
techniques, including simulated annealing (SA), evolution strate-
gies (ESs), particle swarm optimization (PSO), ant colony optimi-
zation (ACO), tabu search (TS), harmony search (HS) and simple
genetic algorithms (SGA) and big bang-big crunch (BB-BC) in Refs.
[15,17–20]. Therefore, comprehensive comparisons are provided
between the optimum solutions obtained for these problems
using the proposed BI algorithm and other metaheuristic
algorithms.

For a fair comparison of results, the maximum number of iter-
ations is limited to 1000 for the examples 1 through 3 and 2000
for the example 4. However, in cases where no progress in the best
feasible design is recorded over a certain number of successive
iterations, the search process is terminated before the maximum
number of structural analyses is reached. During numerical imple-
mentations, search is initiated from different starting points by
generating the initial population randomly at each optimization
run, and the control parameters of the BI algorithm are chosen as
follows: population size l = 50, minimum frequency fmin = 0.0,
maximum frequency fmax = 1.0, initial (maximum) loudness
l0
i ¼ lmax ¼ 1:0, loudness adaptation parameter a = 0.95, initial

(minimum) pulse rate r0
i ¼ rmin ¼ 0:5, pulse rate adaptation param-

eter c = 0.99, standard deviation r = 1 for the examples 1 through 3
and r = 2.0 for the example 4, and finally penalty coefficient p = 1.
The material properties of steel used for practical design examples
(examples 2 through 4) are taken as follows: modulus of elasticity
(E) = 29,000 ksi (203,893.6 MPa) and yield stress (Fy) = 36 ksi
(253.1 MPa).

4.1. Example 1: 25-bar truss

The standard 25-member truss shown in Fig. 2 has been fre-
quently used in the literature for testing and comparing various
optimization techniques. Two versions of the problem are available
with discrete and continuous design variables. The differences
ESs [15] AC [15] SGA [15] TS [15] BI (this study)

0.1 0.1 0.1 0.1 0.1
0.5 0.5 0.2 0.4 0.3
3.4 3.4 3.4 3.4 3.4
0.1 0.1 0.1 0.1 0.1
1.9 1.9 2.0 1.8 2.1
0.9 1.0 1.0 0.9 1.0
0.5 0.4 0.6 0.6 0.5
3.4 3.4 3.4 3.4 3.4

485.05 485.05 485.38 485.57 484.85

4,350 10,050 9,050 1,626 2,900
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between them do not only extent to type of design variables
employed, but also to loading and constraints imposed on the
problem. Here, the discrete version of the problem is studied owing
to discrete implementation nature of the proposed BI algorithm.
The 25 truss members grouped in 8 independent design variables
are selected from a discrete set of 30 ready sections. A stress
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limitation of 40 ksi is imposed on members both in tension and
compression, and maximum displacements of joints 1 and 2 must
be less than 0.35 in along x and y-directions. Further details of the
design data are readily available in the literature.
Five independent runs have been executed with the proposed
BI algorithm to optimize the 25-bar truss, resulting in an opti-
mum design weight of 484.85 lb for the truss at its best run.
This solution has been located at 58th iteration, and the algo-



Table 2
Comparison of optimum designs for 354-bar braced dome.

Sizing variables Optimal cross sectional areas (in2)

SA [15] PSO [15] ACO [15] TS [15] HS [15] SGA [15] BB-BC [20] BI (this study)

Area Section

1 1.07 1.07 1.07 1.07 1.07 1.48 1.07 1.07 P2
2 3.17 3.17 3.17 3.17 3.17 2.68 3.17 3.17 P4
3 2.23 2.23 2.23 2.68 2.23 4.3 2.23 2.23 P3
4 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.68 P3.5
5 2.23 2.23 2.23 2.68 2.23 2.23 2.23 2.23 P3
6 2.23 2.23 2.23 2.23 2.25 2.23 2.23 2.23 P3
7 2.23 2.23 2.23 2.68 2.23 2.23 2.23 2.23 P3
8 2.23 2.23 2.23 2.68 2.68 2.23 2.23 2.23 P3
9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 P2.5
10 2.23 2.23 2.23 2.23 2.25 2.25 2.23 2.23 P3
11 1.7 1.7 2.66 1.7 2.25 2.66 1.7 1.7 P2.5
12 1.7 1.7 2.23 1.7 1.7 2.23 1.7 1.7 P2.5
13 1.7 1.7 1.7 1.7 1.7 2.23 1.7 1.7 P2.5
14 1.7 1.7 1.7 1.7 2.23 1.7 1.7 1.7 P2.5
15 1.7 1.7 1.7 1.7 1.7 2.25 1.7 1.7 P2.5
16 1.7 1.7 1.7 2.68 1.7 1.7 1.7 1.7 P2.5
17 1.48 1.48 1.48 1.7 2.66 1.7 1.48 1.48 PX2
18 1.48 1.48 2.68 1.48 3.02 3.17 1.48 1.48 PX2
19 1.07 1.07 1.07 1.07 1.7 1.48 1.07 1.07 P2
20 1.07 1.07 1.07 1.07 1.7 1.48 1.07 1.07 P2
21 1.07 1.07 1.07 1.07 1.7 1.48 1.07 1.07 P2
22 1.07 1.07 1.48 1.07 1.07 1.7 1.07 1.07 P2

Weight, lb (kg) 32574.9
(14775.7)

32574.9
(14775.7)

33557.5
(15221.4)

35370.1
(16043.6)

34944.3
(15850.5)

36343.3
(16485)

32574.9
(14775.7)

32574.9
(14775.7)

Number of analyses 33,370 35,950 37,050 8,602 48,300 47,550 10,100 16,850
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rithm is automatically terminated at 108th iteration since no
improvement of the best design is recorded over the following
50 iterations. Amongst the five runs implemented, mean and
standard deviation of the optimized weight appear as 485.76 lb
and 1.06 lb, respectively, whereas the average and standard devi-
ation of the iteration number to reach the optimum weight are
65 and 19, respectively. In Table 1 the minimum weight design
of 25-bar problem obtained by the proposed algorithm is com-
pared to the previously reported results by Hasançebi et al.
[15] using different metaheuristic techniques. It is seen from
Table 1 that all the techniques perform very well locating an
optimum within a close range of 484.85–485.57 lb for this
small-scale benchmark problem. The best solution of the prob-
lem (i.e., 484.85 lb) has been identified by the BI algorithm in
addition to other three algorithms, namely PSO, HS and SA. In
the literature, a plenty of different solutions of the problem
ranging between 484.50 and 546.01 lb are reported with differ-
ent numerical techniques [21–26]. A lighter design weight of
481.3 lb is reported with simulated annealing (SA) in Bennage
and Dhingra [27], yet the authors note that this design slightly
violates the displacement limitations such that joint 2 deflects
0.3514 in along y-direction.

4.2. Example 2: 354-bar braced dome truss

The second test problem is a 354-bar braced dome truss shown
in Fig. 3, which has been formerly studied with SA, PSO, ACO, TS,
HS, SGA in Hasançebi et al. [15] and with BB-BC technique in Has-
ançebi and Kazemzadeh Azad [20]. The dome has a 40 m (131.23
ft) diameter designed for covering the top of an auditorium at an
elevation of 10 m (32.8 ft). It has a height of 8.28 m (27.17 ft),
and consists of 127 joints and 354 members. The 354 members
are grouped into 22 independent sizing variables (Fig. 3), which
are selected from the entire set of 37 standard circular hollow
sections. The dome is subjected to the following three load cases
considering various combinations of dead (D), snow (S) and wind
(W) loads computed according to the specifications of ASCE7-05
[28]: (i) D + S, (ii) D + S + W (with negative internal pressure),
and (iii) D + S + W (with positive internal pressure). It is important
to note that the load cases resulting from unbalanced snow loads
are disregarded in the study to avoid excessive computational bur-
den. The illustrations of the three load cases are shown in Fig. 4. It
has been assumed that dead and snow loads act on the projected
area, while wind load acts on the curved surface area. Sandwich
type aluminum cladding material is used, resulting in an assumed
dead load pressure of 0.2 kN/m2 including the frame elements used
for the girds. The stress and stability constraints of the members
are computed according to the specifications of AISC-ASD [14].
The displacements of all nodes are limited to 11.1 cm (4.37 in) in
any direction.

Four independent runs have been executed with the proposed
BI algorithm to optimize the 354-bar braced dome truss, resulting
in an optimum design weight of 14775.7 kg (32574.9 lb) at its
best run. This design has been obtained at 337th iteration and
the algorithm is automatically terminated at 437th iteration since
no improvement of the best design is achieved over the following
100 iterations. Since all the four runs have identified the same de-
sign, mean and standard deviation of the optimized weight are
14775.7 kg and zero, respectively, whereas the average and stan-
dard deviation of the iteration number to reach this design are
361 and 20, respectively. This design is compared with literature
in Table 2 in terms of discrete sections adopted for each member
group and the resulting design weights. It is noted that the results
published formerly by Hasançebi et al. [15] are corrected here
due to mis-grouping of one bracing member in the previous work.
It can be seen from Table 2 that the optimum design found by the
proposed BI algorithm is overall the best solution for this test
problem and coincides with that found by SA, PSO and BB-BC.
Remarkably heavier structures were designed by ACO, TS, HS
and SGA.
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4.3. Example 3: 693-bar braced barrel vault

The third test problem regards the optimum design of the spa-
tial braced barrel vault [29] shown in Fig. 5. The structure includes
259 joints and 693 members that are grouped into 23 independent
sizing variables due to symmetry of the structure about the center-
line. The member grouping scheme is given in Fig. 5(a) and the
main geometric dimensions of the structure are shown in
Fig. 5(b) and (c). It is assumed that the barrel vault is subjected
to a uniform dead load (DL) pressure of 35 kg/m2, a positive wind



Table 3
Comparison of optimum designs for 693-bar braced barrel vault.

Sizing variables Optimal cross sectional areas (in2)

HS [19] GA [19] ACO [19] BB-BC [20] BI (this study)

Area Section

1 3.68 3.02 4.03 3.68 3.68 PX3.5
2 0.433 0.669 0.494 0.494 0.494 P1
3 0.494 0.639 0.494 0.333 0.333 P.75
4 0.494 0.494 0.494 0.494 0.494 P1
5 0.433 0.333 0.494 0.333 0.333 P.75
6 3.17 4.41 0.333 3.68 3.68 PX3.5
7 0.669 0.639 0.639 0.494 0.494 P1
8 0.333 0.333 0.333 0.494 0.494 P1
9 2.68 2.66 2.68 0.494 0.494 P1
10 0.494 0.639 4.03 0.333 0.333 P.75
11 0.669 0.669 0.494 2.23 2.66 PXX2
12 0.881 0.799 0.639 0.799 0.799 P1.5
13 1.07 1.07 0.881 1.07 1.07 P2
14 0.881 0.799 0.639 0.494 0.494 P1
15 0.333 0.494 0.333 0.333 0.333 P.75
16 0.881 0.669 0.639 0.881 1.07 PX1.5
17 0.881 1.07 0.881 0.669 0.639 PX1
18 0.669 0.799 0.494 2.23 1.7 P2.5
19 0.639 0.669 0.669 0.494 0.494 P1
20 0.333 0.333 0.333 0.333 0.333 P.75
21 1.7 2.23 1.7 0.494 0.494 P1
22 0.494 0.669 0.669 0.333 0.333 P.75
23 0.639 0.433 0.494 0.333 0.333 P.75

Weight, lb (kg) 11232.71 (5095.07) 12029.49 (5456.48) 10999.20 (4989.15) 10595.33 (4805.96) 10564.84 (4792.13)

Number of analyses 48,150 47,250 45,650 NA 36,300
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load (WL) pressure of 160 kg/m2 (32.77 lb/ft2) and a negative wind
load (WL) pressure of 240 kg/m2 (49.16 lb/ft2). Here, these loads
are combined under two separate load cases as follows: (i)
1.5DL + 1.5WL = 1.5(35 + 160) = +292.5 kg/m2 (59.91 lb/ft2) and
(ii) 1.5DL � 1.5WL = 1.5(35 � 240) = �307.5 kg/m2 (62.98 lb/ft2),
along z-direction. The displacements of all joints in x, y, and z direc-
tions must be less than 0.254 cm (0.1 in). The strength and stability
requirements of steel members are imposed according to AISC-ASD
[14]. Structural members are selected from the entire list of 37
standard circular hollow sections.

The 693-bar braced barrel vault has been previously studied
with SGA, HS and ACO techniques in Hasançebi et al. [19] and
with BB-BC technique in Hasançebi and Kazemzadeh Azad [20].
In this study five independent runs have been executed with
the proposed BI algorithm to optimize the barrel vault, resulting
in an optimum design weight of 4792.13 kg (10564.84 lb) for the
truss at its best run. This design has been obtained at 726th iter-
ation and the algorithm is automatically terminated at 826th
iteration since no improvement of the best design is achieved
over the following 100 iterations. Amongst the five runs imple-
mented, mean and standard deviation of the optimized weight
appear as 4806.11 kg and 11.12 lb, respectively, whereas average
and standard deviation of the iteration number to reach the opti-
mum weight are 721 and 190, respectively. The optimum design
found by the proposed BI algorithm is compared with literature
in Table 3 in terms of discrete cross-sections selected by the
optimizer for each member group and resulting structural
weight. It can be seen that BI is the most efficient meta-heuristic
optimizer overall as it converges to the best design obtained so
far.

4.4. Example 4: 942-bar truss tower

The last test problem regards the 942-bar truss tower shown
in Fig. 6. Symmetry of the tower around x and y-axes is
employed to group the 942 truss members into 59 independent
sizing variables. The truss members are selected from W-shape
profile list consisting of 295 discrete sections. The tower is sub-
ject to a single loading condition consisting of both horizontal
and vertical loads, as follows: (i) the vertical loads in the z direc-
tion are �3.0 kips (�13.344 kN), �6.0 kips (�26.688 kN) and
�9.0 kips (�40.032 kN) at each node in the first, second and third
sections, respectively; (ii) the lateral loads in the y direction are
1.0 kips (4.448 kN) at all nodes of the tower; and (iii) the lateral
loads in the x direction are 1.5 kips (6.672 kN) and 1.0 kips
(4.448 kN) at each node on the left and right sides of the tower,
respectively. The stress and stability constraints are imposed
according to the provisions of AISC-ASD [14] specification, and
the displacements of all nodes in any direction must be less than
15 in (38.1 cm).

This problem was first studied in Hasançebi and Erbatur [17]
using SA: the corresponding optimum weight of the tower was
172,214 kg (379,660 lb). Later the same problem has been
handled in Hasançebi [18] using two population-based evolution-
ary methods, where the best design weights of 178,864 kg
(394,321 lb) and 172,214 kg (379,660 lb) were located for this
tower using SGA and ESs techniques, respectively. In the present
study six independent runs have been executed with the pro-
posed BI algorithm to optimize the tower, resulting in an opti-
mum design weight of 171,261 kg (377,567 lb) for the tower at
its best run. This design has been obtained at 1914th iteration
and the algorithm is terminated when all iterations are com-
pleted. Amongst the six runs implemented, mean and standard
deviation of the optimized weight appear as 173,283 kg and
1801 kg, respectively, whereas average and standard deviation
of the iteration number to reach the optimum weight are 1896
and 68, respectively. The optimum design found by the proposed
BI algorithm is compared with literature in Table 4 in terms of
discrete cross-sections selected by the optimizer for each member
group and resulting structural weight. It can be seen that BI is the
most efficient meta-heuristic optimizer overall as it converges to
the best design obtained so far.
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5. Discussions on parameters role and sensitivity

The BI algorithm developed in the study includes a considerable
amount of heuristics and depends on many echolocation parame-
ters. In this section we intend to provide a detailed insight into
roles and functions of these parameters in a search process.
Besides, sensitivity of optimum design to each parameter is
F
a

explicated based on extensive numerical experiments performed
during the design examples.

In the proposed algorithm lower and upper bounds are imposed
on the echolocation parameters, as discussed in Section 3. This is
essential not only to accommodate better moves in the design
space, but also to maintain search efficiency of the algorithm while
converging towards the optimum. In this regard the lower and
upper bounds (fmin and fmax) associated with the frequency param-
eter ensure that a coherent velocity is allocated to micro-bats dur-
ing random flying. This should be clear from Eq. (14), where the
change in the velocity of a micro-bat in a certain direction is set
to a value between zero and xt�1

i � x� when fmin and fmax are chosen
as zero and one, respectively. The idea here is to bring the micro-
bat to a new point between its current position and global best
design, assuming that better solutions might exist between these
two favorable design points. When a larger value is used for fmax,



Table 4
Comparison of optimum designs for 942-bar space truss.

Sizing variables Optimal cross sectional areas section (area, in2)

SA [17] SGA [18] ESs [18] BI (this study)

1 W6 � 9 (2.68) W10 � 22 (6.49) W6 � 9 (2.68) W6 � 9 (2.68)
2 W6 � 9 (2.68) W6 � 9 (2.68) W8 � 10 (2.96) W6 � 9 (2.68)
3 W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68)
4 W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43)
5 W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68)
6 W6 � 15 (4.43) W5 � 19 (5.54) W6 � 15 (4.43) W6 � 15 (4.43)
7 W6 � 15 (4.43) W5 � 16 (4.68) W6 � 15 (4.43) W6 � 15 (4.43)
8 W6 � 9 (2.68) W14 � 22 (6.49) W6 � 9 (2.68) W6 � 9 (2.68)
9 W6 � 20 (5.87) W18 � 50 (14.70) W6 � 20 (5.87) W6 � 20 (5.87)
10 W8 � 24 (7.08) W8 � 24 (7.08) W6 � 25 (7.34) W8 � 24 (7.08)
11 W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43)
12 W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68)
13 W6 � 20 (5.87) W10 � 22 (6.49) W6 � 20 (5.87) W6 � 20 (5.87)
14 W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43)
15 W4 � 13 (3.83) W5 � 16 (4.68) W4 � 13 (3.83) W4 � 13 (3.83)
16 W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68)
17 W8 � 28 (8.25) W8 � 28 (8.25) W8 � 28 (8.25) W8 � 28 (8.25)
18 W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43)
19 W6 � � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43) W5x16 (4.68)
20 W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68)
21 W8 � 35 (10.30) W8 � 35 (10.30) W8 � 35 (10.30) W8 � 35 (10.30)
22 W6 � 20 (5.87) W6 � 20 (5.87) W6 � 20 (5.87) W6 � 20 (5.87)
23 W6 � 25 (7.34) W8 � 31 (9.13) W8 � 24 (7.08) W8 � 24 (7.08)
24 W8 � 35 (10.30) W12 � 40 (11.80) W10 � 45 (13.30) W8 � 35 (10.30)
25 W10 � 49 (14.40) W8 � 58 (17.10) W8 � 58 (17.10) W10 � � 49 (14.40)
26 W8 � 31 (9.13) W10 � 33 (9.71) W8 � 31 (9.13) W8 � 31 (9.13)
27 W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43)
28 W8 � 24 (7.08) W12 � 26 (7.65) W8 � 24 (7.08) W8 � 24 (7.08)
29 W14 � 26 (7.69) W8 � 24 (7.08) W6 � 25 (7.34) W8 � 24 (7.08)
30 W8 � 21 (6.16) W14 � 22 (6.49) W10 � 22 (6.49) W8 � 21 (6.16)
31 W12 � 87 (25.60) W10 � 68 (20.00) W14 � 90 (26.50) W27 � 84 (24.80)
32 W6 � 20 (5.87) W8 � 24 (7.08) W6 � 20 (5.87) W6 � 20 (5.87)
33 W6 � 20 (5.87) W6 � 15 (4.43) W6 � 15 (4.43) W5x19 (5.54)
34 W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43)
35 W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68)
36 W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68)
37 W14 � 99 (29.10) W24 � 104 (30.60) W14 � 99 (29.10) W14 � 99 (29.10)
38 W8 � 24 (7.08) W8 � 24 (7.08) W8 � 24 (7.08) W8 � 24 (7.08)
39 W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43)
40 W6 � 20 (5.87) W6 � 20 (5.87) W6 � 20 (5.87) W6 � 20 (5.87)
41 W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68) W6 � 9 (2.68)
42 W6 � 9 (2.68) W4 � 13 (3.83) W8 � 10 (2.96) W6 � 9 (2.68)
43 W24 � 131 (38.50) W12 � 136 (39.90) W24 � 131 (38.50) W24 � 131 (38.50)
44 W8 � 31 (9.13) W8 � 31 (9.13) W8 � 31 (9.13) W8 � 31 (9.13)
45 W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43) W6 � 15 (4.43)
46 W8 � 24 (7.08) W8 � 24 (7.08) W8 � 24 (7.08) W8 � 24 (7.08)
47 W4 � 13 (3.83) W8 � 18 (5.26) W4 � 13 (3.83) W4 � 13 (3.83)
48 W6 � 9 (2.68) W6 � 20 (5.87) W6 � 9 (2.68) W6 � 9 (2.68)
49 W14 � 145 (42.70) W14 � 145 (42.70) W14 � 145 (42.70) W14 � 145 (42.70)
50 W8 � 31 (9.13) W8 � 31 (9.13) W8 � 31 (9.13) W8 � 31 (9.13)
51 W8 � 28 (8.25) W6 � 20 (5.87) W12 � 30 (8.79) W8 � 28 (8.25)
52 W8 � 24 (7.08) W8 � 31 (9.13) W8 � 24 (7.08) W8 � 24 (7.08)
53 W10 � 60 (17.60) W14 � 61 (17.90) W12 � 65 (19.10) W12 � 65 (19.10)
54 W24 � 68 (20.10) W8 � 48 (14.10) W21 � 73 (21.5) W21 � 73 (21.5)
55 W14 � 132 (38.80) W14 � 120 (35.30) W14 � 132 (38.80) W14 � 132 (38.80)
56 W8 � 35 (10.30) W8 � 31 (9.13) W8 � 31 (9.13) W8 � 31 (9.13)
57 W12 � 79 (23.20) W10 � 100 (29.40) W12 � 72 (21.10) W12 � 72 (21.10)
58 W8 � 24 (7.08) W10 � 33 (9.71) W8 � 28 (8.25) W8 � 28 (8.25)
59 W8 � 35 (10.30) W10 � 33 (9.71) W8 � 31 (9.13) W8 � 31 (9.13)

Weight, lb (kg) 379,660 lb (172,214 kg) 394,321 lb (178,864 kg) 377,947 lb (171,437 kg) 377,567 lb (171,261 kg)

Number of analyses 41,462 200,000 150,000 95,700
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either micro-bats may approach the global best design very rapidly
without having a chance to sample these potentially good interme-
diate solutions, or the search can be directed beyond the global
best design due to very large step sizes occurring under high values
of fmax.

The loudness parameter controls local search features of micro-
bats in the BI algorithm. The maximum loudness lmax is introduced
to define a physical limit for extent of the region scanned by a
micro-bat during local search. The numerical experiments have
indicated that a sufficiently large space is provided for local search
when lmax is chosen as 1.0. The minimum loudness defined in Eq.
(10), on the other hand, avoids dropping of the average loudness
parameter lave too much, in which case local search may lead to a
very slow convergence or may become totally ineffective. It should
be noted that in the proposed algorithm a design variable in a
micro-bat is changed in an amount equal to the rounded value of
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Dx ¼ Nð0;rÞ � ffiffiffiffiffiffiffiffi
nsec
p � lave by virtue of Eqs. (18) and (19). Substitut-

ing the lowest possible value of lave in this equation, (i.e.,
lmin ¼ 1=

ffiffiffiffiffiffiffiffi
nsec
p

) yields Dx = N(0,r), indicating that minimal varia-
tion of a design variable during local search is controlled by a nor-
mally distributed number. The numerical experiments have
indicated that standard deviation r can be taken as 1.0 for prob-
lems with small to medium size design spaces, and 2.0 or higher
for problems with larger size design spaces.

The pulse rate parameter has dual roles in the BI algorithm. On
the one hand it decides upon the search scheme followed by a mi-
cro-bat (i.e., random flying or local search), and on the other hand
it controls the number of design variables changed in a micro-bat
during local search. The initial choice of this parameter specifies
its lower bound rmin as well, and it is arbitrarily set to rmin = 0.5
in the present study to place identical emphasis on global and local
searches in the beginning of the optimization process. This param-
eter can be set to a smaller value if more explorative search is re-
quired initially or vice versa. The upper bound rmax = 1 � 1/Nd

serves two tasks. Firstly, although local search is encouraged pro-
gressively over time, the use of rmax ensures that random flying
which characterizes a typical global search mechanism is not to-
tally abandoned by all micro-bats. Secondly, considering the fact
that the probability for change of a design variable is set to 1 � r
by Eq. (18), it is assured that at least one design variable is changed
probabilistically to generate dissimilar design points during local
search.

As mentioned before, echolocation parameters are modified
through the adaptation parameters in favor of a more effective
search during the optimization process. It has been found that a
suitable value for loudness adaptation parameter a for truss sizing
optimization problems is 0.95, yet the recommended value set of
this parameter lies in the range [0.95,0.99]. In general it should
be noted that the larger this parameter is, more slowly does the
loudness decrease. Accordingly, by virtue of Eqs. (16)–(19) local
search is performed over wide regions even at late iterations. This
may slow down convergence of the algorithm for relatively small
and regular design spaces, yet it is very beneficial for large and
irregular design spaces for which escaping from local optima is
not easy. Hence, this parameter can be set to a value above 0.95
for problems having a large and irregular fitness landscape. The
results have also indicated that the optimal value for pulse rate
adaptation parameter c is 0.99 when the algorithm is executed
over a maximum iteration number of 1000. This parameter can
be set to a smaller value if lesser iterations are performed.

As mentioned before the proposed BI algorithm employs a
(l + l) selection strategy that is borrowed from evolution strate-
gies. This selection methodology comes up with an elitist strategy
such that the overall l best individuals are selected to survive in
the next iteration. This implies that any new trial design corre-
sponding to the updated position of a micro-bat may not necessar-
ily be included in the new population even though it might have
improved the design with respect to its current best position. This
issue has been investigated numerically with respect to the 25-bar
truss problem. In a typical run of 25-bar truss problem the number
of improving new designs selected and rejected at each iteration of
a (l + l) selection strategy is displayed in Fig. 7. It is observed from
this figure that rejection of improving designs occasionally takes
place in the very early iterations only. After about 30th iteration
number, all the improving designs are accepted to the population.
In fact, a total of 805 improving designs are generated throughout
the optimization process and 771 out of them are accepted, result-
ing in 96% acception rate. This ratio confirms efficiency of a (l + l)
selection strategy in the proposed BI algorithm.

Finally, it is important to stress out that stagnation of the BI
algorithm in local optima is prevented by means of two parameters
rmax and lmin. The use of rmax as an upper value of pulse rate param-
eter ensures that a few micro-bats are always encouraged to carry
on their search with random flying mechanism in case the algo-
rithm may get stuck in local optima. In addition, the size of region
scanned through local search is always kept sufficiently large
through the lmin to avoid entrapment of the search in local optima.
6. Conclusions

In this study a novel optimization algorithm is developed as an
effective method for structural optimization problems with dis-
crete sizing variables. The algorithm employs basic principles of
bat inspired technique, yet a thorough reformulation of the tech-
nique is carried out for its application to structural optimization.
The efficiency of the resulting algorithm is numerically examined
using one benchmark and three practical design examples with
medium to large scales. In these test problems performance of
the proposed BI algorithm is measured against a variety of
different metaheuristic techniques under the same design consid-
erations and the optimum solutions attained by them are com-
pared extensively in Tables 1–4. Optimization results clearly
demonstrate the efficiency of the proposed algorithm which found
the best known design for the first two test problems and con-
verged to improved designs in the last two test problems. The
results also show that the BI algorithm has also a favorable conver-
gence speed compared to the most of other metaheurictic tech-
niques, yet there are some algorithms which converge to the
optimum or a near-optimum solution faster in some problems;
such as BB-BC algorithm in 354-member braced dome truss and
SA algorithm in 942-bar truss tower problems.

Apparently, the robustness of the BI algorithm lies in its en-
hanced ability in achieving a satisfactory tradeoff between two
contradictory requirements of the search process known as explo-
ration and exploitation, which are characterized by the algorithm
as random flying and local search. The algorithm achieves this by
implementing the echolocation parameters of pulse rate and loud-
ness in an efficient manner during the search process. In the begin-
ning of the optimization process the roles of explorative and
exploitative search are balanced in an identical weight by setting
pulse rate parameter to 0.5. As the iterations go on, the role of
exploitative search becomes more prominent in proportion to in-
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crease in pulse rate parameter, while the loudness is decreased in
the meantime to gradually narrow the size of the area investigated
during local search. The variations of pulse rate and loudness
parameters during the search process are presented in Figs. 8
and 9, respectively, in the best runs of the algorithm for the four
test problems. The plots confirm the efficiency of the search pro-
cess carried out by the proposed BI algorithm.
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