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As one of the most promising sustainable energy sources, wind energy plays an important role in energy
development because of its cleanliness without causing pollution. Generally, wind speed forecasting,
which has an essential influence on wind power systems, is regarded as a challenging task. Analyses
based on single-step wind speed forecasting have been widely used, but their results are insufficient
in ensuring the reliability and controllability of wind power systems. In this paper, a new forecasting
architecture based on decomposing algorithms and modified neural networks is successfully developed
for multi-step wind speed forecasting. Four different hybrid models are contained in this architecture,
and to further improve the forecasting performance, a modified bat algorithm (BA) with the conjugate
gradient (CG) method is developed to optimize the initial weights between layers and thresholds of
the hidden layer of neural networks. To investigate the forecasting abilities of the four models, the wind
speed data collected from four different wind power stations in Penglai, China, were used as a case study.
The numerical experiments showed that the hybrid model including the singular spectrum analysis and
general regression neural network with CG-BA (SSA-CG-BA-GRNN) achieved the most accurate
forecasting results in one-step to three-step wind speed forecasting.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

As one of the most promising potential renewable energy
sources [1], wind energy has attracted the focus of many research-
ers and scientists [2], and nearly every government across the
world has introduced positive policies to support wind energy
development [3,4]. In 2015, the global total capacity of wind farms
is approximately 432,419 MW, with the 22% growth rate, as shown
in Fig. 1 [5]. With the increased proportion of wind energy in whole
energy networks, accurate wind speed forecasting results are
becoming increasingly crucial for managers to schedule the daily
power distribution and decrease the reserve capacity. To protect
wind power from the breakdown and make sure the success of
wind power conversation, accurate forecasting results of wind
speed are also required [6]. However, due to the non-stationary
and nonlinear fluctuations, wind speed is regarded as one of the
hardest weather parameters to predict [7,8].

In recent decades, many methods have been presented for wind
speed forecasting, and these methods can be divided into four cat-
egories [9]: (a) physical models; (b) statistical models; (c) spatial
correlation models; and (d) artificial intelligence models. Physical
models which are based on physical parameters, such as topogra-
phy, temperature and pressure, are usually applied in long term
wind speed forecasting [10–12]. Statistical models are built based
on the mature statistical equations to get the potential change rule
from history data sampling [13–17]. Spatial correlation models
mainly consider the spatial relationship of wind speed at different
sites. In some situations, it can obtain higher precision [18,19].
With the rapid development of artificial techniques, some artificial
intelligence forecasting methods, including artificial neural net-
works (ANNs) [20–25], fuzzy logic methods [18,26] and support
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Nomenclature

a a random vector, with a value between 0 and 1
b a random vector, with a value between 0 and 1
dk
i the search direction of xi at iteration k

di Euclidian distance
e a random vector, with a value between 0 and 1
/ðdiÞ outputs from the hidden layer of RBFNN
Fi the fitness function of xi
�rf ðxiterÞ gradient of xiter

gk
i gradient of xi at iteration k

hij correlation coefficient
I input vector of RBFNN
IMFj (t) intrinsic mode function
iter current iteration number
Itermax maximum number of iterations
K shape matrix
kij (i, j)th element of the shape matrix K
L the loudness of a bat
mi center vector
mj

i jth element of center vector
kiterj step length
kk step length of xi at iteration k

M total number of CG iterations
N number of generations P
O output of RBFNN
r pulse rate of a bat
R spread parameter
rn(t) nth residue
r spread parameter
ri
j marginal standard deviation

Ss simple summation
Sw weighted summation
t current iteration number
v t
i the velocity of xi at iteration t

w interconnection weight
wi weight of the hidden layer of RBFNN
X input vector of GRNN
xb the value of x with the best fitness value in the

population
xt training data
xti position of xi at iteration t
xiter positions of bats
Y output vector of GRNN
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vector machines (SVMs) [27], have been developed for wind speed
forecasting.

Meanwhile, to decrease the negative influences that are intrin-
sic to individual models, many hybrid wind speed forecasting mod-
els have been proposed [28–36].

To achieve higher forecasting accuracy, some data-processing
algorithms, such as wavelet decomposition (WD) [28], wavelet
packet decomposition (WPD) [29], empirical mode decomposition
(EMD) [30], the ensemble empirical mode decomposition (EEMD)
algorithm [31] and the fast ensemble empirical mode decomposi-
tion (FEEMD) algorithm [32], have been employed in ANNs to build
hybrid models. The data decomposition, which could reduce the
non-stationary feature of the original data, promotes the forecast-
ing performance indirectly.

Moreover, intelligent optimization algorithms including the
genetic algorithm (GA) [33], particle swarm optimization (PSO)
[34], the evolutionary algorithm (EA) [35], and the cuckoo search
algorithm (CSA) [36], are utilized to determine the initial weights
and thresholds of ANNs. In 2010, Yang proposed the bat algorithm
(BA) [37], which is inspired by the echolocation characteristics of
bats with varying pulse rates of emission and loudness. It has been
applied to a wide range of optimization applications [38], including
image processing [39], classifications [40], scheduling [41], the
electricity market [42], energy systems [43] and various other
problems. Experiments have shown its promising efficiency for
global optimization.

Analyses based on single-step wind speed forecasting have
been widely used, while their results are insufficient in ensuring
the reliability and controllability of wind power systems. Thus, it
is required to build a model to achieve accurate results for multi-
step wind speed forecasting. Among various ANN models, the rad-
ical basis function neural network (RBFNN) and general regression
neural network (GRNN) are good choices to achieve high conver-
gence rates and accurate results. In this paper, a hybrid architec-
ture, which contains four hybrid models, with two decomposing
algorithms (i.e., FEEMD and singular spectrum analysis (SSA))
which are used to realize the non-stationary wind speed decompo-
sition, and the modified RBFNN and GRNN is proposed for wind
speed forecasting. In the modified RBFNN and GRNN, an improved
BA, which is on the basis of conjugate gradient (CG) method to
improve convergence performance over time and prevent individ-
ual bats from entrapment in local optima, is introduced to optimize
the initial weights and thresholds of RBFNN and GRNN. The aim of
this study is to investigate and enhance the forecasting perfor-
mance of hybrid model based on signal processing algorithms,
intelligent optimization algorithm and artificial neural networks
for multi-step accurate wind speed forecasting. To investigate the
forecasting abilities of the four models, the wind speed data col-
lected from four different wind power stations in Penglai, China,
were used as a case study. The main contributions in this paper
are demonstrated as follows.

(1) The forecasting focus of the forecasting architecture is not
only on the single-step forecasting but also on the multi-
step forecasting. Although the wind speed single-step pre-
dictions have been studied widely, to protect the wind
power, wind speed single-step forecasting results alone are
insufficient, and wind speed multi-step forecasting results
are definitely expected, thus the forecasting architecture is
aim to enhance the forecasting accuracy of multi-step wind
speed forecasting.

(2) To globally investigate the forecasting performance of dif-
ferent combination of decomposing algorithms and neural
networks, a forecasting architecture contains four hybrid
models is proposed. In the architecture, four different
hybrid forecasting models based on the two most popular
decomposing algorithms, an improved optimization algo-
rithm and two neural networks, are investigated and com-
pared (the performance of multi-step forecasting is given
special attention in the investigation) with four different
sites data for one-step to three-step forecasting to obtain
the best one.

(3) The speed of local convergence and the accuracy of finding
the optimal solution of BA are enhanced. To improve both
the exploration and exploitation capacities and avoid the
weakness of the local optima searching ability, the improved
BA based on CG is proposed, and to evaluate the improved
algorithm, four testing functions are used.



Fig. 1. Top 10 countries of wind power newly increased installed capability in 2015.
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(4) The forecasting accuracy and stability of RBFNN and GRNN
are enhanced. The improved BA, CG-BA, is employed to
select the initial weights and thresholds for the RBFNN and
GRNN. According to the experiment results, the forecasting
performance of RBFNN and GRNN are directly enhanced
with CG-BA.

(5) To validate the effectiveness of the proposed hybrid fore-
casting architecture, a number of comparable experiments
are provided. Besides the hybrid FEEMD-CG-BA-RBFNN
model, the hybrid FEEMD-CG-BA-GRNN model, the hybrid
SSA-CG-BA-RBFNN model and the hybrid SSA-CG-BA-GRNN
model, the single RBFNN model, the single GRNN model and
the single ARIMA (autoregressive integratedmoving average)
model are also included in the performance comparison to
obtain the best combination in the proposed architecture.

The remainder of the paper is organized as follows. Section 2
introduces the hybrid forecasting strategy proposed in this paper.
Section 3 presents the wind speed decomposition contained in the
hybrid forecasting strategy. Section4develops anewimprovedopti-
mization algorithm. Section 5 proposes four hybrid models. The
forecasting results of the proposed hybrid models and comparisons
are discussed in Section 6. Finally, Section 7 concludes the paper.
2. Framework of the proposed hybrid architecture

The flowchart of the proposed hybrid architecture in this study
is given in Fig. 2. In Fig. 2, the proposed study can be summarized
briefly as follows:
� Decompose the original wind speed time series with the FEEMD
algorithm and the SSA algorithm into several sub-layers.

� Build the modified neural networks, CG-BA-RBFNN and CG-BA-
GRNN to predict each wind speed sub-layers for the one-step,
two-step and three-step prediction.

� Summarize the one-step, two-step and three-step predicted
results of each sub-layers from FEEMD and SSA to obtain the
final results of CG-BA-RBFNN and CG-BA-GRNN.

� Compare the forecasting performance of each model and find
the best one. The compared algorithms include four hybrid
models, i.e. FEEMD-CG-BA-RBFNN, FEEMD-CG-BA-GRNN, SSA-
CG-BA-RBFNN and SSA-CG-BA-GRNN, in the proposed architec-
ture, four comparison hybrid models, i.e. FEEMD-BA-RBFNN,
FEEMD-BA-GRNN, SSA-BA-RBFNN and SSA-BA-GRNN and three
single models, i.e. RBFNN, GRNN and ARIMA.

3. Wind speed decomposition

In this paper, two decomposing methods, the SSA algorithm and
the FEEMD algorithm, are employed to process the original wind
speed data. More information about SSA and FEEMD are shown
in Appendix A.
4. CG-BA

In this part, CG-BA is proposed and four test functions are
employed to evaluate this developed algorithm.



Table 1
Test functions.

Function name Modal characteristic Test function Variable domain Global optimum

Sphere Unimodal f ðxÞ ¼ Pd
i¼1x

2
i

xi 2 ½�5:12;5:12� fminð0;0;0 � � �0Þ ¼ 0

Rosenbrock Multi-modal f ðXÞ ¼ Pd�1
i¼1 ½100ðx2i � xiþ1Þ2 þ ðxi � 1Þ2� xi 2 ½�2:084;2:084� fminð1;1;1 � � �1Þ ¼ 0

Rastrigin Multi-modal f ðXÞ ¼ Pd
i¼1ðx2i � 10ð2pxiÞ þ 10Þ xi 2 ½�5:12;5:12� fminð0;0;0 � � �0Þ ¼ 0

Schaffer Multi-modal
f ðXÞ ¼

sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼1
x2
i

q
�0:5

1þ0:001
Pd

i¼1
x2
i

� �� �2 þ 0:5
xi 2 ½�5:12;5:12� fminð0;0;0 � � �0Þ ¼ 0

Fig. 2. Structure of hybrid forecasting strategy.
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4.1. CG-BA

The bat algorithm is a novel optimization algorithm proposed
by Yang [48,49], which was inspired by the echolocation behavior
of natural bats in determining their foods. BA not only offers pow-
erful global exploration and exploitation abilities but also has the
good ability to find the local optimum.

However, conventional BA continues to suffer from slow con-
vergence during the later period of optimization when it is applied
to large-scale and complex problems. To speed up the convergence,
a new improved BA based on the CG quasi-Newton method was
developed in this work. CG is developed on the basis of the Newton
algorithm and the steepest descent algorithm (SDA). Meanwhile,
the shortcomings of these two algorithms, slow convergence of
SDA and complex computation of Newton algorithm, are overcome
with CG [50]. As shown in Fig. 2 Part b, it is used when BA updates
solutions in an iteration to find a local optimal solution and thus
enhance the local optimization ability and the speed of the local
convergence of the whole algorithm.

Let xiter be the positions of bats in BA, where iter represents the
current iteration number. Generally, xiter is input into the fitness
function directly to evaluate the current best value. To improve
the local search ability of BA, a CG circulation is added in BA. In this
circulation, xiter will be the initial value to continue searching with
the gradient �rf ðxiterj Þ and step length kiterj . This iterative loop
could be presented as
xiterjþ1 ¼ xiterj þ kiterj diter
j ; ðj ¼ 0;1; . . . ;M � 1Þ ð1Þ
where diter
j ¼ �rf ðxiterj Þ, and M is the total number of CG iterations.

After processing the CG circulation, a new position of xiterM is
obtained. xiterM is input into the fitness function to evaluate a value
as the current best result. Then xiter

M is updated to xiterþ1
0 according to

the BA rules [48,49]. Meanwhile, to keep the results from trapping
in local optimums, a lot of experiments have been done to select
the total iteration number M. Finally we find that when M is set
in the region from 4 to 6, the optimization performance is good.
If M is less than 4, the rate of convergence may not be enhanced.
And if M is greater than 6, the results are easily trapped in local
optimums. The pseudo code for CG-BA is provided in Algorithm 1.
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Algorithm 1. CG-BA
Output: 
xb—the value of x with the best fitness value in the population  

Parameters: 
α—a random vector, with a value between 0 and 1. 
ε—a random vector, with a value between 0 and 1. 
β—a random vector, with a value between 0 and 1. 
Fi—the fitness function of xi. 
N—the number of generations P. 
t—current iteration number. 
Itermax—the maximum number of iterations. 
M—the maximum number of iterations of conjugate gradient algorithm. 
L—the loudness of a bat. 
r—the pulse rate of a bat. 

t
iv —the velocity of xi at iteration t.
t
ix —the position of xi at iteration t.
k
ig —the gradient of xi at iteration k.

d k
i —the search direction of xi at iteration k.
kλ —the steplength of xi at iteration k. 

1 /*Initialize generation P (xi,i=1,2,…,N) in random positions.*/
2 /*Initialize t=0.*/
3 FOR EACH i=1:N DO
4 Evaluate the corresponding fitness function Fi
5 END FOR
6 WHILE t<Itermax DO 
7 FOR EACH i=1:N DO 
8 Fi=Fmin+(Fmax-Fmin)α
9 1 *t t t

i i iv v x x iF

0 t t -1 t
i i ix = x + v

1 END FOR 
2 /*Use conjugate gradient algorithm.*/ 
3 FOR EACH k=1:M DO 
4 FOR EACH i=1:N DO 
5 k k

i ig xF

6 

2

1
2

k

k-1

g

g
k

7 1 1d g dk k k k
i i i

8 

Tk k
k

Tk k

g d

d d
λ

A

9 /*Where A is the symmetric positive definite matrix.*/
0 1k k k k

i i ix x d
1 END FOR
2 END FOR 
3 /*Update the current best solution x*.*/
4 FOR EACH i=1:N DO 
5 Evaluate the corresponding fitness function Fi
6 END FOR 
7 IF Fbest< F* THEN 
8 FOR EACH i=1:N DO
9 xnew=xold+εLt

0 IF Lt> β THEN
1 1t t

i iL L

2 1 0 1 expt
i ir r t

3 END IF 
4 END FOR
5 END IF 
6 iter=iter+1 
7 END WHILE
8 RETURN xbest



Table 2
The experimental parameters of BA and CG-BA.

Experimental parameters BA CG-BA

Maximum generation 10,000 10,000
Population size 100 100
Convergence tolerance 10�5 10�5

Maximum generation of CG – 5

Table 5
Experimental parameter setting.

Model Experimental parameters Default value

GRNN Neuron number of the input layer 4
Neuron number of the hidden layer 9
Neuron number of the output layer 1
Radial basis function expansion 0.1 to 2.0
Maximum number of training 1000
Training requirement precision 0.00002

RBFNN Neuron number of the input layer 4
Neuron number of the hidden layer 9
Neuron number of the output layer 1
Sample 400
Maximum number of training 1000
Training requirement precision 0.00002

L. Xiao et al. / Energy Conversion and Management 143 (2017) 410–430 415
4.2. Test of CG-BA

To evaluate the proposed algorithm, CG-BA, four test functions
are employed as shown in Table 1. Sphere function is unimodal,
Rosenbrock’s function is multimodal, Rastrigin’s function is multi-
modal and Schaffer function is multimodal. The tests of BA and CG-
BA on all test functions were performed on an Intel i7-4870
2.50 GHz machine with 16 GB RAM. The experimental parameters
of BA and CG-BA are shown in Table 2.

As the test results shown in Table 3, two points can be
concluded:

(a) The max value, min value and average value of iteration of
CG-BA are less than the original BA for four test functions.
This means the convergence ability of BA has been success-
fully improved with CG-BA.

(b) For the Rosenbrock’s function, Rastrigin’s function and
Schaffer function, the convergence rates of BA didn’t obtain
1. While for these three test functions, the convergence rates
of CG-BA are obtained 1. Thus the optimization performance
of the original BA has also enhanced with CG-BA.
Remark. Through the experimental results and above analysis, the
optimization ability of the original BA has been successfully
enhanced by the proposed CG-BA.

5. Optimization of RBFNN and GRNN

The proposed CG-BA is employed to optimize the initial weights
and thresholds for the RBFNN and GRNN.
Table 3
Test results of BA and CG-BA.

Test function Dimension Algorithm Max value of iteration

Sphere 10 BA 213
CG-BA 3

20 BA 343
CG-BA 21

50 BA 513
CG-BA 112

Rosenbrock 2 BA –
CG-BA 165

Rastrigin 10 BA 421
CG-BA 197

20 BA 860
CG-BA 528

50 BA –
CG-BA 1342

Schaffer 2 BA 1236
CG-BA 56

Table 4
Statistical parameters for the data used in this paper.

Region Mean value (m/s) Std. dev. (m/s) Maximum

Site 1 6.5564 2.4147 14.3000
Site 2 5.8237 2.1162 15.7000
Site 3 7.8363 3.4319 18.3000
Site 4 6.4602 2.5402 17.2000
5.1. RBFNN optimized by CG-BA

This section contains the standard RBFNN and the improved
RBFNN that is optimized by CG-BA.
5.1.1. Standard RBFNN
The structure of RBFNN is simple and includes an input layer, a

hidden layer and an output layer, as shown in Fig. 2 Part c. The hid-
den layer is the key part of RBFNN, and its neurons represent
RBFNN. More information about RBFNN is shown in Appendix B.
5.1.2. RBFNN optimized by CG-BA
The final results are dependent on the initial random weights

and threshold values of an ANN, which will increase the unstable
factor in forecasting. In this part of the paper, the CG-BA-RBFNN
model is developed, and the proposed optimization algorithm
CG-BA is used to optimize the initial weight and threshold of the
RBFNN to improve the forecasting performance of RBFNN. The
details of the CG-BA-RBFNN is presented as Algorithm 2.
Min value of iteration Average value of iteration Convergence rate

174 198 1
1 1.4 1
151 182 1
12 17.2 1
398 441 1
84 98 1

– – –
79 103 1

315 369 1
144 182 1
731 795 0.83
378 469 1
– – –
873 1128 0.96

981 1035 0.81
24 43 1

value (m/s) Minimum value (m/s) Median value (m/s)

1.4000 6.3000
0.9000 5.6000
1.0000 7.1000
0.8000 6.3000
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Algorithm 2. CG-BA-RBFNN
Input: 
0 0 0 01 , 2 , ,tx x x x qK –sequence of training wind speed data. 

0 0 0 01 , 2 , ,vx x q x q x q dK –sequence of verification wind s

Output:
0 0 0 0ˆ ˆ ˆ ˆ1 , 2 , ,zy y q y q y q dK —the forecasting electrical lo

RBFNN

Parameters: 
α—a random vector, with a value between 0 and 1. 
ε—a random vector, with a value between 0 and 1. 
β—a random vector, with a value between 0 and 1. 
Fi—the fitness function of xi. 
N—the number of generations P. 
t—current iteration number. 
Itermax—the maximum number of iterations. 
M—the maximum number of iterations of conjugate gradient algorithm. 
L—the loudness of a bat. 
r—the pulse rate of a bat. 
xi—generation i (the weight and threshold of the RBFNN) 

Fitness function
(0) (0)

1

ˆ ˆ
d

v z
i

F x q i y q d

1 
/*Initialize generation X (xi,i=1, 2,…, N, the weight and threshold of the RBFN
positions.*/ 

2 /*Initialize t=0.*/
3 FOR EACH i=1:N DO
4 Evaluate the corresponding fitness function Fi

5 END FOR
6 WHILE t<Itermax DO 
7 FOR EACH i=1:N DO 
8 Fi=Fmin+(Fmax-Fmin)α

9 1 *t t t
i i iv v x x iF

0 t t -1 t
i i ix = x + v

1 END FOR 
anagement 143 (2017) 410–430
peed data 

ad data from 

N) in random 



12 /*Use conjugate gradient algorithm.*/ 
13 FOR EACH k=1:M DO 
14 FOR EACH i=1:N DO 

15 k k
i ig xF

16 

2

1
2

k

k-1

g

g
k

17 1 1d g dk k k k
i i i

18 

Tk k
k

Tk k

g d

d d
λ

A

19 /*Where A is the symmetric positive definite matrix.*/
20 1k k k k

i i ix x d

21 END FOR
22 END FOR 
23 /*Update the current best solution x*.*/
24 FOR EACH i=1:N DO 
25 Evaluate the corresponding fitness function Fi

26 END FOR 
27 IF Fbest< F* THEN.
28 FOR EACH i=1:N DO
29 xnew=xold+εLt

30 IF Lt> THEN
31 1t t

i iL L

32 1 0 1 expt
i ir r t

33 END IF 
34 END FOR
35 END IF 
36 1iter iter
37 END WHILE
38 RETURN xb

39 Set the weight and threshold of the RBFNN according to xb. 
40 Use xt to train the RBFNN and update the weight and threshold of the RBFNN. 
41 Input the historical data into RBFNN to obtain the forecasting value ŷ . 

1, 2,…, 5 6

2, 3,…, 6 7

3, 4,…, 7 8

4, 5,…, 8 9

… …

Training samples Testing samples
Input Output

15
00
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1499, 1500,…, 1503 1504
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1500, 1501,…, 1504 1505 1506 1507

Fig. 3. Input and output data selection.
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5.2. GRNN optimized by CG-BA

This section contains the standard GRNN and the improved
GRNN that is optimized by CG-BA.

5.2.1. Standard GRNN
Specht [51] proposed a new type of neural network model

named GRNN, which is based on the advantage of a standard sta-
tistical technology known as Kernel regression [52,53]. Four layers,
i.e., the input layer, pattern layer, summation layer, and output
layer, compose a GRNN, as shown in Fig. 2 Part c. More information
about GRNN is shown in Appendix B.

5.2.2. GRNN optimized by CG-BA
This part proposed that the initial weight and threshold of the

GRNN is optimized by the proposed optimization algorithm
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CG-BA to improve the forecasting performance. The details of the
CG-BA-GRNN are presented as Algorithm 3.

Algorithm 3. CG-BA-GRNN
Input: 
0 0 0 01 , 2 , ,tx x x x qK –sequence of training wind speed data. 

0 0 0 01 , 2 , ,vx x q x q x q dK –sequence of verification wind speed data 

Output:
0 0 0 0ˆ ˆ ˆ ˆ1 , 2 , ,zy y q y q y q dK —the forecasting wind speed from GRNN 

Parameters: 
α—a random vector, with a value between 0 and 1. 
ε—a random vector, with a value between 0 and 1. 
β—a random vector, with a value between 0 and 1. 
Fi—the fitness function of xi. 
N—the number of generations P. 
t—current iteration number. 
Itermax—the maximum number of iterations. 
M—the maximum number of iterations of conjugate gradient algorithm. 
L—the loudness of a bat. 
r—the pulse rate of a bat. 
xi—generation i (the weight and threshold of the GRNN) 

Fitness function
(0) (0)

1

ˆ ˆ
d

v z
i

F x q i y q d

1 
/*Initialize generation X(xi,i=1,2,…,N, the weight and threshold of the GRNN) in random 
positions.*/ 

2 /*Initialize t=0.*/
3 FOR EACH i=1:N DO
4 Evaluate the corresponding fitness function Fi

5 END FOR
6 WHILE t<Itermax DO 
7 FOR EACH i=1:N DO 
8 Fi=Fmin+(Fmax-Fmin)α

9 1 *t t t
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10 t t -1 t
i i ix = x + v

11 END FOR 
12 /*Use conjugate gradient algorithm.*/ 



13 FOR EACH k=1:M DO 
14 FOR EACH i=1:N DO 
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19 /*Where A is the symmetric positive definite matrix.*/
20 1k k k k

i i ix x d

21 END FOR
22 END FOR 
23 /*Update the current best solution x*.*/
24 FOR EACH i=1:N DO 
25 Evaluate the corresponding fitness function Fi

26 END FOR 
27 IF Fbest< F* THEN.
28 FOR EACH i=1:N DO
29 xnew=xold+εLt

30 IF Lt> THEN

31 1t t
i iL L

32 1 0 1 expt
i ir r t

33 END IF 
34 END FOR
35 END IF 
36 1iter iter
37 END WHILE
38 RETURN xb

39 Set the weight and threshold of the GRNN according to xb. 
40 Use xt to train the GRNN and update the weight and threshold of the GRNN. 
41 Input the historical data into GRNN to obtain the forecasting value ŷ . 
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6. Forecasting experiment
In this part, the experiments were divided into three parts,
Experiment I, Experiment II and Experiment III. In Experiment I,
the wind speed multi-step forecasting results and comparisons of
the hybrid FEEMD-CG-BA-RBFNN model, the hybrid FEEMD-CG-
BA-GRNN model, the hybrid SSA-CG-BA-RBFNN model and the
hybrid SSA-CG-BA-GRNN model are given. In Experiment II, the
performance of the hybrid FEEMD-CG-BA-RBFNN model, the
hybrid FEEMD-CG-BA-GRNN model, the hybrid SSA-CG-BA-
RBFNN model and the hybrid SSA-CG-BA-GRNN model are com-
pared with FEEMD-BA-RBFNN, FEEMD-BA-GRNN, SSA-BA-RBFNN,
SSA-BA-GRNN, single RBFNN, single GRNN and ARIMA. In Experi-
ment III, the DM-test is used to evaluate the performance of each
forecasting model. To confirm the universality of the proposed
model, Experiment I, Experiment II and Experiment III are vali-
dated at four different sites.

Four data sites in Penglai region have been selected with the
latitude from 120�430N to 120�470N and longitude from 37�500E
to 37�370E. The data sites are in a mountain and hilly area near
the sea, and its altitude ranges from 100 m to 240 m. The rated
power of WTG (wind power generator) is 1500 kW. The mean
annual temperature, humidity and air pressure in this region are
11.9 �C, 65% and 1012.7 hPa, respectively. Statistical parameters
for the data used in this paper are shown in Table 4.

All algorithms are operated on the following platform: MATLAB
R2012a on Windows 8 with 2.50 GHz Intel Core i7 4870HQ 64-bit
and 16 GB of RAM. The experimental parameters are shown in
Table 5. Meanwhile, considering randomness factors and ensuring
that the final results are reliable and independent of the initial
weights, we carry out each experiment 50 times and then take
the average value. The input layer of all the ANNs is constructed
with four neurons. Hecht–Nelson method [54] is employed to
determine the node number of the hidden layer. When the node
number of the input layer is n, the node number of the hidden layer
is 2n + 1.

6.1. Accuracy estimating indexes

To learn the global traits of the models, three metric parameters
are taken: the MAE (mean absolute error), the MAPE (mean abso-
lute percentage error) and the MSE (mean square error). MAE is
the average absolute forecast error of n times forecast results.
Because the prediction error may be positive and negative, it can-
not reflect the level of error; this problem can be avoided by using
MAE. MSE is the average of the prediction error squares, which can



Table 6
Forecasting performance of four proposed hybrid models.

SSA-CG-BA-RBFNN SSA-CG-BA-GRNN FEEMD-CG-BA-RBFNN FEEMD-CG-BA-GRNN

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

Site 1 MAE 0.0906 0.1783 0.2799 0.0698 0.1621 0.2334 0.1047 0.1869 0.2963 0.0755 0.1661 0.2581
MSE 0.0091 0.0353 0.0871 0.0054 0.0291 0.0605 0.0122 0.0389 0.0977 0.0063 0.0306 0.0740
MAPE (%) 1.6510 3.2489 5.1002 1.2720 2.9528 4.2507 1.9053 3.4029 5.3953 1.3752 3.0261 4.7022

Site 2 MAE 0.1011 0.2155 0.3121 0.0773 0.1767 0.2483 0.0948 0.2024 0.3379 0.0862 0.1881 0.2861
MSE 0.0122 0.0555 0.1163 0.0071 0.0373 0.0738 0.0107 0.0489 0.1364 0.0089 0.0422 0.0977
MAPE (%) 1.5737 3.3484 4.8506 1.2016 2.7491 3.8576 1.4738 3.1483 5.2544 1.3405 2.9228 4.4539

Site 3 MAE 0.0938 0.2195 0.3241 0.0851 0.1755 0.2587 0.0955 0.2127 0.3472 0.0903 0.2088 0.3121
MSE 0.0105 0.0574 0.1252 0.0086 0.0367 0.0795 0.0108 0.0538 0.1435 0.0097 0.0519 0.1159
MAPE (%) 1.3249 3.0974 4.5735 1.2031 2.4749 3.6545 1.3478 3.0035 4.8984 1.2746 2.9477 4.4049

Site 4 MAE 0.1001 0.2193 0.3633 0.0919 0.2031 0.2846 0.1042 0.2251 0.3645 0.0975 0.2215 0.2903
MSE 0.0114 0.0548 0.1502 0.0096 0.0469 0.0922 0.0123 0.0577 0.1513 0.0108 0.0559 0.0959
MAPE (%) 1.3448 2.9471 4.8832 1.2347 2.7263 3.8254 1.4008 3.0241 4.8963 1.3099 2.9763 4.3003

Fig. 4. Forecasting results of four proposed hybrid models.
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evaluate the change of the prediction model; the smaller the MSE
value is, the better the prediction model is. MAPE is a measure of
the accuracy of the prediction method for use in the performance
evaluation and comparison in statistics. The detailed equations of
these three error indexes are given in Appendix C.

6.2. Experiment I

The data from four wind power stations in Penglai, China are
used as test data in this experiment, we chose 1500 history data
for training and 500 data for testing as shown in Fig. 3. The
multi-step forecasting results of SSA-CG-BA-RBFNN, SSA-CG-BA-
GRNN, FEEMD-CG-BA-RBFNN and FEEMD-CG-BA-GRNN are shown
in Table 6 and Fig. 4. The detailed multi-step promoting percent-
ages of the hybrid models of the four sites are shown in Table 7
and Fig. 5.

Table 6 and Fig. 4 indicate the following:

(a) For Site 1, when the forecasting is 1-step, SSA-CG-
BA-GRNN has the highest accuracy forecasting results
with a 1.2720% MAPE value. The second-highest to
fourth-highest accurate models are FEEMD-CG-BA-GRNN,



Table 7
Improvement percentages of four proposed hybrid models.

SSA-CG-BA-RBFNN vs. SSA-CG-BA-GRNN SSA-CG-BA-RBFNN vs. FEEMD-CG-BA-
RBFNN

SSA-CG-BA-RBFNN vs. FEEMD-CG-BA-
GRNN

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

Site 1 nMAE (%) �22.958 �9.086 �16.613 15.563 4.823 5.859 �16.667 �6.842 �7.788
nMSE (%) �40.659 �17.564 �30.540 34.066 10.198 12.170 �30.769 �13.314 �15.040
nMAPE (%) �22.956 �9.114 �16.656 15.403 4.740 5.786 �16.705 �6.858 �7.804

Site 2 nMAE (%) �23.541 �18.005 �20.442 �6.231 �6.079 8.267 �14.738 �12.715 �8.331
nMSE (%) �41.803 �32.793 �36.543 �12.295 �11.892 17.283 �27.049 �23.964 �15.993
nMAPE (%) �23.645 �17.898 �20.472 �6.348 �5.976 8.325 �14.819 �12.711 �8.178

Site 3 nMAE (%) �9.275 �20.046 �20.179 1.812 �3.098 7.127 �3.731 �4.875 �3.703
nMSE (%) �18.095 �36.063 �36.502 2.857 �6.272 14.617 �7.619 �9.582 �7.428
nMAPE (%) �9.193 �20.098 �20.094 1.728 �3.032 7.104 �3.797 �4.833 �3.686

Site 4 nMAE (%) �8.192 �7.387 �21.663 4.096 2.645 0.330 �2.597 1.003 �20.094
nMSE (%) �15.789 �14.416 �38.615 7.895 5.292 0.732 �5.263 2.007 �36.152
nMAPE (%) �8.187 �7.492 �21.662 4.164 2.613 0.268 �2.595 0.991 �11.937

SSA-CG-BA-GRNN vs. FEEMD-CG-BA-
RBFNN

SSA-CG-BA-GRNN vs. FEEMD-CG-BA-
GRNN

FEEMD-CG-BA-RBFNN vs. FEEMD-CG-
BA-GRNN

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

Site 1 nMAE (%) 50.000 15.299 26.949 8.166 2.468 10.583 �27.889 �11.129 �12.892
nMSE (%) 125.926 33.677 61.488 16.667 5.155 22.314 �48.361 �21.337 �24.258
nMAPE (%) 49.788 15.243 26.927 8.113 2.482 10.622 �27.822 �11.073 �12.846

Site 2 nMAE (%) 22.639 14.544 36.085 11.514 6.452 15.224 �9.072 �7.065 �15.330
nMSE (%) 50.704 31.099 84.824 25.352 13.137 32.385 �16.822 �13.701 �28.372
nMAPE (%) 22.653 14.521 36.209 11.560 6.318 15.458 �9.045 �7.163 �15.235

Site 3 nMAE (%) 12.221 21.197 34.210 6.110 18.974 20.642 �5.445 �1.834 �10.109
nMSE (%) 25.581 46.594 80.503 12.791 41.417 45.786 �10.185 �3.532 �19.233
nMAPE (%) 12.027 21.358 34.037 5.943 19.104 20.534 �5.431 �1.858 �10.075

Site 4 nMAE (%) 13.384 10.832 28.074 6.094 9.060 2.003 �6.430 �1.599 �20.357
nMSE (%) 28.125 23.028 64.100 12.500 19.190 4.013 �12.195 �3.120 �36.616
nMAPE (%) 13.453 10.923 27.994 6.091 9.170 12.414 �6.489 �1.581 �12.172
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SSA-CG-BA-RBFNN and FEEMD-CG-BA-RBFNN with MAPE
values of 1.3752%, 1.6510% and 1.9053%, respectively.
When the forecasting is 2-step, SSA-CG-BA-GRNN has the
most accurate forecasting results with a MAPE value of
2.9528%. According to the MAPE value, FEEMD-CG-BA-
GRNN is the second most accurate model, SSA-CG-BA-
RBFNN is the third most accurate model and FEEMD-CG-
BA-RBFNN is the fourth most accurate model with MAPE
values of 3.0261%, 3.2489% and 3.4029%, respectively.
When the forecasting is 3-step, SSA-CG-BA-GRNN is still
the most accurate forecasting model among the proposed
four hybrid models.

(b) For Site 2, SSA-CG-BA-GRNN has the most accurate forecast-
ing results among the 1.2720%, 2.7491% and 3.8576%,
respectively. When the forecasting is 2-step, FEEMD-CG-
BA-RBFNN is more accurate than SSA-CG-BA-RBFNN. In the
three-step forecasting, the precision of the hybrid models
is ranked from high to low as SSA-CG-BA-GRNN, FEEMD-
CG-BA-GRNN, SSA-CG-BA-RBFNN and FEEMD-CG-BA-
RBFNN.

(c) SSA-CG-BA-GRNN is the most accurate model for one-step to
three-step forecasting among the four hybrid models in Site
3. The CG-BA-RBFNN with the SSA decomposition algorithm
is more precise than CG-BA-RBFNN with the FEEMD
algorithm.

(d) SSA-CG-BA-GRNN is still the most accurate forecasting
model from one-step forecasting to three-step forecasting
among all of the proposed models for the data from Site 4.
However, for this site, the two-step forecasting results of
SSA-CG-BA-RBFNN are more accurate than FEEMD-CG-BA-
GRNN.
Table 7 and Fig. 5 shows the following:

(a) In the one-step predictions, the nMAPE (%) value indicates
that, from four sites, the MAPE value of SSA-CG-BA-RBFNN,
FEEMD-CG-BA-GRNN and FEEMD-CG-BA-RBFNN are
decreased with SSA-CG-BA-GRNN with �22.956, �23.645,
�9.193 and �8.187; 8.113, 11.560, 5.943 and 6.091;
�16.705, �14.819, �3.797 and �2.595, respectively.

(b) In the two-step and three-step predictions, SSA-CG-BA-
GRNN also decreases the MAPE value based on SSA-CG-BA-
RBFNN, FEEMD-CG-BA-GRNN and FEEMD-CG-BA-RBFNN.

(c) In the one-step predictions, the nMAPE (%) value illustrates
that from four sites, FEEMD-CG-BA-GRNN decreases
27.822%, 9.045%, 5.431% and 6.489% MAPE values based on
FEEMD-CG-BA-RBFNN. In the two-step predictions, FEEMD-
CG-BA-GRNN decreases 11.073%, 7.163%, 1.858% and 1.581%
MAPE values based on FEEMD-CG-BA-RBFNN. 12.846%,
15.235%, 10.075% and 12.172% MAPE values are decreased
with FEEMD-CG-BA-GRNN based on FEEMD-CG-BA-RBFNN
in the three-step predictions, respectively.
Remark. By comparing the four proposed hybrid models, the SSA-
CG-BA-GRNN hybrid model has the most accurate forecasting
results. Comparisons of FEEMD-CG-BA-GRNN with FEEMD-CG-
BA-RBFNN and SSA-CG-BA-GRNN with SSA-CG-BA-RBFNN could
conclude that the forecasting ability of GRNN is stronger than that
of RBFNN. Comparisons of SSA-CG-BA-GRNN with FEEMD-CG-BA-
GRNN and SSA-CG-BA-RBFNN with FEEMD-CG-BA-GRNN could
reveal that the hybrid models combined with SSA are more accu-
rate than the hybrid models combined with FEEMD.



Fig. 5. Promoting percentages of four hybrid models.

Table 8
Forecasting performance of SSA-BA-RBFNN, SSA-BA-GRNN, FEEMD-BA-RBFNN and FEEMD-BA-GRNN.

SSA-BA-RBFNN SSA-BA-GRNN FEEMD-BA-RBFNN FEEMD-BA-GRNN

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

Site 1 MAE 0.0971 0.1855 0.2886 0.0825 0.1665 0.2838 0.1628 0.2298 0.3498 0.0962 0.1846 0.4383
MSE 0.0104 0.0383 0.0926 0.0076 0.0309 0.0728 0.0138 0.0461 0.1034 0.0103 0.0379 0.0732
MAPE (%) 1.7693 3.3822 5.2634 1.5041 3.0375 4.7621 2.2752 3.7619 5.5838 1.7552 3.3672 5.3457

Site 2 MAE 0.1138 0.2387 0.3335 0.1081 0.1902 0.2638 0.1067 0.2225 0.3333 0.1049 0.2215 0.2961
MSE 0.0154 0.0581 0.1329 0.0139 0.0432 0.0831 0.0636 0.0892 0.1526 0.0131 0.0586 0.1311
MAPE (%) 1.7698 3.6455 5.1838 1.6799 2.9566 4.1009 1.7593 3.5575 5.5822 1.6307 3.4444 5.2921

Site 3 MAE 0.1161 0.2403 0.3621 0.1072 0.2197 0.2901 0.1272 0.2446 0.3746 0.1207 0.2438 0.3274
MSE 0.0161 0.0687 0.1559 0.0137 0.0575 0.1001 0.0193 0.0713 0.1671 0.0174 0.0708 0.1325
MAPE (%) 1.6391 3.3909 5.1124 1.5125 3.1007 4.0939 1.7951 3.4511 5.2852 1.7036 3.4409 4.7401

Site 4 MAE 0.1273 0.2421 0.3844 0.1221 0.2364 0.3149 0.1385 0.2576 0.3933 0.1304 0.2447 0.3112
MSE 0.0184 0.0667 0.1683 0.0169 0.0636 0.1128 0.0218 0.0756 0.1761 0.0193 0.0684 0.1303
MAPE (%) 1.7106 3.2516 5.1642 1.6411 3.1774 4.2304 1.8609 3.4617 5.2849 1.7519 3.2871 4.9806
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6.3. Experiment II

This experiment is divided into two parts. The first part illus-
trates the multi-step forecasting results of SSA-BA-RBFNN, SSA-
BA-GRNN, FEEMD-BA-RBFNN and FEEMD-BA-GRNN (as shown in
Table 8 and Fig. 6) and the detailed multi-step promoting percent-
ages, using the data from four sites, to evaluate the efficiency of the
developed optimization algorithm CG-BA (as shown in Table 9 and
Fig. 6). In the second part, five single models, ELM, SVM, RBFNN,
GRNN and ARIMA, are employed in multi-step prediction (as
shown in Tables 10 and 11). The detailed multi-step promoting
percentages of SSA-CG-BA-RBFNN, SSA-CG-BA-GRNN, FEEMD-CG-
BA-RBFNN and FEEMD-CG-BA-GRNN by RBFNN, GRNN and ARIMA
of four sites are shown in Tables 12 and 13.

Table 8 shows the following:

(a) SSA-BA-GRNN achieves the highest accuracy in one-step
prediction to three-step prediction based on the data from
four sites.

(b) FEEMD-BA-GRNN is ranked as the second most accurate
model among the four models listed in Table 5, except for
two-step prediction at Site 4.



Fig. 6. Forecasting results and promoting percentages of SSA-BA-RBFNN, FEEMD-BA-RBFNN, SSA-BA-GRNN and FEEMD-BA-GRNN.
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Table 9
Improvement percentages between four proposed hybrid models and SSA-BA-RBFNN, SSA-BA-GRNN, FEEMD-BA-RBFNN and FEEMD-BA-GRNN.

SSA-CG-BA-RBFNN vs. SSA-BA-
RBFNN

SSA-CG-BA-GRNN vs. SSA-BA-
GRNN

FEEMD-CG-BA-RBFNN vs.
FEEMD-BA-RBFNN

FEEMD-CG-BA-GRNN vs. FEEMD-
BA-GRNN

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

Site 1 nMAE (%) �6.694 �3.881 �3.015 �15.394 �2.643 �17.759 �35.688 �18.668 �15.294 �21.517 �10.021 �41.113
nMSE (%) �12.534 �7.833 �5.940 �28.947 �5.825 �16.896 �11.594 �15.618 �5.513 �38.834 �19.261 �1.0928
nMAPE (%) �6.686 �3.941 �3.101 �15.431 �2.788 �10.739 �16.257 �9.543 �3.376 �21.649 �10.131 �12.037

Site 2 nMAE (%) �11.159 �9.719 �6.417 �28.492 �7.098 �5.876 �11.153 �9.034 �1.380 �17.826 �15.079 �3.3772
nMSE (%) �20.779 �4.475 �12.491 �48.921 �13.657 �11.191 �83.176 �45.179 �10.616 �32.061 �27.986 �25.476
nMAPE (%) �11.081 �8.150 �6.428 �28.472 �7.018 �5.933 �16.228 �11.503 �5.872 �17.796 �15.143 �15.838

Site 3 nMAE (%) �19.207 �8.656 �10.494 �20.615 �20.118 �10.823 �24.921 �13.041 �7.315 �25.186 �14.356 �4.6731
nMSE (%) �34.782 �16.448 �19.692 �37.226 �36.173 �20.579 �44.041 �24.544 �14.123 �44.253 �26.694 �12.528
nMAPE (%) �19.169 �8.656 �10.541 �20.456 �20.182 �10.733 �24.917 �12.969 �7.319 �25.182 �14.333 �7.0716

Site 4 nMAE (%) �21.366 �9.418 �5.489 �24.733 �14.086 �9.622 �24.763 �12.616 �7.323 �25.231 �9.481 �6.7159
nMSE (%) �38.043 �17.841 �10.754 �43.195 �26.258 �18.262 �43.578 �23.677 �14.082 �44.041 �18.274 �26.401
nMAPE (%) �21.384 �9.365 �5.441 �24.763 �14.197 �9.574 �24.724 �12.641 �7.353 �25.229 �9.455 �13.659

Table 10
Forecasting performance of RBFNN, GRNN and ARIMA.

RBFNN GRNN ARIMA

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

Site 1 MAE 0.2523 0.3171 0.4377 0.1861 0.2947 0.3979 0.2912 0.4418 0.6071
MSE 0.0707 0.1117 0.2131 0.0385 0.0966 0.1761 0.0943 0.2169 0.4095
MAPE (%) 4.6003 5.7811 7.9794 3.3943 5.3733 7.2559 5.3109 8.0568 11.068

Site 2 MAE 0.2938 0.3846 0.5073 0.2229 0.3395 0.4707 0.3431 0.5241 0.7085
MSE 0.1031 0.1767 0.3073 0.0594 0.1377 0.2646 0.1405 0.3279 0.5996
MAPE (%) 4.5687 5.9792 7.8871 3.4642 5.2785 7.3189 5.3339 8.1481 11.013

Site 3 MAE 0.3245 0.4228 0.5418 0.2424 0.3901 0.4853 0.3981 0.5769 0.7797
MSE 0.1253 0.2128 0.3494 0.0699 0.1811 0.2804 0.1886 0.3961 0.7233
MAPE (%) 4.5794 5.9651 7.6461 3.4238 5.5041 6.8491 5.6167 8.1408 11.006

Site 4 MAE 0.3223 0.4522 0.5823 0.2571 0.4079 0.5157 0.4049 0.5858 0.8383
MSE 0.1183 0.2328 0.3861 0.0753 0.1894 0.3028 0.1867 0.3906 0.8006
MAPE (%) 4.3311 6.0751 7.8223 3.4524 5.4806 6.9291 5.4401 7.8699 11.261

Table 11
Forecasting performance of ELM and SVM.

ELM SVM

1-step 2-step 3-step 1-step 2-step 3-step

Site 1 MAE 0.1774 0.2756 0.4566 0.2614 0.3015 0.4118
MSE 0.0381 0.0905 0.1645 0.0495 0.1166 0.1849
MAPE (%) 3.1044 5.0019 6.9985 3.6498 5.7654 7.6811

Site 2 MAE 0.1956 0.3141 0.4415 0.2415 0.3124 0.4845
MSE 0.0428 0.1124 0.2561 0.0469 0.1244 0.3146
MAPE (%) 3.2107 5.0163 6.9875 3.7105 5.8647 7.6447

Site 3 MAE 0.2014 0.3421 0.4685 0.2768 0.3216 0.4975
MSE 0.0419 0.1031 0.2541 0.0684 0.1467 0.3017
MAPE (%) 3.1964 5.1651 6.9541 3.8004 5.9451 7.1847

Site 4 MAE 0.2051 0.3518 0.5251 0.2617 0.5131 0.5347
MSE 0.0423 0.1179 0.2741 0.0751 0.2015 0.3241
MAPE (%) 3.1553 5.1618 6.9144 3.8117 5.9614 7.1874
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(c) The forecasting accuracy of BA-RBFNN with the decomposi-
tion algorithms SSA and FEEMD is lower than that of BA-
GRNN with the decomposition algorithms SSA and FEEMD,
mostly.

Table 9 illustrates the following:

(a) In the one-step to three-step predictions, SSA-BA-RBFNN
decreases the MAPE values from four sites based on SSA-
CG-BA-RBFNN are 6.6862%, 3.9412% and 3.1007%;11.081%,
8.1497% and 6.4277%; 19.169%, 8.6555% and 10.541% and
21.384%, 9.3646% and 5.4413%, respectively.
(b) For the data from four sites, SSA-BA-GRNN decreases the
MAPE values in the one-step to three-step predictions on
the basis of SSA-CG-BA-GRNN are 15.431%, 2.7884% and
10.739%;28.472%, 7.0181% and 5.9328%; 20.456%, 20.182%
and 10.733% and 24.763%, 14.197% and 9.5735%,
respectively.

(c) The nMAPE (%) values presents that from four sites in the one-
step to three-step predictions, the MAPE values are
decreased with 16.257%, 9.5431% and 3.3758%; 16.228%,
11.5025% and 5.8722%; 24.917%, 12.969% and 7.3186% and
24.724%, 12.641% and 7.3531% with FEEMD-CG-BA-RBFNN
based on FEEMD-BA-RBFNN, respectively.



Table 12
Improvement percentages between four proposed hybrid models and RBFNN and GRNN.

SSA-CG-BA-RBFNN vs. RBFNN FEEMD-CG-BA- RBFNN vs. RBFNN SSA-CG-BA-GRNN vs. GRNN FEEMD-CG-BA-GRNN vs. GRNN

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

Site
1

nMAE (%) �105.408 �65.2832 �42.1579 �166.619 �81.8014 �70.4799 �77.7459 �57.6779 �34.2896 �146.491 �77.4232 �54.1651
nMSE (%) �323.076 �173.654 �102.181 �612.963 �231.959 �191.074 �215.573 �148.329 �80.2457 �511.111 �215.686 �137.973
nMAPE

(%)
�105.591 �65.3882 �42.2669 �166.848 �81.9731 �70.6989 �78.1504 �57.9035 �34.4856 �146.822 �77.5652 �54.3086

Site
2

nMAE (%) �120.474 �57.541 �50.817 �188.357 �92.134 �89.569 �135.127 �67.737 �39.302 �158.585 �80.489 �64.523
nMSE (%) �386.885 �148.108 �127.515 �736.619 �269.169 �258.537 �455.141 �181.595 �93.988 �567.416 �226.303 �170.829
nMAPE

(%)
�120.131 �57.642 �50.887 �188.299 �92.008 �89.727 �135.052 �67.662 �39.291 �158.426 �80.597 �64.326

Site
3

nMAE (%) �158.422 �77.722 �49.738 �184.841 �122.279 �87.592 �153.822 �83.404 �39.775 �168.439 �86.830 �55.495
nMSE (%) �565.714 �215.505 �123.961 �712.791 �393.461 �252.704 �547.222 �236.617 �95.401 �620.619 �248.941 �141.933
nMAPE

(%)
�158.419 �77.701 �49.756 �184.582 �122.397 �87.416 �154.029 �83.256 �39.823 �168.618 �86.725 �55.488

Site
4

nMAE (%) �156.843 �86.001 �41.949 �179.761 �100.837 �81.202 �146.737 �81.208 �41.482 �163.692 �84.154 �77.644
nMSE (%) �560.526 �245.621 �101.597 �684.375 �303.838 �228.416 �512.195 �228.249 �100.132 �597.222 �238.819 �215.746
nMAPE

(%)
�156.722 �85.966 �41.897 �179.614 �101.027 �81.134 �146.459 �81.231 �41.517 �163.562 �84.141 �61.131

Table 13
Improvement percentages between four proposed hybrid models and ARIMA.

SSA-CG-BA-RBFNN vs. ARIMA FEEMD-CG-BA- RBFNN vs.
ARIMA

SSA-CG-BA-GRNN vs. ARIMA FEEMD-CG-BA-GRNN vs. ARIMA

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

Site 1 nMAE (%) 221.412 147.784 116.899 317.192 172.548 160.111 178.128 136.383 104.893 285.695 165.984 135.218
nMSE (%) 936.263 514.447 370.149 1646.29 645.361 576.859 672.951 457.583 319.142 1396.82 608.823 453.378
nMAPE (%) 221.677 147.985 117.011 317.523 172.853 160.381 178.743 136.762 105.141 286.191 166.243 135.379

Site 2 nMAE (%) 239.367 143.201 127.011 343.855 196.604 185.341 261.919 158.942 109.677 298.027 178.628 147.641
nMSE (%) 1051.63 490.810 415.563 1878.87 779.089 712.466 1213.08 570.552 339.589 1478.65 677.014 513.715
nMAPE (%) 238.940 143.343 127.044 343.899 196.392 185.488 261.914 158.809 109.595 297.903 178.777 147.266

Site 3 nMAE (%) 324.413 162.824 140.573 367.803 228.718 201.392 316.858 171.227 124.568 340.863 176.293 149.823
nMSE (%) 1696.19 590.069 477.715 2093.02 979.292 809.811 1646.29 636.245 404.041 1844.33 663.198 524.072
nMAPE (%) 323.933 162.826 140.647 366.852 228.935 201.163 316.731 171.043 124.685 340.663 176.174 149.858

Site 4 nMAE (%) 304.495 167.122 130.746 340.588 188.429 194.554 288.579 160.239 129.986 315.282 164.469 188.771
nMSE (%) 1537.71 612.773 433.023 1844.79 732.836 768.329 1417.88 576.949 429.147 1628.71 598.747 734.827
nMAPE (%) 304.528 167.038 130.607 340.601 188.666 194.374 288.357 160.239 129.992 315.306 164.418 161.865

L. Xiao et al. / Energy Conversion and Management 143 (2017) 410–430 425
(d) In the one-step to three-step predictions, the MAPE values
from four sites of by FEEMD-BA-GRNN are decreased
21.649%, 10.131% and 12.037%; 17.796%, 15.143% and
15.838%; 25.182%, 14.333% and 7.0716% and 25.229%,
9.4551% and 13.659% with FEEMD-CG-BA-GRNN,
respectively.
Remark. By comparing SSA-CG-BA-RBFNN, SSA-CG-BA-GRNN,
FEEMD-CG-BA-RBFNN and FEEMD-CG-BA-GRNN with SSA-BA-
RBFNN, SSA-BA-GRNN, FEEMD-BA-RBFNN and FEEMD-BA-GRNN,
the performance of the proposed optimization algorithm CG-BA
is better than that of the original BA.

Tables 10–13 indicate the following:

(a) GRNN and ARIMA are the most and least accurate forecast-
ing models, respectively, among RBFNN, GRNN and ARIMA
in one-step to three-step prediction of the data from four
sites.

(b) The four proposed models are more accurate than ELM and
SVM. ELM is more accurate than RBFNN, GRNN, ARIMA
and SVM.

(c) Based on the one-step to three-step prediction of RBFNN,
from four sites, SSA-CG-BA-RBFNN decreases 105.591%,
65.3882% and 42.2669%; 120.131%, 57.6424% and
50.8865%; 158.419%, 77.7006% and 49.7562%; 156.722%,
85.9658% and 41.8967% MAPE values, respectively. And
FEEMD-CG-BA-RBFNN decreases 166.848%, 81.9731% and
70.6989%; 188.299%, 92.0083% and 89.7268%; 184.582%,
122.397% and 87.4155%; 179.614%, 101.027% and 81.1342%
MAPE values, respectively.

(d) In the one-step to three-step prediction, the MAPE promoted
percentages from four sites of SSA-CG-BA-GRNN and
FEEMD-CG-BA-GRNN by GRNN are �78.1504%, �57.9035%
and �34.4856% and �146.822%, �77.5652% and �54.3086%;
�135.052%, �67.6619% and �39.2909% and �158.426%,
�80.5974% and �64.3257%; �154.029%, �83.2562% and
�39.8232% and �168.618%, �86.7252% and �55.4882%;
�146.459%, �81.2308% and �41.5171% and �163.562%,
�84.1414% and �61.13065%, respectively.

(e) For Site 1, the MAPE promoted percentages, in the one-step
to three-step prediction, from four sites of ARIMA with SSA-
CG-BA-RBFNN, FEEMD-CG-BA-RBFNN, SSA-CG-BA-GRNN and
FEEMD-CG-BA-GRNN are �1221.677%, �147.985% and
�117.011%; �317.523%, �172.853% and �160.381%;
�178.743%, �136.762% and �105.141%; �286.191%,
�166.243% and �135.379%, respectively.

(f) For Site 2, the MAPE promoted percentages, in the one-step
to three-step prediction, from four sites of ARIMA with SSA-
CG-BA-RBFNN, FEEMD-CG-BA-RBFNN, SSA-CG-BA-GRNN



Table 14
Forecasting results of the persistence prediction test.

No. Actual value (m/s) Forecasting value (m/s) MAPE (%) No. Actual value (m/s) Forecasting value (m/s) MAPE (%)

1 3.8 3.8418 1.0988 51 4.5 4.4465 1.1881
2 3.8 3.7554 1.1742 52 4.8 4.7456 1.1330
3 3.8 3.7536 1.2200 53 4.6 4.6508 1.1038
4 3.9 3.8576 1.0867 54 4.1 4.0504 1.2091
5 4.1 4.1469 1.1439 55 4.3 4.3519 1.2079
6 3.7 3.6552 1.2109 56 4.4 4.3468 1.2095
7 3.1 3.1386 1.2440 57 4.3 4.2474 1.2242
8 3.2 3.1592 1.2737 58 4.2 4.1463 1.2787
9 2.2 2.1748 1.1450 59 4.4 4.4485 1.1012
10 2.1 2.1252 1.2022 60 4.3 4.3470 1.0927
11 2.2 2.1744 1.1647 61 5.2 5.2608 1.1697
12 2 2.0227 1.1333 62 6.2 6.2764 1.2327
13 2.5 2.5284 1.1362 63 6.4 6.3210 1.2344
14 2.4 2.4285 1.1854 64 6.2 6.1210 1.2745
15 2.3 2.3289 1.2551 65 5.4 5.4598 1.1078
16 2.8 2.7645 1.2687 66 4.2 4.1539 1.0988
17 3.5 3.4555 1.2715 67 4.1 4.0514 1.1861
18 4 4.0486 1.2152 68 4.4 4.3482 1.1770
19 4.2 4.2510 1.2144 69 5.4 5.4656 1.2143
20 3.8 3.7584 1.0936 70 5.9 5.8301 1.1840
21 2.8 2.8315 1.1248 71 6 6.0666 1.1100
22 2.8 2.7650 1.2489 72 6 5.9321 1.1324
23 3.1 3.1383 1.2361 73 6.4 6.4788 1.2310
24 3.1 3.0665 1.0813 74 5.9 5.9689 1.1685
25 3.6 3.5583 1.1574 75 6.3 6.2274 1.1518
26 5.6 5.5395 1.0802 76 6.1 6.0293 1.1589
27 5 5.0582 1.1649 77 6 5.9268 1.2208
28 4.8 4.8592 1.2340 78 6.1 6.1661 1.0839
29 4.6 4.6569 1.2369 79 6.3 6.3734 1.1649
30 3.4 3.4370 1.0872 80 6.4 6.4716 1.1194
31 4.3 4.3526 1.2244 81 6.8 6.7207 1.1660
32 4.6 4.6511 1.1105 82 7.1 7.0178 1.1582
33 4.3 4.3517 1.2015 83 7.1 7.0177 1.1594
34 4.4 4.4540 1.2277 84 6.9 6.8151 1.2310
35 4.3 4.3543 1.2635 85 6.2 6.2696 1.1232
36 3.4 3.4419 1.2331 86 5.7 5.6276 1.2699
37 2.4 2.4273 1.1375 87 5.7 5.7692 1.2143
38 2.3 2.3275 1.1952 88 5.6 5.6698 1.2467
39 2.6 2.5691 1.1893 89 5.7 5.6365 1.1135
40 2.8 2.8338 1.2089 90 5.8 5.7259 1.2780
41 2.6 2.5684 1.2158 91 5.6 5.5296 1.2569
42 2.7 2.6657 1.2690 92 5.9 5.8345 1.1110
43 2.8 2.8342 1.2219 93 5.8 5.8674 1.1614
44 3.6 3.6397 1.1039 94 5.6 5.5303 1.2451
45 4.1 4.0520 1.1700 95 5.3 5.2394 1.1437
46 4.6 4.6558 1.2124 96 5.2 5.1429 1.0980
47 4.4 4.3494 1.1500 97 5.3 5.3587 1.1073
48 3.9 3.8546 1.1632 98 5.4 5.3363 1.1790
49 4.1 4.0489 1.2466 99 5.4 5.4637 1.1790
50 3.7 3.7445 1.2027 100 4.8 4.8524 1.0910
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and FEEMD-CG-BA-GRNN are �238.940%, �143.343% and
�127.044%; �343.899%, �196.392% and �185.488%;
�261.914%, �158.809% and �109.595% and �297.903%,
�178.777% and �147.266%, respectively.

(g) The MAPE promoted percentages, for Site 3 in the one-step
to three-step prediction, from four sites of ARIMA with
SSA-CG-BA-RBFNN, FEEMD-CG-BA-RBFNN, SSA-CG-BA-
GRNN and FEEMD-CG-BA-GRNN are �323.933%,
�162.826% and �140.647%; �366.852%, �228.935%
and �201.163%; �316.731%, �171.043% and
�124.685% and �340.663%, �176.174% and �149.858%,
respectively.

(h) In the one-step to three-step prediction for Site 4, the MAPE
promoted percentages from four sites of ARIMA with SSA-
CG-BA-RBFNN, FEEMD-CG-BA-RBFNN, SSA-CG-BA-GRNN
and FEEMD-CG-BA-GRNN are �304.528%, �167.038% and
�130.607%; �340.601%, �188.666% and �194.374%;
�288.357%, �160.239% and �129.992%; �315.306%,
�164.418% and �161.865%, respectively.
Remark. By comparing SSA-CG-BA-RBFNN, SSA-CG-BA-GRNN,
FEEMD-CG-BA-RBFNN and FEEMD-CG-BA-GRNN with ELM, SVM,
RBFNN, GRNN and ARIMA, the forecasting performance of the pro-
posed four hybrid models are better than that of the single models.

6.4. Experiment III: Persistence prediction test

To evaluate the proposed model, in this part a persistence pre-
diction test is employed. In this test, the proposed model is used to
output 100 continuous data. The forecasting results presented in
Table 14 show that SSA-CG-BA-GRNN could always keep a high
forecasting performance in this test.
6.5. Experiment IV: Diebold-Mariano (DM)-test and forecasting
validity degree (FVD)

The DM test and FVD are conducted to further evaluate the
levels of accuracy achieved by the proposed hybrid models (as
shown in Fig. 7).



Fig. 7. Process of hybrid forecasting strategy and DM test results.
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DM test which is a comparison test focusing on predictive accu-
racy, could be used to compare the forecasting performance of the
proposed hybrid model with others. For more details, one can refer
[55], which provides a complete description of the DM test theory.

FVD can be measured not only by the square sum of forecasting
error but also by the mean and mean squared deviation of the fore-
casting accuracy. It is a useful tool to evaluate the forecasting accu-
racy of the model. For more details, one can refer [56], which
provides a complete description of the DM test theory.

The results given in Table 15 indicate the following:

(a) SSA-CG-BA-RBFNN is more accurate than RBFNN and ARIMA
at the 10% significance level, more accurate than SSA-BA-
RBFNN, FEEMD-BA-RBFNN, SSA-BA-GRNN, FEEMD-BA-
GRNN and GRNN at the 5% significance level, and more accu-
rate than FEEMD-CG-BA-RBFNN at the 1% significance level.

(b) FEEMD-CG-BA-RBFNN is more accurate than RBFNN, GRNN
and ARIMA at the 10% significance level and more accurate
than SSA-BA-RBFNN, FEEMD-BA-RBFNN, SSA-BA-GRNN and
FEEMD-BA-GRNN at the 5% significance level.

(c) SSA-CG-BA-GRNN is the most accurate model among these
models. It is more accurate than SSA-CG-BA-RBFNN,
FEEMD-CG-BA-RBFNN and FEEMD-CG-BA-GRNN at the 1%
significance level, more accurate than SSA-BA-RBFNN,
FEEMD-BA-RBFNN, SSA-BA-GRNN and FEEMD-CG-BA-
GRNN at the 5% significance level, and more accurate than
RBFNN, GRNN and ARIMA at the 10% significance level.

(d) FEEMD-CG-BA-GRNN is more accurate than SSA-CG-BA-
RBFNN and FEEMD-CG-BA-RBFNN at the 1% significance
level, more accurate than SSA-BA-RBFNN, FEEMD-BA-
RBFNN, SSA-BA-GRNN and FEEMD-CG-BA-GRNN at the 5%
significance level, and more accurate than RBFNN, GRNN
and ARIMA at the 10% significance level.

FVD is measured to evaluate the forecasting accuracy of the
hybrid models and the other six comparison models. A more accu-
rate forecasting model leads to a larger FVD value. The results pre-
sented in Table 16 show that the FVD value for the SSA-CG-BA-
GRNN model is larger than those of the comparison models.

Remark. Based on the results from the above two methods, the
forecasting performance of SSA-CG-BA-GRNN has been globally
evaluated. From the results of the DM test and FVD, one can see
that SSA-CG-BA-GRNN is the most accurate forecasting model
among the proposed forecasting architecture for multi-step wind
speed forecasting. As shown in Table 17, SSA-CG-BA-GRNN is more



Table 15
Results for the DM test.

SSA-CG-BA-RBFNN

DM-test
FEEMD-CG-BA-RBFNN 1.773275*

SSA-CG-BA-GRNN 1.298743
FEEMD-CG-BA-GRNN 1.480342
SSA-BA-RBFNN 2.092264**

FEEMD-BA-RBFNN 2.043212**

SSA-BA-GRNN 1.999822**

FEEMD-BA-GRNN 1.970851**

RBFNN 3.673214***

GRNN 2.570125**

ARIMA 5.662563***

FEEMD-CG-BA-RBFNN

SSA-CG-BA-RBFNN 1.577545
SSA-CG-BA-GRNN 1.290934
FEEMD-CG-BA-GRNN 1.400953
SSA-BA-RBFNN 1.992563**

FEEMD-BA-RBFNN 2.001252**

SSA-BA-GRNN 1.900823**

FEEMD-BA-GRNN 1.980123**

RBFNN 3.356216***

GRNN 2.790325***

ARIMA 5.467216***

SSA-CG-BA-GRNN

SSA-CG-BA-RBFNN 1.933213*

FEEMD-CG-BA-RBFNN 1.956331*

FEEMD-CG-BA-GRNN 1.763224*

SSA-BA-RBFNN 2.456424**

FEEMD-BA-RBFNN 2.473563**

SSA-BA-GRNN 2.345621**

FEEMD-BA-GRNN 2.578142**

RBFNN 3.809438***

GRNN 3.155621***

ARIMA 5.779335***

FEEMD-CG-BA-GRNN

SSA-CG-BA-RBFNN 1.893781*

FEEMD-CG-BA-RBFNN 1.960031*

SSA-CG-BA-GRNN 1.602371
SSA-BA-RBFNN 2.244341**

FEEMD-BA-RBFNN 2.389023**

SSA-BA-GRNN 2.109824**

FEEMD-BA-GRNN 2.100231**

RBFNN 3.673214***

GRNN 2.700915***

ARIMA 5.662563***

* 1% significance level.
** 5% significance level.
*** 10% significance level.

Table 17
Total computation time of each model.

Model CPU time (s)

SSA-CG-BA-RBFNN 38.6145
FEEMD-CG-BA-RBFNN 39.1547
FEEMD-CG-BA-GRNN 31.0245
SSA-CG-BA-GRNN 28.6414
SSA-BA-RBFNN 23.6554
FEEMD-BA-RBFNN 24.0046
SSA-BA-GRNN 22.0894
FEEMD-BA-GRNN 23.1663
RBFNN 16.2461
GRNN 14.2541
ARIMA 8.9564
ELM 12.6791
SVM 18.4989

Table 16
Results for FVD.

Model FVD

1-step 2-step 3-step

SSA-CG-BA-RBFNN 98.5264 96.8396 95.1481
FEEMD-CG-BA-RBFNN 98.4681 96.8553 94.8889
SSA-CG-BA-GRNN 98.7722 97.2742 96.1030
FEEMD-CG-BA-GRNN 98.6750 97.0318 95.5347
SSA-BA-RBFNN 98.2778 96.5825 94.8191
FEEMD-BA-RBFNN 98.0774 96.4420 94.5660
SSA-BA-GRNN 98.4156 96.9320 95.7032
FEEMD-BA-GRNN 98.2897 96.6151 94.9104
RBFNN 95.4801 94.0499 92.1663
GRNN 96.5663 94.5909 92.9118
ARIMA 94.5746 91.9461 88.9130

The best results are formatted in bold.
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efficient than FEEMD-CG-BA-GRNN, SSA-CG-BA-RBFNN and
FEEMD-CG-BA-RBFNN. The relation between the wind speed and
wind power generation could be expressed as the following
equation:

Pa ¼ exp½�ðvc=cÞk� � exp½�ðv r=cÞk�
ðv r=cÞk � ðvc=cÞk

� exp½�ðv f =cÞk�
( )

� Pr ð2Þ

where Pa is the average power output of the wind turbine (kW), Pr is
the rated electrical power of the wind turbine (kW), vc is the cut-in
wind speed (m/s), vf is the cut-off wind speed (m/s), vr is the nom-
inal wind speed (m/s), and c is the Weibull scale parameter (m/s). It
is observed that the accurate wind speed forecasting plays an
important role in the wind power generation.
7. Conclusion

As one of the most promising potential renewable energies,
wind energy has been a focus of many scientists and researchers
and supported by almost every government across the world. To
integrate wind energy into the power system, it is important to
forecast wind power generation. Wind speed is affected by various
environmental factors, so wind speed data present high fluctua-
tions, autocorrelation and stochastic volatility, and it is difficult
to forecast wind speed using a single model. In this paper, four
hybrid models based on two decomposition algorithms, SSA and
FEEMD, and two neural networks, RBFNN and GRNN, are proposed
for multi-step wind speed forecasting. Meanwhile, to improve the
performance of the neural networks, a new improved BA algo-
rithm, CG-BA, based on CG is proposed to optimize the initial
weights and thresholds of neural networks. Based on a series of
forecasting results, the DM test and FVD, the following can be con-
cluded: (a) the hybrid SSA-CG-BA-GRNN model is the most accu-
rate model among the four proposed models in multi-step wind
speed forecasting; (b) the decomposition algorithm SSA is better
than FEEMD in this study; (c) the performance of the single model
GRNN is more accurate than RBFNN and ARIMA.

Thus, the proposed SSA-CG-BA-GRNN model, which has the
highest precision, is a promising model for use in the future. This
hybrid model can also be applied in many other fields, such as
tourism demand forecasting, product sales forecasting, power load
forecasting, and traffic flow forecasting.
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Appendix A

A.1. SSA and FEEMD

SSA is a novel nonparametric method, which is employed in the
analysis of time series and combines multivariate statistic and
probability theory, and it is often used for identifying and extract-
ing periodic, quasi-periodic and oscillatory components from the
primal data [28]. Standard SSA performs four steps, which include
embedding, singular value decomposition, grouping and diagonal
averaging. However, the first two steps are also called the time ser-
ies decomposition, and steps three and four are known as the
reconstruction. For more details, one can refer [28,44], which pro-
vides a complete description of the SSA theory.

FEEMD is an extension of the empirical mode decomposition
[45] and ensemble empirical mode decomposition techniques
[46]. The fast ensemble empirical mode decomposition technique
is a time-domain decomposing method, which can convert a group
of time series into multiple empirical modes, named as the intrin-
sic mode functions (IMFs). y(t) is the time series, it can be decom-
posed and expressed using the following formula:

yðtÞ ¼
Xn
j¼1

IMFjðtÞ þ rnðtÞ ðA1Þ

where IMFj (t), j = 1, 2, . . . , n, is the intrinsic mode function (i.e., local
oscillation) based on empirical mode decomposition and rn(t) is the
nth residue (i.e., local trend). For more details, one can refer [47],
which provides a complete description of the SSA theory.

Appendix B

B.1. Standard RBFNN
Definition 1. Cluster centers were composed of elements

mj
i ðj ¼ 1� nÞ from the center vectormi, which is in the input space.
Definition 2. With elements Ij (j = 1 � n), the distance measure is
used to determine how far the center vector mi is from an input
vector I. The popular distance measure is the Euclidian distance,
defined as

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
kijðIj �mi

jÞ
2

r
ðB1Þ

where kij is the (i, j)th element of the shape matrix K, defined as the
inverse of the covariance matrix:

kij ¼
hi
j

ðri
jÞ
2 ðB2Þ

where hi
j is the correlation coefficient, and ri

j represents the mar-
ginal standard deviation.
Table C1
Three metric rules.

Metric Definition Equation

MAE The average absolute forecast error
of n times forecast results

MAE ¼ 1
N

PN
n¼1jyn � ŷnj

MSE The average of the prediction error
squares

MSE ¼ 1
N

PN
n¼1ðyn � ŷnÞ2

MAPE The average of absolute error MAPE ¼ 1
N

PN
n¼1

yn�ŷn
yn

��� ���� 100%

Where yn and ŷn denote the actual value and predicted value, respectively, of the
nth data for the performance estimate, and N is the length of the dataset to compare
and evaluate.
Definition 3. A transfer function transforms the Euclidian summa-
tion dj (i = 1 �m) and gives an output for each node. The output
generated by the hidden layer was from the input layer via a dis-
tance measure of Eq. (B1) and a transfer function. A weighted
sum of the outputs of /ðdiÞ from the hidden layer processed the
output of the network, i.e.,

O ¼ w0 þ
Xm
i¼1

wi/ðdiÞ ðB3Þ

Appendix B2 Standard GRNN.
Definition 1. The input layer accepts information and also stores
an input vector X, whose dimension m equals the number of input
layer neurons. The pattern layer is then fed the data that comes
from the input neurons of the input layer. A nonlinear transforma-
tion, which transforms the input space into the pattern space, was
used by the pattern layer. The neurons of the pattern layer can
remember the relation between the input neuron and the proper
response of the pattern layer, in which the number of neurons is
equal to the number of training samples n. The pattern Gaussian
function of pi is expressed as

pi ¼ exp �ðX � XiÞTðX � XiÞ
2r2

" #
ði ¼ 1;2; . . . ;nÞ ðB4Þ

where r represents the spread parameter, and X is the network’s
input variable. In the pattern layer, Xi is a specific training sample
of neuron i.
Definition 2. Ss and Sw are the two summations of the summation
layer. The simple summation Ss is used to calculate the arithmetic
sum from the outputs that belong to the pattern layer, and i is the
interconnection weight of the simple summation. The weighted
summation Sw is used to calculate the weighted sum from the out-
puts that belong to the pattern layer, and w is the interconnection
weight of the weighted summation. The transfer functions can be
described by Eqs. (B4) and (B5):

Ss ¼
X
t¼1

pt; t ¼ 1 . . .n ðB5Þ

Swt ¼
X
t¼1

wtpt; t ¼ 1 . . .n ðB6Þ

where wt is the weight of pattern neuron t that is connected to the
summation layer.
Definition 3. In the output layer, the number of neurons is equal
to the dimension k of the output vector Y. In the summation layer,
after the summations, the output absorbs the neurons, and the out-
put Y of the output neurons can be computed as

Ŷo ¼ Ss=Swo; o ¼ 1 . . . k ðB7Þ
If the training set is given, the spread parameter R is the only
parameter that must be confirmed.
Appendix C

C.1. Accuracy estimating indexes

The detailed equations of MAE MSE and MAPE are given in
Table C1.
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Additionally, to obtain the detailed promoting percentages
when comparing two forecasting, i.e. model 1 and model 2, three
percentage error indexes are also defined as follows:

nMAE ¼ MAE2 �MAE1

MAE1
� 100% ðC1Þ
nMSE ¼ MSE2 �MSE1

MSE1
� 100% ðC2Þ
nMAPE ¼ MAPE2 �MAPE1

MAPE1
� 100% ðC3Þ

The negative value of nMAE (%) means model 2 decreases |nMAE|%
MAE value based on model 1, the positive value of nMAE (%) means
model 2 increases |nMAE|% MAE value based on model 1. So do nMSE

(%) and nMAPE (%).
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