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a b s t r a c t

Wind energy has been considered as an important substitution of fossil-based energy for future society.
However large-scale integration of wind power will introduce great risks to both power system planning
and operation due to its stochastic nature. By adopting power system reliability theory, the risks can be
quantitatively estimated so that numerous publications have been published to study reliability impacts
caused by wind power. This paper thoroughly investigates the features of existing reliability models of
wind power, reliability assessment algorithms and its applications in wind power related decision
making problems. The paper also reveals significant differences existed in reliability models and
algorithms between planning and operational phase of power systems, which are neglected in existing
review articles.
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1. Introduction

Wind energy has been widely recognized as an important
energy alternative of fossil fuel. Many countries, e.g. US, China,
Germany and Denmark [1], have set various ambitious targets so
as to integrate large scale wind power into their power systems in
very near future. However, stochastic power output has become
one major difficulty while planning or operating a power system
with high wind penetration. Existing deterministic methods,
which do not fully consider with uncertain factors, are no longer
capable enough of evaluating system risks due to wind integration.
Therefore it motivates researchers to look for stochastic-based
methods for risk assessments.

One technical solution is of the theory of power system
reliability, which was first proposed by Billiton [2] for quantita-
tively estimating impacts caused by component uncertainties, e.g.
unexpected generator outages. Since the theory is suitable for
studying stochastic factors, a large number of studies have been
carried out based on its framework in order to estimate reliability
performances of one power system with high wind penetration
level. Literatures concerning this topic shall be carefully organized
and reviewed for a better understanding on the development as
well as the applications of the reliability theory on technical issues
raised by stochastic wind power integration.

Many review works have been presented by several previous
studies. Ref. [3] surveyed literatures from four different technical
aspects, i.e. modeling of wind farms, methods of wind speed
parameters assessment, reliability assessment algorithms as well
as relevant factors affecting the reliability of wind power system
(e.g. wake effect). Ref. [4] aimed at categorizing the reliability models
of various kinds of renewable energy e.g. wind, solar as well as hydro
power proposed from the published literatures. Similar review and
survey works are also published in [5–7]. Literature [8] is focused on
emphasizing the importance of reliability theory in long-term power
system planning with large-scale integration of wind energy. Ref. [9]
listed a series of uncertainties that would affect the integration of
wind energy, such as energy storage capacity, market pricing and
transmission ability and so on. However the paper did not present a
thorough review to the approaches of estimating the risks of these
uncertainties. A category of long-term wind power reliability models,
which are the auto aggressive moving average (ARMA) models, were
reviewed in [10]. Although these studies have provided excellent
works, they are still insufficient for summarizing the state-of-art of
reliability theory completely, which can be demonstrated from the
following two aspects:

(1) Regarding power system planning phase. Most of previous
review works only listed the basic ideas of available literatures
in a much simple manner. However the features of models or
algorithms are not clearly explained or further compared. That
might result in difficulties for readers to find a best or most
suitable model and algorithm for a specific problem. Mean-
while, some state-of-art works, involving reliability models
and assessment algorithms proposed recently, are also not
included in the existing reviews.

(2) Regarding power system operational phase. Previous review
works are mostly concentrated on the studies about power
system planning. In contrast, literatures concerning reliability-
based system operation with wind power were not paid enough
attentions. However, since stochastic wind integration has
introduced significant risks within system operation, the con-
cept of reliability is becoming more-widely accepted and recog-
nized by system operators. In addition to that, the models as
well as algorithms applied in operational phase are quite
different from those in planning phase. Therefore these works
shall be distinguishingly picked up and then carefully reviewed.

Under that background, this work is motivated by the purpose
of compensating previous studies. We aim at presenting a more
systematic literature review from the aspect of power system
reliability concerning wind power. First, reliability models of wind
power in planning and operation phase will be carefully investi-
gated hence their characteristics can be revealed. Second, the
reliability assessment algorithms in planning and operation phase
will be reviewed. We focus on the algorithms which are being or
potentially capable of being adopted to deal with the uncertainties
of wind. And third, we review various kinds of reliability-based
power system decision making problems when wind power is
integrated. By doing so, the importance of reliability in modern
power system can be demonstrated.

This paper is organized as followings: In Section 2 a brief
introduction to power system reliability theory is provided in order
to explain the basic concepts and theory architecture. Reliability-based
power system planning with wind power integration is discussed in
Section 3, which includes various applications, planning-phase relia-
bility models of wind power as well as corresponding reliability
algorithms. Section 4 investigates the reliability applications as well
as corresponding models and algorithms under operational phase.
At last Section 5 concludes the paper.

2. An introduction of power system reliability theory

The most fundamental function of modern power systems is to
fully satisfy the load demand under every possible circumstance.

Fig. 2.1. Typical uncertainties in power system.
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However the function is always being challenged due to various
inevitable and unpredictable stochastic factors. Typical types of
uncertainties are as shown in Fig. 2.1 [11]. Due to the reason, a
theory which is capable of quantitatively estimating the risks is
required. Therefore the system reliability theory is proposed and
well-developed in the recent few decades, which can be applied
for evaluating the impacts caused by stochastic factors.

The power system reliability theory focuses on estimating how
power supplies are interrupted by uncertainties. The results can be
reflected via the following reliability indices [12]:

(i) Expected energy not supplied (EENS): describing the annually
energy which is not supplied to loads. This index is a
representative of economic issues.

(ii) Loss of load probability (LOLP): describing the probability of
load shedding. This index can be also described as the total
hours of loss of load annually.

(iii) Loss of load frequency (LOLF): describing of the annually
occurrence of load shedding events.

(iv) Loss of load duration (LOLD): describing the expected dura-
tion of each occurrence of load shedding. Longer LOLDs lead
to more significant damage to electric customers.

The procedure of estimating the above indices is called relia-
bility assessment, the first step of which is modeling stochastic
elements. Element uncertainties can be either non-chronologically
modeled or chronologically simulated. The second step of relia-
bility assessment is selecting a proper algorithm. Due to various
requirements imposed on reliability assessments such as accuracy
or efficiency, various assessment methods are therefore proposed.
These algorithms can be generally sorted into two categories as
analytical algorithms and simulation methods.

The reliability theory has been highly recognized by power system
industry for planning decision-making for long-term study, such as
generation and transmission expansions, or reliability-centered main-
tenance scheduling [13]. However, regarding operational phase in
short-term, the concept of reliability was not widely accepted due to a
fact, that uncertainty of specific components (such as the outages of
generators and transmission lines) in short-term are much smaller in
operational phase of short-term than planning phase of long-term.
That is, carrying out reliability analysis is unlikely to be necessary. The
reason explains why reliability factors under operational phase are not
considered by previous studies and industrial applications.

However, with the increasing risks introduced by stochastic
renewable energy integration, reliability theory is playing a more
significant role under operational phase in recent years. Therefore
a lot of studies have been carried out concerning the operational
reliability with renewable energy integration. A systematic review
to such works, which is highlighted in Section 4, is hence
becoming a major contribution of this paper.

3. Power system planning: Based on reliability assessment
with wind power integration

In planning phases, reliability evaluation is always one major
tool for power system decision makers. In order to carry out
reliability assessments with wind power integration, the models
and algorithms shall be studied first. There are three widely-
accepted reliability models for wind power proposed in the past
few decades. The features of these models are investigated in
Section 3. Regarding reliability assessment algorithms, only those
“related to” the issue of wind power integration are selected and
then reviewed by this paper. The term of “Related to” is defined
that the reviewed algorithms shall satisfy at least one of the

following conditions:

(1) Algorithms which has been put into practice for assessing
power system reliability considering wind power integration.

(2) Algorithms which has been considered as applicable for
assessing power system reliability performances considering
wind power integration.

(3) Algorithms which are considered to be capable of addressing
reliability-related issues due to wind power integration by
their authors.

If one algorithm satisfies one of the conditions, it is involved
and reviewed in Section 3.2 of the paper. For other methods which
have not been related to wind power study, this paper also gives a
brief but comprehensive summarization.

In Section 3.3, major applications of reliability theory for power
system planning are introduced. Finally a brief summary to the
models, algorithms as well as applications is presented at the end
of this section.

3.1. The reliability models of wind power in the phase of power
system planning

The models under the planning-phase mainly deal with two
stochastic factors, wind fluctuation and unexpected WTG outages.
Three models are investigated in this section.

3.1.1. Multi-state capacity outage probability (COPT) model
The multi-state COPT model is the most fundamental model

which has been widely adopted during power system planning. It
is proposed by Giorsetto [14] from the foundation of conventional
units models. The main idea of this model is described as follows.

A reliability model of WTG can be represented by a table called
capacity outage probability table (COPT) according to the available
generation capacity and corresponding cumulative probability.
The elements in a COPT can be expressed as Eq (3.1) [14]:

ðCi; FðCiÞÞ ¼ ðCi; probðPðv; λÞrCiÞ iA1;2::::N ð3:1Þ
where Ci is the average capacity in ith interval, N is the number of
states. The probability feature for one individual WTG can be
decided by the parameters of wind speed v and forced outage
rate λ. Then wind farm model is derived through combining all
wind turbines in together. By ignoring outage rates λ, Eq. (3.1) can
be transformed into a simple Weibull distribution or Gaussian
distribution.

The number of COPT states is also critical for reliability assess-
ment. It is because more states usually means a better modeling
accuracy as well as a higher computation overhead. In 2008, the
study presented in [15] demonstrates that a 5-state COPT model is
able to achieve a trade-off between accuracy and computation
overhead. Therefore, a 5-state COPT model is considered as a
default option for most of reliability assessment cases.

The EENS and LOLP indices can be easily computed with the
model, however some other critical indices are not able to be
obtained since the F&D (frequency and duration) indices of wind
power variation are not modeled in the COPT model. For example
the loss of load index of a system, which is strongly related to
the durations and frequencies of load shedding events, cannot be
accurately evaluated.

3.1.2. Multi-state Markov model
In order to improve the evaluation accuracy, a multi-state Markov

model is proposed in 1996 [16]. The chronological wind power
fluctuation are modeled by state transitions of a Markov model.
By this model, not only the state probabilities but also the frequency
and duration indices are able to be calculated and evaluated by
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Markov-process methods. Therefore this model is more creditable
and reliable for a power system reliability assessment.

Fig. 3.2 presents an example of the Markov model, which
demonstrates a Markov state transition diagram of the output of
a WTG. In Fig. 3.1, there are two possible states of a WTG and
4 possible states of wind speed. Each state is represented as a
block while state transitions are as arrows.

The transition rates can be conveniently obtained through
analyzing statistical data. By adopting the steady-state Markov
process algorithm introduced in [16], the probability can also be
easily calculated. Additionally, the frequency of occurrence as well
as the duration of a state can be easily calculated with Eq. (3.2) [16].

Fi ¼ pi ∑
N

j ¼ 1;ja i
λij ; Di ¼ pi=Fi ¼ 1= ∑

N

j ¼ 1
λij ð3:2Þ

In order to illustrate Eq. (3.2), let us take State 7 in Fig. 3.1 as an
example. The frequency of occurrence of State 7 is F7 ¼ p7ðλ76þ
λ73þλ78Þ and the expected duration can be calculated as
D7 ¼ 1=ðλ76þλ73þλ78Þ. Since the F&D indices can be obtained,
the Markov model is capable of compensating the COPT model.

Since chorological wind fluctuation is involved and described by
the Markov model, it is considered as a more accurate model

considering with more details than the COPT model. In addition,
many other relevant factors such as wind spatial correlation, wake-
effect [16] can also be conveniently considered and described by
expanding the dimensions of state transition matrix of the Markov
model. As an example, study [17] has adopted this model for the
reliability assessment of a Brazilian wind site. Literature [18] built a
Markov model to jointly consider the correlation between load
profile and wind power profile. The assessment result demonstrates
the improvement of the Markov model.

However, the drawback of model is on the computation over-
head during reliability evaluation [16,17,19,20]. In a wind farm
with N WTGs and n states of wind speed, the total number of
states is 2N

n . That is, the model is not suitable to be applied to large
scale system due to computing memory issues. In order to
improve the model, [21] proposed a state reducing scheme in
order to reduce the state number by merging the states with the
same outputs.

3.1.3. Simulation model: ARMA model
In addition to Markov Model, there is another useful tool, Auto

Regressive Moving Average (ARMA) model, is applicable for a

Fig. 3.1. State transition diagram of a WTG.

Fig. 3.2. The flowchart for genetic reliability assessment algorithm.
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reliability modeling for chorological wind power fluctuation,
which is first developed by [22].

By ARMA model, the wind speed model can be defined in terms
of the following variables [22]:

μt observed wind speed mean value at time t;
st observed wind speed standard deviation at time t;
OWt observed wind speed at time t;
SWt simulated wind speed at time t.

and let yt ¼ ðOWt�μtÞ=st . Then wind speed series can be built
by:

yt ¼Φ1yt�1þΦ2yt�2þ⋯Φnyt�nþαt�θ1αt�1�⋯�θmαt�m ð3:3Þ
where Φ and θ represent the ARMA parameters; α is normal white
noise series with zero mean value. These parameters can be
determined by various methods. Numerical results in [22] have
demonstrated that the difference between actual observed and
simulated wind speed is quite small. Therefore the system relia-
bility can be credibly evaluated chronologically according to the
measurement of wind power or speed series.

Since the reliability assessment algorithms corresponding to
Markov and ARMA model are distinguished with each other, the
ARMA model is more suitable for the reliability assessment of
large power systems than the Markov model. The drawbacks for
ARMA model involve: (i) heavy computation overhead; (ii) relying
on large amount of data for training ARMA parameters [23].

3.2. The algorithms of reliability assessment in the planning phase
of power systems

The second step of reliability assessment is to select an
appropriate assessment algorithm, which determines evaluation
accuracy and computation efficiency. Many algorithms have been
proposed in the last few decades and it is hence not possible to
review all of themwithin one single paper. Therefore, we only take
those algorithms into the scope of this paper, which are related to
reliability assessment of wind power systems and satisfy at least
one of the three conditions listed at the beginning of Section 3.
These reliability assessment algorithms, which can be generally
categorized as analytical and simulation methods, are comprehen-
sively reviewed in following two sub-sections.

3.2.1. Analytical algorithm
There have been two main analytical methods for the reliability

assessment with wind power integration. Both of them only allow
that COPT or Markov model is used for wind power modeling.

The first and the most basic algorithm is the enumeration
method [12,24–27], which enumerates all combinations of possi-
ble states for the entire system. The algorithm is capable of
providing an accurate and direct way for reliability assessments.
Although the algorithm has been widely used, it is obviously not
suitable for a large-scale power system due to extremely heavy
computation overhead caused by computing memory limits.
When other relevant factors, e.g. wind speed correlation, exist in
systems, condition probability algorithm as well as combinatorial
algorithms must be introduced [14], which magnifies the compu-
tation burden.

The second analytical algorithm, i.e. the Universal Generating
Function (UGF) method, is published in some literatures related to
wind power [19,28,29]. The UGF method presented a clear and
compact mathematical expression to the enumeration method.
The main procedure for UGF are as follows [30].

For a set of discrete multi-state variables:

X ¼ fX1;X2; :::;XMg; Xi ¼ fXi1;Xi2; :::;Xini
g ð3:4Þ

The UGF expression of them is:

UXi
ðzÞ ¼ ∑

j ¼ ni

j ¼ 1
pijz

Xij ð3:5Þ

where pij is the probability of Xij, z indicates z-transform is
introduced.

Then let FðXÞ denotes the “system performance function”
indicating the consequence of X. Then the UGF expression of the
system is written as:

UXðzÞ ¼ � fUX1 ðzÞ;UX2 ðzÞ; :::;UXM ðzÞg ¼ ∑
n1

j1 ¼ 1
∑
n2

j2 ¼ 1
::: ∑

nm

jM ¼ 1
PXzFðXÞ;

PðXÞ ¼ probfX1j1 ;X2j2 ; :::;XMjM
g ð3:6Þ

Expected value of system is collected with the value of U0
Xð1Þ,

i.e. multiply the probability of each state with the corresponding
evaluation result.

Generally, UGF is good at mathematically expressing enumera-
tion method in a compact way [30]. For a specific problem, it still
requires to follow the same procedure of enumeration method.
Therefore, it still requires extremely high computation expense,
which is not suitable for large-scale system. Interested readers are
able to refer to the study of [30] which offers more detailed
description and case studies.

3.2.2. Simulation algorithm
Comparing with enumeration methods, the simulation algorithms

are more applicable for large-scale systems. These algorithms can be
categorized into non-sequential and sequential simulations. Non-
sequential simulation are concentrated on improving computation
efficiency, and sequential simulations are concentrated on improving
computation accuracy. These two types of algorithms are reviewed in
the following sections.

3.2.2.1. Non-sequential Monte Carlo simulation
3.2.2.1.1. Crude Monte Carlo simulation. The crude MCS is

known as the state sampling method, which is also a fundamental
simulation algorithm for large-scale systems. The reliability
indices, such as LOLP and EENS, are iteratively computed through
stochastically sampling the states of the power system until the
targeted indices are converged within an acceptable variance
coefficient [12]. Therefore, the crude MCS method significantly
reduces computation overhead by saving the enumeration of all
possible states of a power system. By modeling wind power as
COPT and Markov models, the method can be easily utilized for
reliability assessments with wind power integration [4].

The drawback is that the crude MCS is not suitable for a system
with high reliability performance. It is because the algorithm get less
chance to find a failure state for a high reliability system so that the
algorithms have to spend more computation expense for a converged
result. Unfortunately whenever the computation time is as a limita-
tion, the assessment result can accordingly become inaccurate.

3.2.2.1.2. Intelligent search based Monte Carlo simulation. In
order to improve the sampling efficiency of crude MCS, intelligent
search method was first introduced by the study [31] in 2002. The
authors used the genetic algorithm (GA) as a search tool to
truncate probability state space for tracking fittest samples. There-
fore failure states, especially for a high reliability system, can be
sampled efficiently. The flowchart of the algorithm is as shown in
Fig. 3.2.

In Fig. 3.2, it can be observed that the sampling efficiency is
improved via three approaches: (1) avoiding repeat sampling
(2) tracking the most probable events (3) tracking the failure
states. That is, the algorithm is able to find the most probable
failure states so that a converged result can be obtained within a
shorter duration.
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Ref. [31] indicates that the algorithm is powerful that the
computing overhead can be saved as high as 40% off comparing
with that of crude MCS, and the relative error is less than 0.5%. In
addition, the computation expense does vary along with reliability
performances of power systems.

By adopting the intelligent search methods and the multi-state
models, reliability of a wind power integrated system can be
evaluated efficiently [32]. The coordination of the intelligent
algorithms with MCS has been an attractive research topic for
worldwide scholars. Further studies has demonstrated that var-
ious kinds of population based intelligent search methods (Ant
Colony, Binary Particle Swarm, Genetic and Artificial Immune
System) can be successfully applied to systems with wind power
integration. It is shown in [33] that evolutionary particle swarm
algorithm is even more efficient.

By studying the mechanism of the method, one can figure out
that the method spends additional computation efforts on record-
ing/searching for success states as well as evaluated states during
the reliability assessment process. It can be inferred that the
recording/searching effort, which is likely to be significant in large
scale systems, is the shortcoming of the intelligent search method.

3.2.2.1.3. Cross-entropy based Monte Carlo simulation. The cross-
entropy based MCS algorithm (CE–MCS) was proposed in [34]. The
purpose of the CE–MCS method, which is to improve the efficiency
of the crude MCS, is the same as the purposes of intelligent
methods.

The main idea of the algorithm is to make rare events happen-
ing more frequently [34], i.e. generating more load shedding states
with limited samples. The idea is realized by altering the outage
probability of components, and then devoting the evaluation
results obtained with distorted component parameters to their
original values based on the theory of cross-entropy.

The reliability performance of Brazilian South–Southeastern
generating system was used to demonstrate the effectiveness of
the CE–MCS method in [34], in which one can observe tremendous
efficiency improvement. Regarding wind power integrated sys-
tems, the method is considered as capable of dealing with wind
power by its authors. So far the method has not been tested on any
wind power related research.

Since the CE–MCS does not require additional computation
efforts on recording/searching, it is more suitable to be applied to
large-scale high-reliability systems than the crude MCS and the
intelligent search methods. However, the accuracy of CE–MCS is

dependent on the distorted outage probabilities of system com-
ponents. That is, the calculation results obtained by the CE–MCS
method may be inaccurate under some circumstances.

Interested readers are referred to [35] for proves or tutorials.

3.2.2.2. Sequential Monte Carlo methods. As similar as the
difference between non-chorological and chorological wind models,
sequential MCS methods are able to evaluate more insight reliability
indices for a power system, such as frequency and duration indices of
LOLF and LOLD. There are mainly two methods applicable for wind
power system study: (i) original sequential Monte Carlo simula-
tion algorithm and (ii) sequential crossing-entropy Monte Carlo
simulation algorithm.

3.2.2.2.1. Original sequential Monte Carlo simulation algorithm.
The original time sequential Monte Carlo simulation (TMCS)
method was first proposed in [36] in 1996. The method generates
chronological system statuses to obtain state residence series for
each component in a system. Then the series of all the components
are combined together as the system status series.

An example of the state residence time series is presented in
Fig. 3.3. Considering a system consists of two generators (Unit No.1
and No.2), the state residence time series of which are shown in
Fig. 3.3(a)–(b). Usually the state residence series for a component
consists only two states, i.e. Available and Outage. Fig. 3.3
(c) demonstrates the series of the system, which is generated
through combining the series of its components.

In contrast to the non-sequential algorithm, the ARMA model is
enabled by the TMCS algorithm so that reliability assessment
accuracy can be significantly improved. In some literatures, the
results obtained by both applying ARMA model and TMCS is as the
benchmark to examine simulation accuracy of other models or
algorithms [15,23]. Additionally, the TMCS algorithm has good
capabilities to cope with other time-dependent components
besides wind power.

Since computation overhead is extremely high for TMCS, there
have been several improved ones based on TMCS proposed by
literatures [37–40]. One of those is cross-entropy based quasi-
sequential Monte Carlo algorithm, which has been believed as
effective and applicable for wind power system, as reviewed in
the next.

3.2.2.2.2. Cross-entropy based quasi-sequential Monte Carlo algo-
rithm. Similar to the idea of CE–MCS, the efficiency of sequential
Monte Carlo simulation can be improved by distorting the

Fig. 3.3. An example to State Residence Series A comparison between distorted and original State Residence Series.
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reliability parameters of system components. The CE–TMCS [38]
aims at generating distorted state residence series in order to
accelerate evaluations.

The main procedures of cross-entropy based quasi-sequential
MCS algorithm (CE–TMCS) consists of two parts, which are
(i) obtain the optimal distorted outage rates of components based
on the concept of cross-entropy and (ii) evaluate the reliability of
the system chronically.

The first part of the method is very similar to the one which has
been explained previously. In this method, the altered parameters
are the outage rates of components rather than outage probabil-
ities. The generated state residence series of each component has
two features: (i) longer “outage” time (ii) shorter “available” time,
which is illustrated by Fig. 3.4.

The second part of the CE–TMCS shares the same idea as
CE–MCS, which is to devote the reliability evaluation results
obtained with distorted state residence series to their original
values. Note that, the devotion functions of different reliability
indices are distinguished from each other.

Numerical results presented in [38] have demonstrated tre-
mendous efficiency improvements owe to the algorithm. Though
this method has not been modified for reliability assessments of
wind power integrated system, it is believed by the authors of
CE–TMCS that the algorithm is capable to dealing with wind
power as long as one specific wind power series is given. That is,
applying the CE–TMCS along with ARMA wind power series can
reduce the computation overhead of TMCS while reserving wind
fluctuation information in maximum. Therefore the CE–TMCS
algorithm is worth of further studies, especially for an actual wind
power system.

3.2.3. Other algorithms
Since this paper focuses on the topic of wind integration, there

are still many reliability assessment algorithms which are not
included in the previous sessions since the authors did not give
any discussion on algorithm capabilities once if wind power is
integrated. However it does not necessarily mean that these
algorithms are technically not able to deal with such cases. Some

non-sequential algorithms such as latin hypercube [41], state
space pruning technique [42], as well as some sequential methods
such as The pseudo-chronological Monte Carlo simulation [37] and
the quasi-sequential Monte Carlo simulation [38] can also be used
to quantify the reliability impacts caused by wind power.

3.3. The applications of reliability in the planning phase of power
system

3.3.1. Generation expansion planning
Generation expansion planning (GEP) is a critical optimization

problem for power system planning. The goals of GEP optimization
are the determinations of generation types, capacities and loca-
tions in order to meet the constantly increasing electric load while
minimizing the total cost (investment and operation cost) within a
range of years [43]. Since reliability performances affect system
operation costs significantly, reliability consideration must be a
necessary constrain of GEP optimization.

Wind capacity determination is the most important problem
for the study of GEP of wind power systems. The optimization
framework of the wind capacity determination are as shown in
Table 3.1.

Based on the wind capacity determination problems, the
allocation problems and type selection problems are further
developed.

The wind farm allocation problems decides where the wind
farms shall be built according to the geographically diverse wind
speed profiles [49,51–53]. Geographical smoothing affections
result in various investment costs as well as different reliability
performances of wind power systems. By adding them as optimi-
zation variables, it is able to use the optimization framework of
wind capacity determination to solve the problem of allocation
selection.

The wind turbine type selection problem, which is also impor-
tant in GEPs, decides which type of wind turbine should be
installed at a specific wind farm. The performance of a wind farm
is dependent on the types of wind turbines, among which a series
of parameters are different such as hub height, cut-in, rated and
cut-out speed. The differences lead to different capital costs as
well as reliabilities, and then affect the overall performances of
generation expansion plans. Therefore some literatures such as
[49,51] recommended that the selection of wind turbines should
be included in the wind power GEPs base on the wind profile of
wind farms.

3.3.2. Transmission expansion planning
The increase of electric loads not only requires generation

expansions but also network expansions in order to guarantee
adequate transmission capacities. The transmission expansion
problem (TEP) aims at figuring out the optimal paths and voltage
levels (deciding capacity) during network expansion decision
makings [54]. With wind power integration, transmission expan-
sions are required in order to maintain system reliability as well as
digest more wind power. The formulations of TEP optimization are
quite as similar as those of GEPs.

For a wind power system, several studies are concentrated on
how the reliabilities are changed due to the role changing of
transmission system investments.

From the aspect of security and reliability, [11] carried out a
conceptual study discussing the framework of TEPs with wind
power integration, suggesting that both the deterministic N�1
criteria and adequacy analysis are required in the TEPs in order to
carry out a thorough reliability analysis. That is, a thorough TEP
study should include two part of content: (i) inspecting dynamic

Table 3.1
Elements considered in wind power capacity expansion.

Elements Reference

Objective function EENS penalty [44–48]
Wind turbine installation cost [44–50]
Maintenance and operating cost [44,45,47–49]
Wind generation profit [50]
Pollutant emissions [44,45]

Constraints LOLP criteria [44,50]

Fig. 3.4. A comparison between distorted and original State Residence Series.
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security performances using N�1 criteria and (ii) examining
transmission adequacy using reliability theory.

Transmission expansion plans can be proposed by different
market participators in modern deregulated power markets. Since
the viewpoints of these market participators are distinguished, the
performances of the transmission plans proposed by these parti-
cipators are also distinguished from each other. Literature [55]
pointed out that under limited investments, the transmission
expansion plans proposed by wind farm owners trend to focus
more on wind power digestion, while in contrast the plans
proposed by TRANCOs (transmission company) focus more on
reliability over long time spans.

In order to illustrate the importance of coordinated transmis-
sion expansion along with the increase of integrated wind power,
[56] proposed a new reliability index to reflect the additional LOLP
caused by transmission congestion. The work demonstrated pos-
sibilities of transmission overinvestments when wind generation
is located in an exporting area, and possibilities of under-
investments as well as significant increases in LOLP when wind
power is located in an importing area.

3.3.3. Reliability centered maintenance
The reliability centered maintenance (RCM) is the third appli-

cation of power system reliability theory. In modern power
systems, the regional generation companies (GENCO), transmis-
sion companies (TRANCO) are responsible to perform scheduled
maintenances in order to sustain the competitive energy market.
These maintenance schedules are then reported to the local
independent system operators (ISO), who will coordinates the
different participators from the view of reliability of the whole
system [57]. The power system reliability centered maintenance
(PSRCM), which aims at working out maintenance schedules that
can fulfill the maintenance requests in certain time windows while
reducing the loss of load risks to minimum from the aspect of the
entire system, has achieved the status of preferred maintenance
practice among the modern ISOs [58].

Many efforts have been afforded to study the optimal wind
turbine maintenance schedules from the view of wind farm
owners according to the reliability-centered idea [59–62].

In contrast, there is very few paper referring to PSRCM from the
view of grid owners or system operators. It can be explained that
the power loss due one individual wind turbine is much too small
to conventional generators. Therefore, it is not necessary to take
them into account by ISOs in the early stage of wind development
nowadays.

However, with the increase of wind penetration, we consider
that the PSRCM of wind farms shall not be neglected due to two-
fold reasons: (i) large-scale common-mode outages of wind farms
or wind cluster can possibly occur due to lacking of maintenance
schedules, which lead to significant reduction on system relia-
bility; (ii) over maintenances will result in decrease of economic
performance of both wind farms and entire power systems.

3.4. Brief summary

This chapter reviewed the problems of power system planning
with wind power integration, as well as up-to-date wind power
models and reliability algorithms which are capable of addressing
with power system reliability issues due to wind power integration.

It is concluded that much research effort has been devoted to
improve the accuracy and efficiency of power system reliability
assessment. We categorize them as listed in Table 3.2 in order to
clarify the achievements and the applications of the related research.

As can be seen Table 3.2, most of the newly developed
algorithms have not been put into practice for system planning.
The fact indicates that scholars shall look for more typical case
systems to test and verify the effectiveness of their models and
algorithms. Also, the reliability centered maintenance with wind
power integration, which can be essential for future power system
with higher wind penetration, are obviously lacking of focusing on
from existing literatures.

4. Power system operation: Based on reliability assessment
with wind power integration

The prior work in power system operation practice is to
dispatch generation units, i.e. to schedule the amounts of power
outputs and spinning reserves for all the units. The operation

Table 3.2
Applied planning-phase reliability models and algorithms.

Ref. Application Planning phase wind power reliability models Planning phase reliability algorithms

Multi-state COPT Multi-state Markov ARMA Analy Simulation

Crude MCS PIS TMCS CE–MCS CE–TMCS

[44–46] GEP √ √
[48] GEP √ √
[49] GEP √ √
[50,51] GEP √ √
[52,53] GEP √ Not mentioned
[28,29] GEP √ UGF
[63,64] TEP √ √
[55] TEP √ √
[11] TEP √ √ ○
[56] TEP √ Not mentioned
[65] TEP √ √
[14] Assessment √ √
[16,17,21] Assessment √ √
[19] Assessment √ UGF
[66–68] Assessment √ √
[15,22,23,69] Assessment √ √
[31] Assessment √ √
[34] Assessment Not mentioned ○
[40] Assessment √ √

√: Applied; ○: Recognized as capable to be applied.
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problem studied in this section is the coordinated dispatching of
wind power and conventional power.

As discussed in Section 2, deterministic methods (e.g. N�1)
were always been implemented in conventional power systems.
However these methods are no longer capable of ensuring the
reliabilities of operation plans when large scale of wind power is
integrated. Therefore applying reliability theory on estimating
system operation risks is becoming increasingly important.

The reliability models of wind power as well as reliability
assessment algorithms in the phase of operation are distinguished
from those of planning phase. This is because:

(1) In the planning phase, it is impossible to forecast the fluctua-
tion of wind power in advance of several months/years.
Therefore wind power can be only modeled as a series of
expectation values predicted based on historical statistics.

(2) In the operational phase, wind power can be roughly fore-
casted at several hours or a day ahead of dispatching. There-
fore the uncertainties of wind power in the operation phase
are forecasting errors, which shall be modeled and evaluated
differently comparing with the methods of the planning phase.

(3) Therefore since 2003, various wind power models and corre-
sponding algorithms have been proposed considering applica-
tions for reliability-centered system operations. Sections
4.1 and 4.2 present comprehensive reviews to the correspond-
ing models and algorithms.

Therefore since 2003, various wind power models and corre-
sponding algorithms have been proposed considering applications
for system operations. Sections 4.1 and 4.2 would present detailed
reviews to these models and algorithms.

Then in Section 4.3, the applications of reliability theory in the
operation phase re introduced. A brief summary is also presented
in Section 4.4 to show the gap from theories (models and
algorithms) to practices (applications).

4.1. The reliability models of wind power in the phase of power
system operation

In the phase of power system operation, the uncertainties of
wind power are unexpected fluctuations comparing with the
forecasted wind speed series, i.e. forecasting errors. In this section,
two most recognized forecasting error models of wind power in
the phase of operation are reviewed.

4.1.1. Gaussian distribution model of wind power forecasting errors
Wind power forecasting errors can be modeled in a non-

chronological manner by adopting Gaussian distribution, which
is widely recognized according to a series of publications [70–73].
Due to the large number as well as the geographical dispersion of
wind turbines, it is suitable to apply the central limit theorem in
order to model the forecasting errors. Hence the forecasted errors
of wind power can be modeled by zero-mean Gaussian distribu-
tion [74], which corresponds to empirical motivation [75]. Notice
that the errors existed in load forecasting can be modeled as zero-
mean Gaussian distribution as well. Then a net error model for
wind-load forecast can be formed by merging errors of wind and
load according to following formulas [70]:

FLnet;t ¼ FLt�FWt ð4:1Þ

Errornet �Nðμnet ;snetÞ; μnet ¼ 0;snet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
wþs2

l

q
ð4:2Þ

where FLnet;t is the forecasted net load, which is obtained by
subtracting forecasted value of wind power FWt from forecasted
value of loads FLt at time t; μnet refers to the mean value of the net
forecasting errors Errornet; snet ,sw and sl indicate the standard
variation of the errors of net load Enet , wind power and electric
load, respectively.

The model introduced above is expressed as a continuous
formula, which is not convenient to be considered in computation
practice. Therefore it is more reasonable to consider an approx-
imation whereby the continuous probability distribution is dis-
cretized through a number of representative samples as shown in
Fig. 4.1.

The Gaussian distribution model is widely recognized by
various researches. Most operational phase reliability assessment
publications are based on it. However according to [76], forecast-
ing errors of the present time is dependent on those of the
previous time, meanwhile correlations of forecasting errors also
exist among multiple wind farms. However the correlation fea-
tures are not appropriately modeled by the Gaussian distribution
model, therefore as a consequence of which the obtained relia-
bility assessment results may be not accurate.

4.1.2. ARMA(1,1) model of wind speed forecasting errors
In contrast to the Gaussian distribution model, the ARMA(1,1)

model presents a chronological description of wind power fore-
casting errors [77]. Comparing with the Gaussian distribution
model, the advantage of this model is that the chronological as
well as the geographical correlations of forecasting errors can be
easily modeled.

The simplified mathematical expression of the ARMA(1,1)
model is expressed as Eq. (4.3) [77]:

XðkÞ ¼ A� Xðk�1ÞþC � Z0ðkÞþB� Zðk�1Þ ð4:3Þ

where XðkÞ and ZðkÞ are vector with forecasting/correlation noises
at hour k for N regions; A and B are diagonal matrix representing
the ARMA parameters; Z0ðkÞ indicates the independent noises at
hour k; and C reflects the correlation of noises among regions.

Fig. 4.1. Gaussian distribution model of wind forecasting errors.

Table 4.1
Proposed reliability assessment algorithms in power system operational phase.

Forecasting error models Reliability assessment algorithms

Normal distribution Single stage analytical analysis
Normal distribution Scenario tree
Normal distribution Monte Carlo simulation
ARMA(1,1) Scenario tree
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From Eq. (4.3), we can model correlations of forecasting errors
among multiple wind farms concisely by the matrix C.

As long as up-to-date wind power measurement data are
available, the ARMA(1,1) model can significantly improve the
quality of inner-daily dispatching of power systems since accurate
forecasting errors can be computing by re-estimating the ARMA
parameters.

So far, the most-recognized models for wind power uncertain-
ties have been reviewed for power system operations. The two
models are so widely accepted that they have been used in most of
the literatures which study reliability-centered operations of wind
power systems.

4.2. The algorithms of reliability assessment in the operation phase
of power systems

With wind power integrated in power systems, reliability
problems are caused by the discrepancy between the scheduled
and actual wind power, i.e. as long as downward wind power
fluctuation exceeds available generation, load shedding shall
occur. Such discrepancy can be estimated according to several
effective reliability assessment algorithms. The algorithms can be
generally categorized into two groups according to corresponding
forecasting error models. The model-algorithm pairs are listed in
Table 4.1 as shown in the outline of Section 4.2.

4.2.1. Algorithms corresponding to normal distribution model
As we can see in Table 4.1, three algorithms have been devel-

oped for the Gaussian distribution model of wind foresting errors.
These three algorithms will be reviewed respectively as follows.

4.2.1.1. Single stage analytical algorithm. The single stage analytical
algorithm was proposed in Ref. [73] in order to quantify the
reliability impacts caused by wind power integration under the
operational phase. Single stage means that the algorithm aims at
evaluating the reliability performance of an operation schedule at
a specific time.

The main idea of this algorithm is to determine system LOLP
according to the amount of reserve. By adopting the Gaussian
distribution model, the probability of lacks in spinning reserve can
be easily calculated. Two kinds of uncertainties are considered in
this algorithms according to [73]:

(1) Unexpected net load fluctuation caused by wind power and
load forecasting errors.

(2) Unexpected generation partial outages and fully outages.

Then by adding the loss of load probabilities caused by these
uncertainties, the LOLP index of a specific time in power system
operation can be obtained.

An example is as shown in Fig. 4.2. According to the algorithm,
the net forecasting error is modeled as Gaussian distribution.

Positive net forecasting error values indicates that net loads are
larger than expected values, under which circumstances spinning
reserves (as indicated by “SR” in Fig. 4.2) are required to compen-
sate such discrepancy. The amount of spinning reserve depends on
two factors, which are the operation schedules and the unex-
pected outages of conventional units, and can be calculated as
SR¼ SRSchdule�CapOut. Then the LOLP can be obtained by calculat-
ing the area of net forecasting errors exceeding the spinning
reserve as indicated by “Loss of Load Probability” in Fig. 4.2.

Since the calculated LOLP is a function of the scheduled amount
of spinning reserve R, then with a given threshold of LOLP, the
algorithmwould determine the corresponding amount of spinning
reserve, which is the first step towards power system dispatching.

According to our knowledge, the single-stage analytical algo-
rithm is the initial practical algorithm for evaluating power system
reliabilities considering with wind power integration in the
operation phase. The effectiveness of the algorithm is demon-
strated by the study [72], which used the algorithm to examine
dispatching schedules of Irish power system.

One shortcoming of this algorithm is that a number of crucial
operational constraints, e.g. ramping constraints, are difficult to be
considered. That might result in inaccurate assessment results so
that an improved algorithm, e.g. the scenario tree algorithm, is
proposed to address this issue.

4.2.1.2. Scenario tree algorithm. The scenario tree algorithm was
proposed in Ref. [70]. By enumerating chronological series of net
load forecasting errors, the algorithm takes the influence of
sequential fluctuation of wind power into consideration so that
more accurate reliability evaluation results can be obtained.

The scenario tree algorithm assumes that the net demand
forecasting errors can be represented by a finite number of values,
e.g. the discretized Gaussian distribution model. Then the opera-
tion plans can be made through examining a finite number of net
demand forecasting error trajectories, i.e. scenarios. Each scenario
is made up of sequences of nodes jAf1;2; :::; Jg representing one of
the possible discrete realizations of the net load error. For the kth
scenario, it contains the sequence of nodes of Sk ¼ fjk1; jk2; :::; jkT g,
where the studied time interval is [1,T]. The collection of such
scenarios is defined as the scenario tree.

Fig. 4.3 presents an example of scenario tree, in which the net
load forecasting error is discretized into three levels indicated by
“Low”, “As predicted” and “High”, and the studied time interval is

Fig. 4.2. Calculation of LOLP with Gaussian distribution model. Fig. 4.3. An example of forecasting error scenario tree (ST).
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[1,3]. Taking the seventh scenario as an example, the sequence of
this scenario S7 ¼ fj71; j72; j73g ¼ fAs predicted Low;Highg means
that the actual wind power values are approximately treated as
the equaling to, lower or higher than the forecasted values at
T¼1,2,3, respectively.

According to the statistical studies in [78], the authors of the
algorithm considered that large wind power fluctuation was not
rarely happening. Therefore, the forecasting errors shall be limited
within a small neighborhood of the forecasted value. That is, inter-
branch transitions, which are shown as the dashed arrows in
Fig. 4.3, shall not exist in the scenario tree in order to reduce
calculation burden. Finally the operation plans can be made by
enumerating all the scenarios.

Notice that the ST method is still an enumeration-based
method. Therefore the main drawback of the algorithm is the
computation overhead caused by scenario enumerations. The
number of scenarios grows exponentially along with the number
of stages resulting in quite heavy computation overheads.

4.2.1.3. Monte Carlo simulation. In order to reduce the calculation
burden of scenario tree algorithm, the Monte Carlo simulation
algorithm was proposed in Ref. [71]. The Monte Carlo algorithm
generates net forecasting errors according to a Gaussian cumulative
probability distribution function, which can bewritten as Eq. (4.4) [71]:

εt ¼
ffiffiffi
2

p
sneterf

�1ð2zt�1Þ ð4:4Þ

where εt is the net demand forecasting error at time t; zt is a random
number uniformly distributed over the interval [0,1]; and erf �1

indicates the inverse error function. The generated forecasting error
series, which are determined by a series of random series zt , can be
used to examine the reliability of daily operation schedules.

As similar as the crude MCS algorithm introduced in Section 3,
the MCS algorithm is capable of improving the efficiency of
reliability assessments via iteratively generated series of forecast-
ing errors. In [80], the authors applied the algorithm on determin-
ing the spinning reserve adequacy of the Portuguese power
system, which partially demonstrates that the effectiveness of this
algorithm.

The shortcoming of the method is as similar as discussed in
Section 3. That is, the Monte Carlo simulation algorithm also
encounters the similar efficiency problem of high-reliability sys-
tems: very high computation efforts are used for evaluating non-
failure system states and the algorithm takes very long time to
satisfy converging criteria.

The three algorithms reviewed above can be used along with
the Gaussian distribution model. The algorithms corresponding to
the ARMA(1,1) are introduced in Section 4.2.2.

4.2.2. Algorithms corresponding to ARMA model: Scenario tree
As discussed in Section 4.1, the ARMA(1,1) model is able to

presenting a more accurate description of wind power forecasting
error comparing the Gaussian distribution model by considering
geographical and chronological dependency of the errors. Various
works have been devoted to develop reliability assessment algo-
rithms corresponding to the ARMA(1,1) model.

The most-recognized algorithm based on the ARMA model is
the Scenario Tree (ARMA-ST) algorithm, which was introduced in
[81]. By adopting the wind power forecasting error model of
ARMA(1,1), ARMA-ST algorithm is expected to obtain more accu-
rate reliability assessment results comparing with the previous
scenario tree algorithm corresponding to the Gaussian distribution
model.

The scenarios of ARMA-ST are generated through a different
method, which is based on the probabilities of series and the
Euclidean distances between each other. An example given in [82]
is shown in Fig. 4.4 in order to illustrate the procedure of this
method. The following steps represent how 10 original scenarios
can be used to build up an 8-scenario tree of three-stage.

(1) Generate a large number of original series based on the ARMA
(1,1) model. In Fig. 4.4, 10 scenarios are generated as shown in
the figure titled with “Step 1”.

(2) In order to reduce the redundant 10 scenarios to 2T scenarios,
where T indicates the state number, two original series shall be
removed. As can be observed in step (1), the original series
of S3 and S4 are relatively closed to S9. Then S3 and S4 are

Fig. 4.4. An example of establishing a binary scenario tree with ARMA(1,1) model.
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removed since their probabilities are less than the probability
of S9, as shown in the figure titled with “Step 2”.

(3) Now the remaining 8 series shall be merged into a three-stage
manner. It can be observed that in the second figure S2 and S9
are close to each other. Therefore, as shown in the third figure,
part of S2 is merged into S9 if the probability of S2 is smaller.

(4) By repeating the step (3), the three-stage 8-scenario tree can
be obtained. Notice that the distance from S2 and S6 is large
which indicates the two series shall not be merged. That is
because since the other scenarios, i.e. S7 and S8, S1 and S5,
S2 and S9, have already been merged together, and S2 and S6 are
the only two left for merging. Finally without any other option,
the binary tree is established by merging S2 and S6 together.

In addition to the advantages of the ARMA(1,1) forecasting
error model, the ARMA-ST algorithm is with two advantages. By
procedure (1), information about forecasting errors is generated
according to original measurement series; and by (2), redundant
information is reduced so that the algorithm can be computed
efficiently. Eventually the most representative information are
selected in the 2T scenarios, the number of which is significant
reduced comparing with that of the STT algorithm based on
Gaussian distribution model.

With the ARMA-ST tool, the idea of Rolling Planning was
proposed in [83], suggesting system operators to re-schedule the
dispatching plans every 3 h or so. Since the ARMA(1,1) model gives
better estimation of the forecasting errors while new data is
available, the scenario tree can be re-generated and the operation
plans can be corrected accordingly in time.

In [84], a simplified ARMA scenario tree algorithm was pro-
posed aiming at reducing the number of scenarios, which is
realized by limiting the number of nodes allowed to grow
separated branches. As a result, the number of scenarios is reduced
to hundreds rather than millions.

4.3. The applications of reliability in the operation phase of power
systems

With considering of wind power integration, the operational-
phase problems discussed in this paper involve unit commitment,
economic dispatch problems, which are investigated from different
aspects as listed in Table 4.2.

The reliability performances of UC and ED schedules are
challenged by uncertainties of wind power, and so far the only
practical way to compensate unexpected wind power fluctuation
is to use the spinning reserve provided by conventional units.
That is, the reliability performances of UC and ED schedules
are dependent on very similar crucial issue, i.e. the amount of
spinning reserve.

The amounts of spinning reserve can be decided through
deterministic criteria, such as a certain percent of the hourly-load,
or capacity of the largest online unit (N�1 criteria). Even a set of
deterministic criteria have been comprehensively formulated, they
may still result in inconsistent decisions and variable operating
risks, especially when variable wind power is integrated. Under
such circumstances, the concept of power system reliability, which
is originally designed for long term applications, can be smoothly

applied on UC and dispatching problems with variable wind
power integration.

The amount of spinning reserve is usually determined through
a two-step sequence.

(i) The amount of SR is roughly determined at a day ahead of
market clearing by studying UC problems with estimated
forecasting errors.

(ii) The amount of SR is determined again at few hours ahead of
market clearing by studying ED problems with updated fore-
casting errors.

In our opinion, all the algorithms reviewed in Section 4.2 can
successfully estimate a suitable amount of spinning reserve at
unit commitment stages. However at stages of daily re-dispatch,
refined wind power measurements would suggest major re-
estimations of wind power forecasting errors are necessary, thus
the ARMA(1,1) model along with the ARMA Scenario Tree algo-
rithm and the concept of rolling-planning seems to be a more
comprehensive choice.

4.4. Brief summary

Reliability has become an essential consideration and con-
straint for system secure operations with wind power integration.
Wind power forecasting error models and corresponding relia-
bility assessment algorithms are reviewed in this section. The
applications of the reviewed models and algorithms are listed in
Table 4.3.

5. Conclusion

In this paper, we reviewed the problems of reliability-based
power system planning and operation with wind power. It can be
demonstrated that reliability theory is becoming increasingly
important after wind power introduces great uncertainties in the
planning and operation stages of power systems. This paper
reviews various reliability models of wind power as well as
reliability assessment algorithms, and some interesting phenom-
enon can be observed.

Regarding planning phase reliability assessment, three relia-
bility models of wind power are reviewed in this paper, i.e. the
Multi-state COPT, the Multi-State Markov and the ARMA model,
and the Multi-state COPT model is the most popular one in
applications, despite its low accuracy on modeling the time/
geographical correlations of wind speed profiles. This phenomena
is worthy of paying attention to since the correlation effects, wake
effects and so on would have significant impacts on reliability
assessment results. Many advanced reliability assessment algo-
rithms such as intelligent-search and cross-entropy based algo-
rithms have been proposed in recent years. However they have not
been implemented in applications yet. The fact indicates that
scholars shall look for more typical case systems to test and verify
the effectiveness of their algorithms. Generation/transmission
expansion problems with wind energy have been studied in

Table 4.2
Applications of power system reliability theory in wind power operations.

Problems Definitions Time scale

Unit commitment (UC) Scheduling the switching of generators at a day ahead of actual generation Inter-day
Economic dispatch (ED) (Also: daily
re-dispatch)

Determining the most economic output combination of generators with given generator statuses and
amount of electric loads

Inter-hours
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various literatures. However the topic of reliability-centered-
maintenance with wind power integration is only studied at the
scale of a single wind turbine generator, and we consider it is also
important to investigate the problem from the aspect of power
system.

Regarding operation phase reliability assessment, reliability
consideration has become an increasingly important issue in
operational decision makings such as unit commitment or eco-
nomic dispatch problems with wind energy. We would like to
emphasize the point again that the uncertainties in the phases of
planning and operation are obviously distinguished and shall be
considered with different models and algorithms.
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