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Abstract

Point clouds obtained with 3D scanners or by image-based reconstruction techniques are often corrupted with significant
amount of noise and outliers. Traditional methods for point cloud denoising largely rely on local surface fitting (e.g., jets or
MLS surfaces), local or non-local averaging, or on statistical assumptions about the underlying noise model. In contrast, we
develop a simple data-driven method for removing outliers and reducing noise in unordered point clouds. We base our approach
on a deep learning architecture adapted from PCPNet, which was recently proposed for estimating local 3D shape properties
in point clouds. Our method first classifies and discards outlier samples, and then estimates correction vectors that project
noisy points onto the original clean surfaces. The approach is efficient and robust to varying amounts of noise and outliers,
while being able to handle large densely-sampled point clouds. In our extensive evaluation, both on synthesic and real data, we
show an increased robustness to strong noise levels compared to various state-of-the-art methods, enabling accurate surface
reconstruction from extremely noisy real data obtained by range scans. Finally, the simplicity and universality of our approach
makes it very easy to integrate in any existing geometry processing pipeline. Both the code and pre-trained networks can be
found on the project page†.

1. Introduction

Raw 3D point clouds obtained directly from acquisition devices
such as laser scanners or as output of a reconstruction algorithm
(e.g., image-based reconstruction) are regularly contaminated with
noise and outliers. The first stage of most geometry processing
workflows typically involves cleaning such raw point clouds by
discarding the outlier samples and denoising the remaining points
to reveal the (unknown) scanned surface. The clean output is then
used for a range of applications like surface reconstruction, shape
matching, model retrieval, etc.

Any good point cloud cleanup algorithm should (i) balance be-
tween denoising and feature-preservation, i.e., remove outliers and
noise while retaining data fidelity by preserving sharp edges and
local details of the underlying scanned surface; (ii) be self-tuning,
i.e., not require as input precise estimates of the noise model or
statistics of the unknown scanned surface (e.g., local surface type
or curvature characteristics); (iii) be invariant to permutation and
rigid transform applied to the pointset, i.e., the denoised output
should not depend on angle of scanning or choice of coordinate sys-
tem; and (iv) avoid unnecessarily degrading the input, i.e., leave the
points on the scanned surface if the input happens to be noise-free.

† https://github.com/mrakotosaon/pointcleannet

Note that the last criterion implies that the algorithm should not
oversmooth the output if the algorithm is iterated multiple times.

Decades of research have produced many variants of denois-
ing approaches targeted for different surface types and noise mod-
els (see survey [HJW∗17]). Such approaches can be broadly cat-
egorized as: classifying points as outliers using statistical meth-
ods, e.g., [Agg15]; projecting points to estimated local surfaces
(e.g., MLS surface, jet-fitting, etc.) [FCOS05, CP05, CP07]; con-
solidating similar patches to cancel out iid noise perturbations (e.g.,
non-local means, dictionary-based sparse coding), e.g., [Dig12]; or,
local smoothing using auxiliary input information (e.g., bilateral
smoothing) [HWG∗13], among many others. Unfortunately, there
is no single winner among these methods. The choice of algorithm
and its parameters often depends on the scanned surface and the
noise characteristics of the acquisition setup. Given that the com-
plexity of the underlying geometry and the noise characteristics are,
at best, partially known at acquisition time, choosing an optimal
algorithm with associated parameters is typically an iterative trial-
and-error process.

Inspired by the recent successes of applying deep learning tech-
niques for the analysis and processing of geometric data, includ-
ing [MBBV15, BBL∗17, WHC∗16] among many others, and espe-
cially the seminal works designed for learning directly on point
clouds [QSMG17, WSL∗18], in this paper, we present POINT-
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Figure 1: We present POINTCLEANNET, a two-stage network that takes a raw point cloud (left) and first removes outliers (middle) and then
denoises the remaining pointset (right). Our method, unlike many traditional approaches, is parameter-free and automatically discovers and
preserves high-curvature features without requiring additional information about the underlying surface type or device characteristics. Here,
point clouds are colored based on error compared to the ground truth point cloud (blue denoting low error, red denoting high error).

CLEANNET, a simple data-driven denoising approach. Specifically,
we design a two stage point cloud cleaning network based on the re-
cently proposed PCPNet architecture [GKOM18] to estimate robust
local features and use this information to denoise the point cloud.
At training time, a variety of surface patches extracted from a set of
shapes is synthetically corrupted with outliers and noise of varying
magnitudes (including zero noise). This artificially corrupted set is
then used to train POINTCLEANNET. Our two-stage method first
removes outlier samples and then estimates correction vectors for
the remaining points. Figure 1 shows an example on a raw real-
world scanned point cloud from the ETHZ dataset [WKZ∗16].

The process is enabled by a novel loss function that effectively
cleans pointsets without requiring explicit information about the
underlying surface or noise characteristics. Intuitively, the network
learns to identify local noise-free patches based on estimated fea-
tures extracted from corresponding raw pointsets and proposes per-
point correction vectors. In other words, the network implicitly
builds a dictionary of local surface patches in the form of local
learned features and uses it to classify input points as outliers and
project the remaining ones onto an ensemble of dictionary patches.
At test time, our denoising network directly consumes raw input
point clouds, classifies and discards outlier measurements, and de-
noises the remaining points. The approach is simple to train and
use, and does not expect the user to provide parameters to charac-
terize the surface or noise model. Additionally, unlike traditional
approaches, our denoising network can easily be adapted to partic-
ular shape families and non-standard noise models.

We qualitatively and quantitatively evaluate POINTCLEANNET

on a range of synthetic datasets (with access to groundtruth sur-
faces) and real world datasets. In our extensive tests, our approach
performed better than a variety of state-of-the-art denoising ap-
proaches (even with manually-tuned parameters) across both shape
and medium to high noise variations. Additionally, the simplicity
and universality of our approach makes it very easy to integrate in
any existing geometry processing workflow.

2. Related Work

Point cloud denoising and outlier removal have a long and rich his-
tory in diverse areas of computer science and a full overview is
beyond the scope of the current article. Below, we briefly review
the main general trends for addressing these problems, while con-
centrating on solutions most closely related to ours, and refer the
interested reader to a recent survey [HJW∗17].

Outlier removal. The earliest classical approaches for outlier de-
tection, classification and removal have been proposed primarily in
the statistics and data mining communities, in the general setting of
point clouds in arbitrary dimensions, with several monographs ded-
icated specifically to this topic [Pin95,BG05,RH11,Agg15]. These
methods are typically based on robust local statistics and most of-
ten come with rigorous theoretical guarantees. At the same time,
their generality often comes at a cost, as purely statistical methods
are often not adapted to the specific features found in geometric 3D
shapes, and in most cases require non-trivial parameter tuning.

More recently, several approaches have been proposed for outlier
detection, with emphasis on utility for 3D point clouds, arising e.g.,
from acquisition data, including [CCSM11, GMM13, WKZ∗16].
The two former methods are implemented in widely used libraries
such as CGAL and have also been used in the context of surface re-
construction from noisy point clouds [GCSA13]. These approaches
are very robust, but are also based on setting critical parameters or
rely on using additional information such as color [WKZ∗16]. This
makes it difficult to apply them, for example, across general noise
models, without additional user input and tuning of parameters.

Local surface fitting, bilateral filtering. Denoising and outlier
removal also arise prominently, and have therefore been consid-
ered in the context of surface fitting to noisy point clouds, includ-
ing the widely-used Moving Least Squares (MLS) approach and
its robust variants [ABCO∗03, MVdF03, FCOS05, ÖGG09, GP11].
Similarly, other local fitting approaches have also been used for
point cloud denoising, using robust jet-fitting with reprojection
[CP05,CP07] or various forms of bilateral filtering on point clouds
[HWG∗13, DDF17], which take into account both point coordi-
nates and normal directions for better preservation of edge fea-
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tures. A closely related set of techniques is based on sparse repre-
sentation of the point normals for better feature preservation [AS-
GCO10, SSW15, MC17]. Denoising is then achieved by projecting
the points onto the estimated local surfaces. These techniques are
very robust for small noise but can lead to significant over smooth-
ing or over-sharpening for high noise levels [MC17, HJW∗17].

Non-local means, dictionary-based methods. Another very
prominent category of methods, inspired in part from image-based
techniques consist in using non-local filtering based most often on
detecting similar shape parts (patches) and consolidating them into
a coherent noise-free point cloud [DG10,ZSW∗10,Dig12,DCV14,
ZCN∗18]. Closely related are also methods, based on constructing
“dictionaries” of shapes and their parts, which can then be used for
denoising and point cloud filtering, e.g., [YLÖ∗16, DVC18] (see
also a recent survey of dictionary-based methods [LOM∗18]). Such
approaches are particularly well-suited for feature-preserving filter-
ing and avoid excessive smoothing common to local methods. At
the same time, they also require careful parameter setting and, as
we show below, are difficult to apply across a wide variety of point
cloud noise and artefacts.

Denoising in images. Denoising has also been studied in depth
in other domains such as for images, with a wide variety of tech-
niques based on both local filtering, total variation smoothing
and non-local including dictionary-based methods [BCM05,EA06,
CCC∗10, Mai10, Ela10].

More recently, to address the limitations mentioned above, and
inspired by the success of deep learning for other tasks, several
learning-based denoising methods have also been proposed for both
images [ZZC∗17, ZZGZ17, JMFU17] and more recently meshes
[WLT16, BBZ∗18], among others. These methods are especially
attractive, since rather than relying on setting parameters, they al-
low the method to learn the correct model from data and adapt for
the correct noise setting at test time, without any user intervention.
In signal processing literature, it is widely believed that image de-
noising has reached close to optimal performance [CM10, LN11].
One of our main motivations is therefore to show the applicability
of this general idea, and especaially the supervised approaches such
as [WLT16], that learn them from a set of noisy meshes and their
ground-truth counterparts, to the setting of 3D point clouds.

Learning in Point Clouds. Learning-based approaches, and es-
pecially those based on deep learning, have recently attracted a lot
of attention in the context of Geometric Data Analysis, with several
methods proposed specifically to handle point cloud data, including
PointNet [QSMG17] and several extensions such as PointNet++
[QYSG17] and Dynamic Graph CNNs [WSL∗18] for shape seg-
mentation and classification, PCPNet [GKOM18] for normal and
curvature estimation, P2P-Net [YHCOZ18] and PU-Net [YLF∗18]
for cross-domain point cloud transformation and upsampling re-
spectively. Other, convolution-based architectures have also been
used for point-based filtering, including most prominently the re-
cent PointProNet architecture [RÖPG18], designed for consolidat-
ing input patches, represented via height maps with respect to a
local frame, into a single clean point set, which can be used for
surface reconstruction. Although such an approach has the advan-
tage of leveraging image-based denoising solutions, error creeps in

in the local normal estimation stage, especially in the presence of
noise and outliers.

Unlike these techniques, our goal is to train a general-purpose
method for removing outliers and denoising point clouds, corrupted
with potentially very high levels of structured noise. For this, in-
spired by the success of PCPNet [GKOM18] for normal and cur-
vature estimation, we propose a simple framework aimed at learn-
ing to both classify outliers and to displace noisy point clouds by
applying an adapted architecture to point cloud patches. We show
through extensive experimental evaluation that our approach can
handle a wide range of artefacts, while being applicable to dense
point clouds, without any user intervention.

3. Overview

As a first step in digitizing a 3D object, we usually obtain a set
of approximate point samples of the scanned surfaces. This point
cloud is typically an intermediate result used for further process-
ing, for example to reconstruct a mesh or to analyze properties of
the scanned object. The quality of these downstream applications
depends heavily on the quality of the point cloud. In real-world
scans, however, the point cloud is usually degraded by an unknown
amount of outliers and noise. We assume the following point cloud
formation model:

P′ = {p′i}= {pi +ni}pi∈P ∪ {o j}o j∈O, (1)

where P′ is the observed noisy point cloud, P are perfect surface
samples (i.e., pi ∈ S lying on the scanned surface S), ni is addi-
tive noise, and O is the set of outlier points. We do not make any
assumptions about the noise model n or the outlier model O. The
goal of our work is to take the low-quality point cloud P′ as input,
and output a higher quality point cloud closer to P, that is better
suited for further processing. We refer to this process as cleaning.
We split the cleaning into two steps: first we remove outliers, fol-
lowed by an esimation of per-point displacement vectors that de-
noise the remaining points:

P̃= {p′i +di}p′i∈P′\Õ, (2)

where P̃ is the output point cloud, d are the displacement vectors
and Õ the outliers estimated by our method. We first discuss our
design choices regarding the desirable properties of the resulting
point cloud and then how we achieve them.

Approach. Traditional statistical scan cleaning approaches typi-
cally make assumptions about the scanned surfaces or the noise
model, which need to be manually tuned by the user to fit a given
setting. This precludes the use of these methods by non-expert users
or in casual settings. One desirable property of any cleaning ap-
proach is therefore robustness to a wide range of conditions with-
out the need for manual parameter tuning. Recently, deep learning
approaches applied to point clouds [QSMG17,QYSG17,WSL∗18,
GKOM18] have shown a remarkable increase in robustness com-
pared to earlier hand-crafted approaches. Most of these methods
perform a global analysis of the point cloud and produce output
that depends on the whole point cloud. This is necessary for global
properties such as the semantic class, but is less suited for tasks that
only depend on local neighborhoods; processing the entire point
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cloud simultaneously is a more challenging problem, since the net-
work needs to handle a much larger variety of shapes compared to
working with small local patches, requiring more training shapes
and more network capacity. Additionally, processing dense point
clouds becomes more difficult, due to high memory complexity. In
settings such as ours, local methods such as PCPNet [GKOM18]
perform better. Both steps of our approach are based on the net-
work architecture described in this method, due to its relative sim-
plicity and competitive performance. We adapt this architecture to
our setting (Section 4) and train it to perform outlier classification
and denoising.

While our cleaning task is mainly a local problem, the estimated
displacement vectors d need to be consistent across neighborhoods
in order to achieve a smooth surface. With a local approach such
as PCPNet, each local estimate is computed separately based on a
different local patch. The difference in local neighborhoods causes
inconsistencies between neighboring estimates that can be seen as
residual noise in the result (see Figure 3). We therefore need a
method to coordinate neighboring results. We observed that the
amount of difference in local neighborhoods between neighboring
estimates correlates with the noise model. Thus, the resulting resid-
ual noise has a similar noise model as the original noise, but with
a smaller magnitude. This means we can iterate our network on the
residual noise to keep improving our estimates. See Figure 2 for
an overview of the full denoising approach. We will provide exten-
sive experiments with different numbers of denoising iterations in
Section 6.

Desirable properties of a point cloud. The two stages (i.e., out-
lier classification and denoising) of our method use different loss
functions. The properties of our denoised point cloud are largely
determined by these loss functions. Thus, we need to design them
such that their optimium is a point cloud that has all desirable prop-
erties. We identify two key desirable properties: First, all points
should be as close as possible to the original scanned surface. Sec-
ond, the points should be distributed as regularly as possible on
the surface. Note that we do not want the denoised points to ex-
actly undo the additive noise and approximate the original perfect
surface samples, since the component of the additive noise that is
tangent to the surface cannot be recovered from the noisy point
cloud. Section 5 describes our loss functions, and in Section 6, we
compare several alternative loss functions.

4. Cleaning Model

As mentioned above, our goal is to take a noisy point cloud P′ and
produce a cleaned point cloud P̃ that is closer to the unknown sur-
face that produced the noisy samples. We treat denoising as a local
problem: the result for each point p′i ∈ P′ only depends on a local
neighborhood P′i of radius r around the point. Focusing on local
neighborhoods allows us to handle dense point clouds without los-
ing local detail. Increasing the locality (or scale) radius r provides
more information about the point cloud, at the cost of reducing the
capacity available for local details. Unlike traditional analytic de-
noising approaches, a single neighborhood setting is robust to a
wide range of noise settings, as we will demonstrate in Section 6.
In all of our experiments we set r to 5% of the point cloud’s bound-
ing box diagonal.

We assume the point cloud formation model described in Equa-
tion (1), i.e., the noisy point cloud consists of surface samples with
added noise and outliers. We then proceed in two stages: first, we
train a non-linear function g that removes outliers:

õi = g(P′i),

where õi is the estimated probability that point p′i is an outlier. We
add a point to the set of estimated outliers Õ if õi > 0.5. After
removing the outliers, we obtain the point cloud P̂ = P′ \ Õ. We
proceed by defining a function f that estimates displacements for
these remaining points to move them closer to the unknown surface:

di = f (P̂i).

The final denoised points are obtained by adding the estimated dis-
placements to the remaining noisy points: p̃i = p̂i +di. Both f and
g are modeled as deep neural networks with a PCPNet-based ar-
chitecture. We next provide a short overview of PCPNet before de-
scribing our modifications.

A major challenge when applying deep learning methods di-
rectly to point clouds is achieving invariance to the permutation of
the points: all permutations should produce the same result. Train-
ing a network to learn this invariance is difficult due to the expo-
nential number of such permutations. As a solution to this prob-
lem, PointNet [QSMG17] proposes a network architecture that is
order-invariant by design. However, PointNet is a global method,
processing the whole point cloud in one forward iteration of the
network. This results in a degraded performance for shape details.
PCPNet [GKOM18] was proposed as a local variant of PointNet
that is applied to local patches, gives better results for shape de-
tails, and is applicable to dense point clouds, possibly containing
millions of points. We base our denoising architecture on PCPNet.

Creating a local patch. Given a point cloud P= {p1, . . . , pn}, the
local patch Pi contains all the points within the constant radius r
inside a ball centered around pi. Using this patch as input, we want
to compute the outlier probability õi and a displacement vector di,
for the remaining non-outlier points. We first normalize this patch
by centering it and scaling it to unit size. The PCPNet architecture
requires patches to have a fixed number of points; like in the origi-
nal paper, we pad patches with too few points with zeros and take a
random subset from patches with too many points. Intuitively, this
step, makes the network more robust to additional points.

Network architecture. An overview of our network architecture
is shown in Figure 2. Given the normalized local patch Pi, the net-
work first applies a spatial transformer network [JSZ∗15] that is
constrained to rotations, called a quaternion spatial transformer net-
work (QSTN). This is a small sub-network that learns to rotate the
patch to a canonical orientation (note that this estimation implicitly
learns to be robust to outliers and noise, similar to robust statisti-
cal estimation). At the end of the pipeline, the final estimated dis-
placement vectors are rotated back from the canonical orientation
to world space. The remainder of the network is divided into three
main parts:

• a feature extractor h(p) that is applied to each point in the patch
separately,
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Figure 2: Our two-stage point cloud cleaning architecture. (Top) Given a noisy point cloud P′, we first apply a local outlier detection network
that uses an architecture based on PointNet [QSMG17] and PCPNet [GKOM18] to detect and remove outliers to obtain P̂ (bottom). We then
apply a second network, with a similar architecture, but a different loss, aimed at reducing the noise level in P̂ by estimating correcting
displacement vectors, which results in the denoised point cloud P̃. FNN and (Q)STN stand for fully connected and (Quaternion) Spatial
Transformer networks [JSZ∗15], similar to their definition and use in PCPNet [GKOM18].

• a symmetric operation H(Pi) = ∑p j∈Pi
h(p j) that combines the

computed features for each point into an order-invariant feature
vector for the patch, and
• a regressor that estimates the desired properties di and õi from

the feature vector of the patch.

Following the original design of PointNet [QSMG17], the feature
extractor is implemented with a multi-layer perceptron that is ap-
plied to each point separately, but shares weights between points.
Computing the features separately for each point ensures that they
are invariant to the ordering of the points. The feature extractor also
applies an additional spatial transformer network to intermediate
point features.

In our implementation, we add skip connections to the multi-
layer perceptrons, similar to ResNet blocks. Empirically, we found
this to help with gradient propagation and improve training perfor-
mance. The regressor is also implemented with a multi-layer per-
ceptron. Similar to the feature extractor, we add skip connections
to help gradient propagation and improve training performance. We
use the same network width as in the original PCPNet (please re-
fer to the original paper for details). However, the network is two
times deeper as we replace the original layers with two layers Res-
Blocks. This architecture is used to compute both outlier indicators
and displacement vectors. We change the number of channels of
the last regressor layer to fit the size of the desired output (1 for
outlier indicators and 3 for displacement vectors).

Importantly, for a each point pi in the point cloud, we compute its
local neighborhood Pi and only estimate the outlier probability and
displacement vector for the center point pi, i.e., we do not estimate

outlier probabilities or displacement vectors for other points in the
patch. Thus, each point in the original point cloud is processed in-
dependently by considering its own neighborhood and indirectly
gets coupled by the iterative cleaning, as described next.

Iterative cleaning. At test time, after applying the displacement
vectors computed from a single iteration of the architecture, we are
left with residual noise. The residual error vectors from denoised
points p̃i to the target surface that are introduced by our method do
not vary smoothly over the denoised points. Empirically, we found
that this residual noise has a similar type, but a lower magnitude
than the original noisy points. Intuitively, this can be explained by

estimated displacements d
noisy points P’
denoised points P ~

local neighborhood

original surface

Figure 3: Residual noise. Different local neighborhoods for adja-
cent denoised points cause slightly different results, which can be
seen as residual noise in the denoised points. Iterating the denois-
ing approach improves the results.
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looking at the content of input patches for points that are neighbors
in the denoised point cloud. As shown in Figure 3, input patches
that are far apart have different content, resulting in different net-
work predictions, while patches that are close together have similar
content, and similar predictions. The distance of these input patches
correlates with the noise model and the noise magnitude, therefore
the network predictions, and the denoised points, are likely to have
noise of a similar type, but a lower magnitude than the original
noisy points. This allows us to iterate our denoising approach to
continue improving the denoised points.

In practice, we observed shrinking of the point cloud after sev-
eral iterations. To counteract this shrinking, we apply an inflation
step after each iteration, inspired by Taubin smoothing [Tau95]:

d′i = di−1/k ∑
p j∈N(pi)

d j, (3)

where d′i are the corrected displacements vectors and N(pi) are the
k nearest neighbours of point pi, we set k = 100. Note that this step
approximately removes the low-frequency component from the es-
timated displacements.

5. Training Setup

To train the denoising model, we use a dataset of paired noisy point
clouds and corresponding clean ground truth point clouds. We do
not need to know the exact correspondences of points in a pair,
but we assume we do know the ground truth outlier label for each
noisy point. Using a point cloud as ground truth instead of a surface
description makes it easier to obtain training data. For example,
a ground truth point cloud can be obtained from a higher-quality
scan of the same scene the noisy point cloud was obtained from.
Since we work with local patches instead of entire point clouds, we
can train with relatively few shapes. To handle different noise mag-
nitudes, and to enable our iterative denoising approach, we train
with multiple noise levels. This includes several training examples
with zero noise magnitude, which trains the network to preserve the
shape of point clouds without noise.

Loss function. Choosing a good loss function is critical, as this
choice has direct impact on the properties of the cleaned point
clouds. For the outlier removal phase, we use the L1 distance be-
tween the estimated outlier labels and the ground truth outlier la-
bels:

Lo(p̃i, pi) = ‖õi−oi‖1, (4)

where õi is the estimated outlier probability and oi is the ground
truth label. We also experimented with the binary cross-entropy
loss, but found the L1 loss to perform better, in practice.

In the denoising setting, designing the loss function is less
straight-forward. Two properties we would like our denoised point
clouds to have are proximity of the points to the scanned surface,
and a regular distribution of the points over the surface. Assuming
the ground truth point cloud has both of these properties, a straight-
forward choice for the loss would be the L2 distance between the
cleaned and the ground truth point cloud:

Lc(p̃i, pi) = ‖p̃i− pi‖2
2, (5)

Figure 4: Alternate loss functions that result in comparatively
worse performance (see Figure 12). Dotted green line denotes the
underlying scanned surface, orange points denote original points,
and blue points denote the noisy points. The error function Lc (top)
tries to learn denoising as denoised points p̃i going back to the
original ground truth points pi; while, the error function Lb tries to
learn denoising as denoised points p̃i going to the closest point in
the cleaned point set P, i.e., NN(p′i ,P).

where p̃i and pi are corresponding cleaned and ground truth points
in a patch. Note that, for simplicity of notation, we have unrolled
the displacement vector expressions directly in terms of point co-
ordinates. However, this assumes knowledge of a point-wise cor-
respondence between the point clouds; and even if the correspon-
dence is known, we can in general not recover the component of
the additive noise that is tangent to the surface. The minimizer of
this loss is therefore an average between all potential candidates the
noisy point may have originated from. This average will in general
not lie on the surface, and lead to poor overall performance. Fig-
ure 4, top, illustrates this baseline loss. Fortunately, we do not need
to exactly undo the additive noise. There is a large space of possible
point clouds that satisfy the desired properties to the same degree
as the ground truth point cloud, or even more so.

We propose a main loss function and an alternative with a
slightly inferior performance, but simpler and more efficient for-
mulation. The main loss function has one term for each of the two
properties we would like to achieve: Proximity to the surface can be
approximated as the distance of each denoised point to its nearest
neighbour in the ground truth point cloud:

Ls(p̃i,P p̃i) = min
p j∈Pp̃i

‖p̃i− p j‖2
2. (6)

For efficiency, we restrict the nearest neighbor search to the lo-
cal patch Pp̃i of ground truth points centered at p̃i. Originally, we
experimented with only this loss function, but noticed a filament
structures forming on the surface after several denoising iterations,
as shown in Figure 5. Since the points are only constrained to lie on
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Figure 5: Omitting the regularity term from the loss causes the
points to cluster into filament structures on the surface after mul-
tiple iterations (left). Compare to results with the regularity term
(center) and the ground truth point cloud (right).

the surface, there are multiple displacement vectors that bring them
equally close to the surface. In multiple iterations, the points drift
tangent to the surface, forming clusters. To achieve a more regular
distribution on the surface, we introduce a regularization term:

Lr(p̃i,Pp̃i) = max
p j∈Pp̃i

‖p̃i− p j‖2
2. (7)

By minimizing this term, we minimize the squared distance to
the farthest point in the local patch P p̃i . Intuitively, this keeps the
cleaned point centered in the patch and discourages a drift of the
point tangent to the surface. Assuming the noisy point clouds are
approximately regularly distributed, this results in a regular distri-
bution of the cleaned points since, in this case Eq. 7 promotes the
clean point to lie in the barycenter of the points in its patch. With
this term, we want to avoid the excessive clustering of points (for
example, into filament structures), which is especially important
when applying our approach iteratively. The full loss function is a
weighted combination of the two loss terms:

La = α Ls +(1−α) Lr. (8)

Since the second term can be seen as a regularization, we set α to
0.99 in our experiments.

Importantly, the loss defined in Eq. (8) depends on the current
point cloud, so that the point searches in Equations (6) and (7) need
to be updated in every training epoch. Alternatively, these target
points can be fixed. Thus, our alternative loss function uses an ex-
plicit ground truth for the cleaned point that can be precomputed:

Lb(p̃i, p′i ,P) = ‖ p̃i−NN(p′i ,P)‖2
2, (9)

where NN(p′i ,P) is the closest point to the initial noisy point p′i (be-
fore denoising) in the ground truth point set P. Figure 4, bottom, il-
lustrates this loss. Since both p′i and the ground truth point cloud are
constant during training, this mapping can be precomputed, making
this loss function more efficient and easier to implement. Addition-
ally, the fixed target prevents the points from drifting tangent to the
surface. However, this loss constrains the network more than La
and we observed a slightly lower performance.

For the outlier removal network we use a learning rate of

Figure 6: The shapes used for the POINTCLEANNET training and
test sets.

10−4 and uniform Kaiming initialization [HZRS15] of the net-
work weights. When training the denoising network, we observed
that network weights converge to relatively small values. To help
convergence, we lower the intial values of the weights to uniform
random values in [−0.001,0.001] and decrease the learning rate to
10−8. This improves convergence speed for the denoising network
and lowers the converged error.

5.1. Relation to PCPNet

While being directly based on PCPNet [GKOM18], our approach
has several characteristics, specifically adapted to the point cloud
denoising and outlier detection problem:

Loss. We use an adapted loss, summarized in Eq. (6) and (7),
which, importantly, not only includes a regularization via the dis-
tance to the farthest point, but is also updated at every training it-
eration, through the change of the corresponding points. We have
experimented with several alternatives such as the loss described in
Eq. (9) and found them to perform consistently worse than ours.

Iterative deep network. Importantly, we apply our network iter-
atively for improved noise reduction. While perhaps non-standard,
this results in very significant improvement in our setting. More-
over, we found that a straightforward implementation might not
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Figure 7: Qualitative comparison to the state-of-the-art. We compare simple shapes in the top row and increase shape complexity towards
the bottom. DGCNN can only handle small point clouds, thus we use a sparser sampling for this method. Colors illustrate the denoising
error, we use the distance-to-surface for each denoised point.

converge, while with the proper loss and with an inflation term,
the network can both stabilize and achieve higher accuracy.

Practical applicability. Finally, we remark that POINTCLEAN-
NET, as a specialized adaptation of an existing network, both sim-
plifies its integration in practice and establishes its applicability for
point cloud denoising and outlier removal.

6. Results

We first describe our dataset and evaluation metric in Sections 6.1
and 6.2. Based on this dataset and metric, we compare the de-
noising performance (Sec. 6.3) and the outlier detection perfor-
mance (Sec. 6.4) of our method to several baselines and state-of-
the-art methods, including the recent learning-based approaches
PointProNets [RÖPG18] and an adapted version of Dynamic
Graph CNNs [WSL∗18] among others. Experiments on additional
datasets with different noise distributions, including simulations of
non-uniform scanner noise, and noise from real world scans are
presented in Section 6.5.

6.1. Datasets

Our main dataset contains 28 different shapes, which we split into
18 training shapes and 10 test shapes. See Figure 6 for a gallery

of all shapes. From the original triangle meshes of each shape, we
sample 100K points, uniformly at random on the surface, to gener-
ate a clean point cloud.

For the denoising task, noisy point clouds are generated by
adding Gaussian noise with the standard deviation of 0.25%, 0.5%,
1%, 1.5% and 2.5% of the original shape’s bounding box diagonal.
In total, the denoising training set contains 108 shape variations,
arising from 6 levels of noise (including the clean points) for each
of the 18 shapes.

For the outlier removal task, we use the same training and test
shapes, however we use only clean point clouds and with a larger
sample count of 140k points per shape. To generate outliers, we
added Gaussian noise with standard deviation of 20% of the shape’s
bounding box diagonal to a random subset of points. The training
set contains point clouds with proportions starting at 10% until 90%
in intervals of 10% of the points converted to outliers. Only the out-
liers that are farther from the surface than the standard deviation of
the noise distribution are selected. In total, the outlier removal train-
ing set contains 432 example shapes, arising from 6 outlier densi-
ties and 4 levels of noise for each of the 18 training shapes. The
test set contains point clouds with 30% of outliers points. To test
the generality of our outlier removal, we added a second method to
generate outliers to our test set only. In this setting, outliers are dis-
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Figure 8: Quantitative comparison. We compare the performance of our model to jet smoothing [CP05], edge-aware denoising [HWG∗13],
the bilateral point cloud filter by Digne et al. [DDF17], Dynamic Graph CNNs [WSL∗18], and PointProNets [RÖPG18]. The two plots on
the left are evaluated on our test set without outliers, the two following plots compare the outlier removal performance using the f1 and the
f2 scores, and the right-most plot shows the denoising performance after outlier removal.

tributed uniformly inside the shape’s bounding box that has been
scaled up by 10%.

In Section 6.5 we also evaluate our method on point clouds gen-
erated with alternative methods, including simulated non-uniform
noise and noise from real real acquisition devices.

POINTCLEANNET training datasets for denoising and outlier re-
moval are available on our project page.

6.2. Evaluation Metric

The evaluation metric should be sensitive to the desired properties
of the point cloud described earlier: point clouds should be close
to the surface and have an approximately regular distribution. If we
assume the ground truth point clouds have a regular distribution, the
following Chamfer measure [FSG17, ADMG18], a variant of the
Chamfer distance [BTBW77], measures both of these properties:

c(P̃,P) = 1
N ∑

pi∈P̃
min
p j∈P
‖pi− p j‖2

2 +
1
M ∑

p j∈P
min
pi∈P̃
‖p j− pi‖2

2.

Here N and M are the cardinalities of the cleaned P̃ and ground
truth P point clouds, respectively. Note that the first term measures
an approximate distance from each cleaned point to the target sur-
face, while the second term intuitively rewards an even coverage
of the target surface and penalizes gaps. All our point clouds are
scale-normalized to have a unit bounding box diagonal, making the
point distances comparable for different shapes.

For a dataset with simulated scanner noise that we will describe
in Section 6.5, the clean point set has a non-uniform point distribu-
tion. For this dataset we use only the root mean square distance-to-
surface (RMSD) of each point as evaluation metric:

d(P̃,P) =
√

1
N ∑

pi∈P̃
min
p j∈P
‖pi− p j‖2

2).

6.3. Evaluating Denoising

We first evaluate the denoising task alone, without outlier removal.
We compare the results of our method on different noise levels to
several state-of-the-art techniques for point cloud denoising.

We first consider a qualitative evaluation of our results in Fig-
ure 7, showing the denoised point clouds for four different input
noisy point clouds (Icosahedron, Star smooth, Netsuke, Happy)
with two different noise intensities, 1% and 2.5% of the original
shape bounding box diagonal. The distances from each of the de-
noised points to the ground truth surface are color-coded. In the
same figure, we can also compare the performance of our method
to other successful algorithms.

We compare against five other methods, as described next. It is
important to note that in most of these methods, it is necessary to
tune some parameters, such as the neighborhood size, to adjust to
the different noise levels, while our method works across all noise
levels with the same hyper-parameters. When applicable, we man-
ually adjusted parameters for best performance. Also, in some al-
gorithms, we allowed multiple parameter settings (small, medium,
large) to handle different levels of noise.

(i) Polynomial fitting with osculating jets [CP05, CP07]: Oscu-
lating jet-fitting performs well if the right neighborhood size
is chosen for the given noise level. Otherwise, neighborhood
sizes that are too small overfit to strong noise (Figure 7, first
row), and neighborhood sizes that are too large do not pre-
serve detailed features (Figure 7, second and fourth row).

(ii) Edge-aware point set resampling [HWG∗13]: Edge-aware
point set resampling has larger errors near detailed features
(Figure 7, third and fourth row), while obtaining good results
near sharp edges, like the edges of the icosahedron.

(iii) Bilateral filtering for point clouds [DDF17]: bilateral filtering
performs poorly in strong noise settings (Figure 7, first two
rows).

(iv) Dynamic Graph CNN (DGCNN) [WSL∗18]: Note that Dy-
namic Graph CNNs were not designed for local operations,
such as denoising. We modify the segmentation variant of this
method to output a displacement vector per point instead of
class probabilities. For the loss, the displacements are added
to the original points and the result is compared to the target
point cloud using the same Chamfer measure used as the er-
ror metric in our evaluation. Since the whole point cloud is
processed in a single go, we need to heavily sub-sample our
dense point clouds before using them as input for DGCNN.
We also restrict DGCNN to a single iteration as we found the
result set to diverge over iterations. Similar to bilateral filter-
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Figure 9: Example input outlier and noise corrupted pointclouds (top) and their corresponding cleaned output (bottom) produced by POINT-
CLEANNET. From left to right: torch, scarecrow, tanks-and-temple, galera, dragon, cylinder. The left two examples are corrupted with
real-world scanning noise and outliers, the other examples with synthetic noise and outliers.

ing, DGCNN also performs poorly in strong noise settings
(Figure 7, first two rows).

(v) PointProNets [RÖPG18]: PointProNets requires oriented nor-
mals during training. Where available, these are obtained
from the ground truth source meshes, or estimated with
PCPNet [GKOM18] otherwise. Differently from the original
method, we also use ground truth normals to orient the pre-
dicted height maps, instead of trying to estimate an orienta-
tion, as we found the in-network estimation used in the origi-
nal method to be unstable for our datasets. Note that this pro-
vides an upper bound for the performance of PointProNets.
The denoised patches do not accurately reconstruct detailed
surfaces, presumably due to the smoothing effect of the image
convolutions, and suffer from artefacts caused by the smooth-
ing of the height map at the boundaries of a patch.

In contrast, our method works on local patches directly in the
point domain, can apply several iterations of denoising to improve
results, and is robust to a large range of noise levels with the same
choice of hyper-parameters. This results in lower residual error, es-
pecially in detailed surface regions.

We also present quantitative comparisons that summarize the
performance of each method on the entire dataset. The previously
described Chamfer measure is used as evaluation metric that cap-
tures both the distance from denoised points to the ground truth sur-
face and the regularity of the points. Results are shown in Figure 8
left (without outlier removal). We can observe that POINTCLEAN-
NET performs noticeably better under mid to high noise level and
using multiple iterations compared to all the other methods. The
performance of our method is also more stable to changes in noise
levels, while most other methods perform well only for a specific
level of noise.

Comparison to the alternative loss. As shown in Figure 12, our
alternative loss performs slightly worse than our main loss. How-
ever, it is more efficient and easier to implement, so the choice of
loss function depends on the setting.

6.4. Evaluating Outlier Removal

Figure 8 shows the performance of our outlier removal method
(right). For the purpose of cleaning dense data, a model should pri-
oritize classifying outlier points correctly (true positives) over lim-
iting the number of false positives. Therefore we consider that re-
call has more importance than precision for this task. The Fβ score
conveys the balance between recall and precision. Plots 3 and 4
compare our method to jet-fitting [CP05] using F1 and F2 scores.
We observe that when recall and precision are weighted equally,
our method has the best performance when removing outliers on
clean point clouds while remaining effective on the other noise lev-
els. POINTCLEANNET performs the best for all noise levels when
using F2 score which gives larger weight to recall.

The last plot in Figure 8 compares our approach to jet-fitting and
edge-aware filtering [HWG∗13] with both outlier removal and de-
noising on the test set. In this experiment, we first removed outliers
using an outlier classification technique and then denoised the point
clouds from our test set. We show the results for different noise lev-
els from zero to 2.5% of the shape bounding box diagonal. Finally,
we make two observations: first, POINTCLEANNET outperforms
edge-aware and jet-fitting techniques with outlier removal and de-
noising on medium to large noise levels; and second, on smaller
noise levels, our model still outperforms a few of the different tun-
ing variations of the related techniques. Recall that our model does
not require parameter tuning by the user.

Figure 10 also shows qualitative results for outlier removal on
our test set compared to the related techniques mentioned before.
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Figure 10: Qualitative comparison on our outlier test set. Here the task is to remove points that are not part of the original surface. Note
that that analytic methods with a large setting for the radius (third column) fail to remove outliers hidden inside small details, such as the
arms of the statue, while a smaller setting (second column) results in a lot of residual noise. Since POINTCLEANNET can learn to adapt to
the feature to produce a result with less noise.

We observe that edge-aware filtering performs worse around highly
detailed regions and edges, while jet-fitting does not manage to
clean the remaining outliers at scattered points. The result high-
lights the consistent performance of POINTCLEANNET across dif-
ferent shapes and varying level of details, contrary to the other
methods which produce less consistent distances to the underlying
ground truth shapes.

6.5. Performance under Different Noise Types

6.5.1. Directional noise

We evaluated POINTCLEANNET on a synthetic dataset simulat-
ing 3D data acquisition via depth cameras. To do so we created a
dataset with structured noise levels to simulate depth uncertainty
of depth reconstructions. Specifically, we added noise using an
anisotropic Gaussian distribution with constant covariance matrix
aligned along the scanning direction. The results are shown in Fig-
ure 11. Note that our network was not retrained for this specific
model.

In this setting, the non-data-driven methods, such as jet-fitting
and edge-aware filtering, perform well since they are not special-

ized to any noise model. Even though our method was never trained
on this type of noise, it still performs on par with the best methods
on low to medium noise settings, and is only outperformed on high
noise settings by non-data-driven methods with parameters tuned
for the given noise strength.

6.5.2. Structured noise

We evaluated our method on a simulated LIDAR dataset (Velo-
dyne) generated using BlenSor [GKUP11], which models various
types of range scanners. We chose to simulate a rotating LIDAR, in
particular a Velodyne HDL-64E scanner. BlenSor implements two
types of sensor specific error for this scanner: first, a distance bias
for each laser unit; and second, a per-ray Gaussian noise. The dif-
ferent effects of the noise types can be observed in Figure 13. We
use the shapes in POINTCLEANNET dataset for this experiment.
After being normalized, each shape is scanned from θ ∈ [0◦,180◦]
with distance bias with standard deviation 0%, 0.5% and 1% and a
per-ray noise of standard deviation 0%, 0.5% and 1%.

Quantitative numbers are presented in Table 1. Here, we use the
distance to the surface instead of the Chamfer measure, since this
type of scanner naturally produces non-uniform point clouds (even
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Figure 11: Qualitative comparison on the directional noise test set. We show that POINTCLEANNET can adapt to different kinds of noise
models. Here we added anisotropic noise to the shapes. Qualitative results are o the left, and quantitative plots of the absolute and relative
Chamfer measure over different noise levels on the right. Even though our method was not trained on isotropic noise only, it still performs
on par with the state of the art on low and medium noise levels.

Figure 12: Comparison of our two-term loss La with the alterna-
tive loss Lb and the baseline loss Lc. Our loss results gives large
benefits over the baseline loss, and performs somewhat better than
the alternative loss as well, due to being less constrained.

Figure 13: Simulated noise of a Velodyne HDL-64E scanner. Here
we show an example of the two noise types introduced by this scan-
ner: distance bias (db) adds an error to the depth of scan lines,
while ray noise (rn) adds an error to the depth of each point. Note
that the points in the ground truth (left) are not distributed uni-
formly, so we use the distance of each point to the surface as error
measure for experiments with this dataset.

Table 1: Comparison with state-of-the-art methods on the Velo-
dyne datasets. We show the root mean square distance-to-surface
(RMSD) for each method. The first column evaluates the methods
on a dataset with only distance bias as noise and the second column
with added per-ray noise (see Figure 13 for examples of the noise
types). PointProNets was re-trained on the dataset, and for our
method we show both a re-trained version, and a version trained
on the original dataset (Section 6.1).

Velodyne (db) Velodyne (db+rn)
jet small 5.46 5.78
jet medium 4.91 5.18
jet large 9.68 9.67
edge-aware small 5.50 6.36
edge-aware med. 5.48 5.77
edge-aware large 11.31 11.53
bilateral 4.53 4.99
PointProNets 17.47 22.02
ours 5.83 7.03
ours retrained 4.07 4.27

in the ground truth). In bold, we highlight the two best perform-
ing methods. We evaluate two versions of our method: one ver-
sion trained on the unstructured noise described in Section 6.1, and
one version re-trained on the Velodyne dataset. The retrained ver-
sion significantly outperforms all other methods, while the non-
retrained version still performs competitively. In Figure 15, we
show a qualitative evaluation of our results compared to the two
other best performing methods. We show the denoised scans for
two shapes: cylinder and dragon, with distance bias (first two rows)
and with distance bias and per-ray noise (last two rows). Both jet
and bilateral methods preserve an amount of structured noise (see
the cylinder shape). Jet medium produces artefact points in areas of
high details especially on the dragon shape.
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Figure 14: Qualitative comparison of the three best performing methods on the Kinect v1 dataset. For each shape, we compare a Poisson
reconstruction and the normalized distance to the ground truth surface of the denoised point sets computed by each method.
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Table 2 and Figure 14 evaluate our model on the Kinect v1
dataset introduced in [WLT16]. We trained the model on the scans
of the shapes David, big-girl and pyramid from this dataset, and
tested on a subset of the scans from boy, girl and cone with a ra-
dius of 2.5% of the shapes’ bounding box diagonals. Our trained
network achieves the best performance. In Figure 14, we show
the Poisson reconstructions [KH13] and distances from the ground
truth for the three best performing methods: jet medium, bilateral
and ours. The normals where computed using the normal estima-
tion tool from Meshlab. Note that jet-fitting method tends to pre-
serve the structured noise while the bilateral method tends to over-
smooth shape. We also retrained POINTCLEANNET on the Kinect
v2 dataset described in [WLT16]. As shown in Table 2 our method
performs well compared to other methods.

6.5.3. Generalization to real-world data.

Figure 1 and the first two results in Figure 9 (left) show the re-
sult of our approach on real data obtained with the plane swift al-
gorithm [WKZ∗16], an image-based 3D reconstruction technique.
Statue, torch, and scarecrow input point clouds each contain 1.4M
points. Since in this case no ground truth is available, we only
show the qualitative results obtained using our method. Note that
although trained on an entirely different dataset, POINTCLEAN-
NET still produces high quality results on this challenging real-
world data. The next three shapes in Figure 9 show results on other
external raw point clouds, while the last one shows a shape with
sharp edges.

7. Conclusion, Limitations and Future Work

We presented POINTCLEANNET, a learning-based framework that
consumes noisy point clouds and outputs clean ones by removing
outliers and denoising the remaining points with a displacement
back to the underlying (unknown) scanned surface. One key ad-
vantage of the proposed setup is the simplicity of using the frame-
work at test time as it neither requires additional parameters nor
noise/device specifications from the user. In our extensive evalu-
ation, we demonstrated that POINTCLEANNET consistently out-

Table 2: Comparison with state-of-the-art methods on the Kinect
v1 and Kinect v2 datasets. We show the chamfer measure for each
method. PointProNets was re-trained on each dataset, and for our
method we show both a re-trained version, and a version trained
on the original dataset (Section 6.1).

Kinect v1 Kinect v2
jet small 5.10 6.36
jet medium 4.69 6.16
jet large 5.40 8.63
edge-aware small 5.21 6.38
edge-aware med. 4.78 6.53
edge-aware large 6.85 13.10
bilateral 4.72 6.04
PointProNets 7.39 12.81
ours 5.02 6.42
ours retrained 4.57 6.26

performs state-of-the-art denoising approaches (that were provided
with manually tuned parameters) on a range of models under var-
ious noise settings. Given its universality and ease of use, POINT-
CLEANNET can be readily integrated with any geometry process-
ing workflow that consumes raw point clouds. Note that in our
current framework, we still need paired noisy-clean data to train
POINTCLEANNET. An exciting future direction would be learn
denoising directly from unpaired data. As a supervised learning
method, our approach is also unlikely to succeed when noise char-
acteristics during training are very different from the ones of the
test data.

While we presented a first learning architecture to clean raw
point clouds directly, several future directions remain to be ex-
plored: (i) First, as a simple extension, we would like to combine
the outlier removal and denoising into a single network, rather than
two separate parts. (ii) Further, to increase efficiency, we would like
to investigate how to perform denoising at a patch-level rather than
per-point level. This would require designing a scheme to combine
denoising results from overlapping patches. (iii) Although POINT-
CLEANNET already produces a uniform point distribution on the
underlying surface if the noisy points are uniformly distributed, we
would like to investigate the effect of a specific uniformity term in
the loss function (similar to [YHCOZ18]) to also produce a uniform
distribution for non-uniform noisy points. The challenge, however,
would be to restrain the points to remain on the surface and not de-
viate off the underlying surface. (iv) Additionally, it would be inter-
esting to investigate how to allow the network to upsample points,
especially in regions with insufficient number of points, or to com-
bine it with existing upsampling methods such as [YLF∗18] This
would be akin to the ‘point spray’ function in more traditional point
cloud processing toolboxes. (v) Finally, we would like to investi-
gate how to train a point cloud cleanup network without requiring
paired noisy-clean point clouds in the training set. If successful,
this will enable directly handling noisy point clouds from arbitrary
scanning setups without requiring explicit noise model or examples
of denoised point clouds at training time. We plan to draw inspira-
tion from related unpaired image-translation tasks where genera-
tive adversarial setups that have been successfully used.
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Figure 15: Qualitative comparison with state-of-the-art methods on the Velodyne dataset. We display the normalized distance to the ground
truth surface. The two top rows are evaluated on a dataset with only distance bias as noise and the two bottom rows with added per-ray
noise. The simulated scanner noise has a high spatial correlation along the horizontal scan-lines, and lower correlation vertically across
scan-lines. In this setting, jet fitting introduces significant error in detailed surface regions, while bilateral denoising has high residual error
in the examples that have both noise types. POINTCLEANNET successfully learns the noise model, resulting in lower residual error.
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Appendix A:

Figure 15 shows a qualitative comparison with state-of-the-art
methods on the Velodyne dataset described in Section 6.5.2.
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