Optimization of Power System Stabilizers using BAT search algorithm

E.S. Ali

Electric Power and Machine Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

A R T I C L E I N F O

Keywords:
Power System Stabilizers
BAT search algorithm
Genetic Algorithm
Multimachine system
Power system stability
Low frequency oscillations

A B S T R A C T

A new metaheuristic method, the BAT search algorithm based on the echolocation behavior of bats is proposed in this paper for optimal design of Power System Stabilizers (PSSs) in a multimachine environment. The PSSs parameter tuning problem is converted to an optimization problem which is solved by BAT search algorithm. An eigenvalues based objective function involving the damping factor, and the damping ratio of the lightly damped electromechanical modes is considered for the PSSs design problem. The performance of the proposed BAT based PSSs (BATPSS) has been compared with Genetic Algorithm (GA) based PSSs (GAPSS) and the Conventional PSSs (CPSS) under various operating conditions and disturbances. The results of the proposed BATPSS are demonstrated through time domain analysis, eigenvalues and performance indices. Moreover, the results are presented to demonstrate the robustness of the proposed algorithm over the GA and conventional one.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

One problem that faces power systems is the low frequency oscillations arising due to disturbances. These oscillations may sustain and grow to cause system separation if no adequate damping is providing [1]. In analyzing and controlling the power system’s stability, two distinct types of system oscillations are recognized. One is referred to inter-area modes resulted from swinging one generation area with respect to other areas. The second one is associated with swinging of generators existed in one area against each other and is known as local mode [2,3]. Power System Stabilizer (PSS) is used to generate supplementary control signals for the excitation system in order to mitigate both types of oscillations [4].

In last few years, Artificial Intelligence (AI) techniques have been discussed in literatures to solve problems related to PSS design. Artificial Neural Network (ANN) for designing PSS is addressed in [5–8]. The ANN approach has its own merits and demerits. The performance of the system is improved by ANN based controller but, the main problem of this controller is the long training time, the selecting number of layers and the number of neurons in each layer. Another AI approach likes Fuzzy Logic Control (FLC) has received much attention in control applications. In contrast with the conventional techniques, FLC formulates the control action of a plant in terms of linguistic rules drawn from the behavior of a human operator rather than in terms of an algorithm synthesized from a model of the plant [9–15]. It offers the following merits: it does not require an accurate model of the plant; it can be designed on the basis of linguistic information obtained from the previous knowledge of the control system and gives better performance results than the conventional controllers. However, a hard work is inevitable to get the effective signals obtained from the previous knowledge of the control system and reduces their applicability. Another technique like pole shifting is illustrated in [24,25] to design PSS. However, this technique suffers from complexity of computational algorithm, heavy computational burden, memory storage problem and non-adaptive tuning under various system operating conditions and configurations. Also, this design approach assumes full state availability.

Recently, global optimization techniques have been applied to PSS design problem. Simulated Annealing (SA) is presented in [26] for optimal tuning of PSS but this technique might fail by getting trapped in one of the local optimal. Another heuristic technique like Tabu Search (TS) is introduced in [27–28] to design PSS. Despite this optimization method seems to be effective for the design problem, the efficiency is reduced by the use of highly epistatic objective functions, and the large number of parameters to be optimized. Also, it is time consuming method. Genetic Algorithm (GA) is developed in [29,30] for optimal design of PSS. Despite this optimization technique requires a very long run time...
depending on the size of the system under study. Also, it suffers from settings of algorithm parameters and gives rise to repeat revisiting of the same suboptimal solutions. A Particle Swarm Optimization (PSO) for the design of the PSS parameters is illustrated in [31]. However, PSO paves from the partial optimism, which causes the less exact at the regulation of its speed and the direction. Moreover, the algorithm cannot work out the problems of scattering and optimization. Furthermore, the algorithm suffers from slow convergence in refined search stage, weak local search ability and algorithm may lead to possible entrapment in local minimum solutions. A relatively newer evolutionary computation algorithm, called Bacteria Foraging (BF) scheme has been developed by [32] and further established recently by [33–39]. The BF algorithm depends on random search directions which may lead to delay in reaching the global solution. In order to overcome these drawbacks, a BAT search optimization algorithm is proposed in this paper.

A new metaheuristic algorithm known as BAT search algorithm, based on the echolocation behavior of bats, is proposed in this paper for the optimal design of PSS parameters. The problem of a robust PSS design is formulated as an objective optimization problem and BAT algorithm is used to handle it. The stabilizers are tuned to shift all electromechanical modes to a prescribed zone in the S-plane in such a way that the relative stability is confirmed. The effectiveness of the proposed BATPSS is tested on a multimachine power system under various operating conditions in comparison with GAPSS and CPSS through time domain analysis, eigenvalues and performance indices. Results evaluation show that the proposed algorithm attains good robust performance for suppressing the low frequency oscillations under various operating conditions and disturbances.

Mathematical problem formulation

Power system model

The complex nonlinear model related to n machines interconnected power system, can be formalized by a set of nonlinear differential equations as:

$$X = f(X, U)$$ \hspace{1cm} (1)

where X is the vector of the state variables and U is the vector of input variables. $X = [\delta, \omega, E_r, E_f, V_f]^T$ and U is the output signals of PSSs in this paper, δ and ω are the rotor angle and speed, respectively. Also, E_r, E_f and V_f are the internal, the field, and excitation voltages respectively.

The linearized incremental models around an equilibrium point are usually used in the design of PSS. Therefore, the state equation of a power system with m PSSs can be formed as:

$$\dot{X} = AX + BU$$ \hspace{1cm} (2)

where A is a $5n \times 5n$ matrix and equals $\partial f/\partial X$ while B is a $5n \times m$ matrix and equals $\partial f/\partial U$. Both A and B are estimated at a certain operating point. X is a $5n \times 1$ state vector and U is a $m \times 1$ input vector.

PSS controller structure

Power system utilities still prefer CPSS structure due to the ease of online tuning and the lack of assurance of the stability related to some adaptive or variable structure techniques. On the other hand, a comprehensive analysis of the effects of different CPSS parameters on the overall dynamic performance of the power system is investigated in [40]. It is shown that the appropriate selection of the CPSS parameters results in satisfactory performance during the system disturbances. The structure of the i^{th} PSS is given by:

$$\Delta U_i = K_i \frac{ST_w}{(1 + ST_{w})} \left[\frac{1 + ST_{2i}}{(1 + ST_{2i})} \right] \Delta \omega_i$$ \hspace{1cm} (3)

This structure consists of a gain, washout filter, a dynamic compensator and a limiter as it is shown in Fig. 1. The output signal is fed as a supplementary input signal, ΔU_i to the regulator of the excitation system. The input signal $\Delta \omega_i$ is the deviation in speed from the synchronous speed. The stabilizer gain K_i is used to determine the amount of damping to be injected. Then, a washout filter makes it just act against oscillations in the input signal to avoid steady state error in the terminal voltage. In addition, two lead–lag circuits are included to eliminate any delay between the excitation and the electric torque. The limiter is included to prevent the output signal of the PSS from driving the excitation system into heavy saturation.

Table 1

<table>
<thead>
<tr>
<th>Load condition for the system (in p.u.)</th>
<th>Light</th>
<th>Normal case</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>Q</td>
<td>P</td>
</tr>
<tr>
<td>Generator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>0.949</td>
<td>0.223</td>
<td>1.714</td>
</tr>
<tr>
<td>G2</td>
<td>1.00</td>
<td>-0.1933</td>
<td>1.630</td>
</tr>
<tr>
<td>G3</td>
<td>0.45</td>
<td>-0.2668</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Fig. 1. Block diagram of i^{th} PSS with excitation system.

Fig. 2. Multimachine test system.
Moreover, the block diagram of excitation system and PSS is shown in Fig. 1.

In this paper, the value of the washout time constant \(T_W \) is kept at 10 s, the values of time constants \(T_2 \) and \(T_4 \) are fixed at a reasonable value of 0.05 s. The stabilizer gain \(K_i \) and time constants \(T_1 \) and \(T_3 \) are remained to be determined.

Test system

In this paper, the three machine nine bus power system shown in Fig. 2 is considered. The system data in detail is given in [41]. Three different operating conditions are taken in consideration and named as light, normal, and heavy load to show the superiority of the proposed algorithm in designing robust PSS. The generator and loading level are given in Table 1 for these loading conditions.

Overview of BAT search algorithm

BAT search algorithm is an optimization algorithm inspired by the echolocation behavior of natural bats in locating their foods. It is introduced by Yang [42–45] and is used for solving various optimization problems. Each virtual bat in the initial population employs a homologous manner by performing echolocation way for updating its position. Bat echolocation is a perceptual system in which a series of loud ultrasound waves are released to create echoes. These waves are returned with delays and various sound
levels which qualify bats to discover a specific prey. Some rules are investigated to extend the structure of BAT algorithm and use the echolocation characteristics of bats [46–49].

(a) Each bat utilizes echolocation characteristics to classify between prey and barrier.
(b) Each bat flies randomly with velocity \(v_i \) at position \(x_i \) with a fixed frequency \(f_{\text{min}} \), varying wavelength \(\lambda \) and loudness \(L_0 \) to seek for prey. It regulates the frequency of its released pulse and adjust the rate of pulse release \(r \) in the range of \([0,1] \), relying on the closeness of its aim.
(c) Frequency, loudness and pulse released rate of each bat are varied.

(d) The loudness \(L_{\text{new}} \) changes from a large value \(L_0 \) to a minimum constant value \(L_{\text{min}} \).

The position \(x_i \) and velocity \(v_i \) of each bat should be defined and updated during the optimization process. The new solutions \(x_i^t \) and velocities \(v_i^t \) at time step \(t \) are performed by the following equations [50,51]:

\[
f_i = f_{\text{min}} + (f_{\text{max}} - f_{\text{min}})x
\]

\[
v_i^t = v_i^{t-1} + (x_i^t - x_i^t)f_i
\]

\[
x_i^t = x_i^{t-1} + v_i^t
\]

where \(x \) in the range of \([0,1] \) is a random vector drawn from a uniform distribution. \(x^* \) is the current global best location, which is achieved after comparing all the locations among all the \(n \) bats. As the product \(\lambda f_i \) is the velocity increment, one can consider either \(f_i \) (or \(\lambda \)) to set the velocity change while fixing the other factor. For implementation, every bat is randomly assigned a frequency which is drawn uniformly from \([f_{\text{min}}, f_{\text{max}}] \). For the local search, once a solution is chosen among the current best solutions, a new solution for each bat is generated locally using random walk.

\[
x_{\text{new}} = x_{\text{old}} + \epsilon \lambda^t
\]

where \(\epsilon \in [-1, 1] \) is a random number, while \(t \) is the mean loudness of all bats at this time step. As the loudness usually decreases once a bat has found its prey, while the rate of pulse emission increases, the loudness can be selected as any value of convenience. Assuming \(L_{\text{min}} = 0 \) means that a bat has just found the prey and temporarily stop emitting any sound, one has:

\[
L_{i+1}^t = \beta L_i^t, \quad r_{i+1}^t = r_i^t[1 - \exp(-\gamma t)]
\]

where \(\beta \) is constant in the range of \([0, 1] \) and \(\gamma \) is positive constant. As time reach infinity, the loudness tend to be zero, and \(r_i^t \) equal to \(r_i^0 \). The flow chart of BAT algorithm is shown in Fig. 3, and the parameters are given in appendix.

Objective function

To guarantee stability and attain greater damping to low frequency of oscillations, the parameters of the PSSs may be picked to minimize the following objective function:

\[
J_t = \sum_{j=1}^{n_p} \sum_{i \neq j} (\sigma_j - \sigma_i)^2 + \sum_{j=1}^{n_p} \sum_{i \neq j} (\zeta_j - \zeta_i)^2
\]

This will place the system closed loop eigenvalues in the D-shape sector characterized by \(\sigma_j \leq \sigma_i \) and \(\zeta_j > \zeta_i \) as shown in Fig. 4.

Where, \(n_p \) is the number of operating points investigated in the design operation, \(\sigma \) and \(\zeta \) are the real part and the damping ratio of the eigenvalue of the operating point. In this paper, \(\sigma_j \) and \(\zeta_j \) are

Table 2

Mechanical modes and \(\zeta \) under different loading conditions and controllers.

<table>
<thead>
<tr>
<th></th>
<th>No stabilizers</th>
<th>CPSS</th>
<th>GAPSS</th>
<th>BATPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light load</td>
<td>+0.01 ± 0.8j, -0.12</td>
<td>-0.19 ± 0.69j, 0.26</td>
<td>-1.06 ± 0.7j, 0.83</td>
<td>-1.09 ± 0.63j, 0.87</td>
</tr>
<tr>
<td>Normal load</td>
<td>-0.58 ± 0.04j, 0.09</td>
<td>-2.35 ± 4.15j, 0.49</td>
<td>-3.73 ± 6.3j, 0.51</td>
<td>-6.27 ± 6.51j, 0.69</td>
</tr>
<tr>
<td></td>
<td>-0.96 ± 7.77j, 0.12</td>
<td>-3.24 ± 5.2j, 0.52</td>
<td>-3.49 ± 8.1j, 0.4</td>
<td>-3.64 ± 6.01j, 0.52</td>
</tr>
<tr>
<td>Heavy load</td>
<td>+0.15 ± 1.49j, -0.1</td>
<td>-0.24 ± 0.75j, 0.3</td>
<td>-1.13 ± 0.69j, 0.83</td>
<td>-1.16 ± 0.68j, 0.86</td>
</tr>
<tr>
<td></td>
<td>-0.35 ± 8.1j, 0.04</td>
<td>-2.41 ± 4.42j, 0.47</td>
<td>-4.27 ± 7.02j, 0.52</td>
<td>-6.84 ± 6.97j, 0.70</td>
</tr>
<tr>
<td></td>
<td>-0.67 ± 11.6j, 0.06</td>
<td>-3.32 ± 5.34j, 0.52</td>
<td>-3.61 ± 8.72j, 0.38</td>
<td>-4.17 ± 8.06j, 0.46</td>
</tr>
<tr>
<td></td>
<td>+0.32 ± 1.6j, -0.19</td>
<td>-0.33 ± 0.89j, 0.34</td>
<td>-1.17 ± 0.72j, 0.85</td>
<td>-1.32 ± 0.75j, 0.87</td>
</tr>
<tr>
<td></td>
<td>+0.15 ± 7.8j, -0.02</td>
<td>-1.96 ± 4.32j, 0.41</td>
<td>-3.51 ± 6.72j, 0.46</td>
<td>-7.98 ± 5.44j, 0.83</td>
</tr>
<tr>
<td></td>
<td>-0.36 ± 12.2j, 0.03</td>
<td>-3.09 ± 5.25j, 0.5</td>
<td>-3.79 ± 8.91j, 0.39</td>
<td>-4.62 ± 7.34j, 0.53</td>
</tr>
</tbody>
</table>
selected to be −0.5 and 0.1 respectively [39]. Typical ranges of the optimized parameters are [1–100] for K_i and [0.06–1.0] for T_{1i} and T_{3i}. Optimization problem based on the objective function J_t can be stated as: minimize J_t subjected to:

\[K_i^{\text{min}} \leq K_i \leq K_i^{\text{max}} \]

\[T_{1i}^{\text{min}} \leq T_{1i} \leq T_{1i}^{\text{max}} \]

\[T_{3i}^{\text{min}} \leq T_{3i} \leq T_{3i}^{\text{max}} \]

This paper focuses on optimal tuning of PSSs using BAT search algorithm. The aim of the optimization is to minimize the objective function in order to improve the system performance in terms of settling time and overshoots under different operating conditions and finally designing a low order controller for easy implementation.

Results and simulations

In this section, the superiority of the proposed BAT algorithm in designing PSS compared with optimized PSS with GA [52,53] and CPSS is illustrated. Fig. 5. shows the change of objective functions with two optimization algorithms. The objective functions decrease over iterations of BAT, and GA. The final value of the objective function is $J_t = 0$ for both algorithms, indicating that all modes have been shifted to the specified D-shape sector in the S-plane and the proposed objective function is achieved. Moreover, BAT converges at a faster rate (48 generations) compared with that for GA (68 generations).

Table 2, shows the system eigenvalues, and damping ratio of mechanical mode with three different loading conditions. It is clear

Table 3 Parameters of PSSs for different algorithms.

<table>
<thead>
<tr>
<th></th>
<th>BAT</th>
<th>GA</th>
<th>CPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS1</td>
<td>$K = 46.6588$</td>
<td>$K = 25.3696$</td>
<td>$K = 14.4386$</td>
</tr>
<tr>
<td></td>
<td>$T_{1i} = 0.4153$</td>
<td>$T_{1i} = 0.4684$</td>
<td>$T_{1i} = 0.2652$</td>
</tr>
<tr>
<td></td>
<td>$T_{3i} = 0.2698$</td>
<td>$T_{3i} = 0.7428$</td>
<td>$T_{3i} = 0.8952$</td>
</tr>
<tr>
<td>PSS2</td>
<td>$K = 8.4751$</td>
<td>$K = 7.8187$</td>
<td>$K = 5.1659$</td>
</tr>
<tr>
<td></td>
<td>$T_{1i} = 0.4756$</td>
<td>$T_{1i} = 0.2918$</td>
<td>$T_{1i} = 0.5242$</td>
</tr>
<tr>
<td></td>
<td>$T_{3i} = 0.1642$</td>
<td>$T_{3i} = 0.1429$</td>
<td>$T_{3i} = 0.2032$</td>
</tr>
<tr>
<td>PSS3</td>
<td>$K = 4.2311$</td>
<td>$K = 5.3114$</td>
<td>$K = 8.3287$</td>
</tr>
<tr>
<td></td>
<td>$T_{1i} = 0.2513$</td>
<td>$T_{1i} = 0.5121$</td>
<td>$T_{1i} = 0.5817$</td>
</tr>
<tr>
<td></td>
<td>$T_{3i} = 0.1853$</td>
<td>$T_{3i} = 0.3731$</td>
<td>$T_{3i} = 0.4268$</td>
</tr>
</tbody>
</table>
that the BATPSS shift the electromechanical mode eigenvalues to the left of the S-plane and the values of the damping factors with the proposed BATPSS are significantly enhanced to be ($\sigma = -1.09, -1.16, -1.32$) for light, normal, and heavy loading respectively. Also, the damping ratios corresponding to BATPSS controllers are larger than those corresponding to GAPSS and CPSS. Hence, compared with GAPSS and CPSS, BATPSS provides good robust performance and achieves superior damping characteristics of electromechanical modes. Results of PSSs parameters set values based on the proposed objective function using BAT, GA and conventional method are given in Table 3.

Response under normal load condition

The validation of the performance under severe disturbance is confirmed by applying a three phase fault of 6 cycle duration at 1.0 s near bus 7. Figs. 6–8, show the response of $\Delta \omega_{13}$, $\Delta \omega_{23}$ and $\Delta \omega_{23}$ due to this disturbance under normal loading condition. It can be seen that the system with the proposed BATPSS is more stabilized than GAPSS and CPSS. In addition, the required mean settling time to mitigate system oscillations is approximately 1.1 s
with BATPSS, 1.8 s for GAPSS, and 2.56 s with CPSS so the designed controller is qualified for supplying adequate damping to the low frequency oscillations.

Response under light load condition

Figs. 9–11, show the system response under light loading condition with fixing the controller parameters. It is clear from these figures, that the proposed BATPSS has good damping characteristics to system oscillatory modes and stabilizes the system rapidly. Also, the mean settling time of oscillations is $T_s = 1.0, 1.84, \text{and } 2.47 \text{s}$ for BATPSS, GAPSS, and CPSS respectively. Hence, the proposed BATPSS outlasts GAPSS and CPSS controller in attenuating oscillations effectively and minifying settling time. Consequently, the proposed BATPSS extend the power system stability limit.

Response under heavy load condition

Figs. 12–14, show the system response under heavy loading condition. These figures indicate the superiority of the BATPSS in reducing the settling time and suppressing power system oscillations. Moreover, the mean settling time of these oscillation is $T_s = 1.1, 1.37, \text{and } 1.97 \text{s}$ for BATPSS, GAPSS, and CPSS respectively. Hence, BATPSS controller greatly improves the system stability and enhances the damping characteristics of power system. Furthermore, the settling time of the proposed controller is smaller than that in [37,39].

Response under small disturbance

Figs. 15 and 16, show the response of $\Delta \omega_{12}$ and $\Delta \omega_{13}$ under heavy loading condition due to 20% increase of mechanical torque of generator 1 as a small disturbance. From these figures, it can be seen that the BAT based PSSs using the proposed objective function introduces superior damping and attains better robust performance in comparison with the other methods.

Robustness and performance indices

To demonstrate the robustness of the proposed controller, some performance indices: the Integral of Absolute value of the Error (IAE), and the Integral of the Time multiplied Absolute value of the Error (ITAE), are being used as:

$$\text{IAE} = \int_{0}^{\infty} (|\Delta \omega_{12}| + |\Delta \omega_{23}| + |\Delta \omega_{13}|) \, dt$$

$$\text{ITAE} = \int_{0}^{\infty} t(|\Delta \omega_{12}| + |\Delta \omega_{23}| + |\Delta \omega_{13}|) \, dt$$

It is noteworthy that the lower the value of these indices is, the better the system response in terms of time domain characteristics. Numerical results of performance robustness for all cases are listed in Table 4. It can be seen that the values of these system performance with the BATPSS are smaller compared with those of GAPSS and CPSS. This demonstrates that the overshoot, settling time and speed deviations of all units are greatly decreased by applying the proposed BAT based tuned PSSs. Eventually; values of these indices are smaller than those obtained in [54].

Table 4

<table>
<thead>
<tr>
<th></th>
<th>IAE x 10^-4</th>
<th>ITAE x 10^-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPSS</td>
<td>7.93</td>
<td>24.2</td>
</tr>
<tr>
<td>GAPSS</td>
<td>0.4264</td>
<td>1.5148</td>
</tr>
<tr>
<td>BATPSS</td>
<td>0.0544</td>
<td>0.2949</td>
</tr>
<tr>
<td>Light load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal load</td>
<td>16.3</td>
<td>35.56</td>
</tr>
<tr>
<td>0.6028</td>
<td>1.845</td>
<td></td>
</tr>
<tr>
<td>0.0676</td>
<td>0.7026</td>
<td></td>
</tr>
<tr>
<td>Heavy load</td>
<td>25.76</td>
<td>47.9</td>
</tr>
<tr>
<td>1.1736</td>
<td>3.5067</td>
<td></td>
</tr>
<tr>
<td>1.009</td>
<td>0.9498</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

A new optimization technique known as BAT search algorithm, for optimal design of PSSs parameters is proposed in this paper. The PSSs parameters tuning problem is formulated as an optimization problem and BAT search algorithm is employed to seek for optimal parameters. An eigenvalue based objective function reflecting the combination of damping factor and damping ratio is optimized for various operating conditions. Simulation results confirm the robustness and superiority of the proposed controller in providing good damping characteristic to system oscillations over a wide range of loading conditions. Moreover, the system performance characteristics in terms of IAE and ITAE indices reveal that the proposed BATPSS demonstrates its effectiveness than GAPSS and CPSS.

Application of the proposed algorithm and the most recent optimization algorithms to large scale power system is the future scope of this work.
Appendix A

(a) The parameters of BAT search algorithm are as follows: Max generation = 100; Population size = 50; $\beta = \gamma = 0.9$, $f_{min} = 0$; $L_0 = 1$, $f_{min} = 0$; $f_{max} = 100$.

(b) The parameters of GA are as follows: Max generation = 100; Population size = 50; Crossover probabilities = 0.75; Mutation probabilities = 0.1.

References