
Middleware for Internet of Things:
A Quantitative Evaluation in Small Scale

Andrei Palade, Christian Cabrera, Gary White, M.A. Razzaque, Siobhán Clarke
Distributed Systems Group, SCSS, Trinity College Dublin, Dublin, Ireland

Email: {paladea,cabrerac,whiteg5,razzaqum,Siobhan.Clarke}@scss.tcd.ie

Abstract—Recently, there have been a large number of propos-
als for IoT middleware solutions. In addition, a few recent studies
have surveyed and qualitatively evaluated these IoT middleware
proposals against functional and non-functional features. A quan-
titative evaluation is also needed to complement these existing
qualitative studies and provide a more in-depth perspective of
the state of the art. This paper presents a quantitative evaluation
of 4 representative proposals: OpenIoT, CHOReOS, LinkSmart
and UBIWARE. The evaluation results, based on a small real-life
scenario, show that research is needed in the area of autonomous
and scalable service registration, discovery and composition,
heterogeneity, and interoperability of IoT middlewares.

I. INTRODUCTION

Discovering, connecting and coordinating services in IoT in
order to build new applications is a delicate, time-consuming,
and error-prone process, which requires a considerable amount
of low-level programming and system administration ef-
fort [1]. Middleware technologies have been developed to
reduce the complexity of dealing with some of these techni-
cal challenges. A middleware eases application development
by integrating heterogeneous computing and communication
devices, and supporting interoperability within the diverse
applications and services running on these devices. In IoT,
a service provides a well-defined interface, which offers all
the necessary functionalities for interacting with the resources
exposed by devices or infrastructures [2], [3]. A middle-
ware should offer, among other things, functional components
necessary for service discovery, service composition, data
management, event management and code management.

The IoT makes middleware tasks even more challenging,
as services offered by Things are often dynamic, mobile, less
reliable and device-dependent. An IoT middleware must ad-
dress non-functional requirements, including scalability, time-
liness, reliability, availability, security, privacy and ease of
deployment. Moreover, an IoT middleware should include
architectural features to provide programming abstraction, in-
teroperability, adaptability, context-awareness, autonomy and
distributiveness [4]. Recent research into IoT middleware has
resulted in a number of middleware solutions. A few recent
studies have surveyed and qualitatively evaluated these IoT
middleware solutions against functional and non-functional
features [4]–[6]. This paper complements previous qualitative
studies and presents a quantitative evaluation of 4 represen-
tative IoT middlewares: OpenIoT [7], CHOReOS [8], UBI-

WARE [9] and LinkSmart [10]. These representative middle-
wares are the top 4 IoT middlewares in terms of supported
features, selected from a list of 60 middlewares [4] using an
analytic hierarchy process (AHP) [11].

The evaluation provides a deeper perspective of the state
of the art with respect to a subset of functional and non-
functional features of IoT middleware. The IoT middleware
features captured in the considered evaluation scenario (multi-
modal journey) particularly address the innovative capabilities
(autonomy, context-awareness, interoperability) that the IoT
brings to software service development. The rest of the paper
is organised as follows: Section II presents the IoT middleware
requirements addressed in this evaluation, the scenario that
captures these requirements, and the methodology used to
select the 4 representative middlewares. Section III introduces
the metrics used in the evaluation and the experimental ar-
chitecture. Section IV presents the results of the quantitative
evaluation. Open research challenges including possible future
research directions are presented in Section V. Section VI
outlines related work. Section VII concludes the work and
points to areas of potential future work.

II. STUDY SCOPE

The evaluation focuses on quantifying selected require-
ments of the IoT which have been identified by the existing
studies. This is achieved through the scenario implementation
which captures the innovative capabilities of the IoT through
a number of use cases. The methodology used to select the
representative IoT middlewares is also included.

1) Middleware Requirements. A middleware must offer
components for registering, discovering and composing the
available services. As the IoT’s infrastructure is dynamic,
heterogeneous and large-scale, human intervention for ser-
vice registration and discovery can become infeasible (e.g.,
M2M communication systems). An IoT middleware poten-
tially exposes services from a large number of heterogeneous
resources, which can make manual registration and service
discovery impractical. In this context reliability, precision and
recall in search time, as well as the response time can de-
grade. A semi-automated or automated decentralised approach
has the potential to provide scalable service registration and
discovery in a sufficiently timely manner for real-time service
provision, and this is considered a key requirement in this
study.978-1-5386-2723-5/17/$31.00 2017 IEEE

Services provided by resource-constrained devices (e.g., the
Telos motes in Figure 2) are likely to provide limited QoS, or
to disappear abruptly. In many cases, another service may not
be available that provides the required functionality. An IoT
middleware should include a service composition component,
where the available services can be composed or recomposed
to provide the requested service. As the number of IoT
resources increase a scalable, semi-automated or automated
approach is needed to compose the optimal service. The mid-
dleware should proactively provide a timely response from the
composed service even when IoT services become unavailable,
or have an intermittent behaviour. An IoT middleware should
dynamically adapt to contextual changes during the execution
of the services, which may trigger further re-composition.

Installation, deployment and updating might make many
middleware solutions unusable due to the significant time
and skills required to set them up. A middleware must be
easily deployable in a reasonable amount of time and should
not require expert knowledge. In many cases, developer and
community support are often critical in ensuring continuous
improvement of the middleware and to address issues which
are not included in the documentation.

2) Scenario Definition. The main goal of the scenario is
to capture the uniqueness of the innovative capabilities that
IoT brings to software service development. In particular, the
scenario highlights autonomy, dynamism, adaptability, device
heterogeneity, real time behaviour, interoperability and context
awareness. The scenario presents a real-time and adaptive
route planner application, where a user wants the optimal route
from the Science Gallery to Dublin Spire.

Get
Forecast

Get Bike
Rack Status

Get Bus
Status

[bikeAvailable/
bikeNotAvailable][good]

[bad]

Get Route

[busAvailable/
busNotAvailable]

Unforeseen
Event

Searching
Software
Services

[segment/not
event]

rediscovering
software
services

monitoring
environment
status

User
Request

Response
to the User

Fig. 1. Basic workflow of the scenario in each middleware

There are two possible routes for the user in the scenario. In
the first route the user walks towards the closest bike rack from
The Science Gallery, gets a bike, cycles to the bike rack next to
the spire, and walks to the Spire. If it rains, the system should
proactively adapt to the changes in the physical environment,
recalculate the route, and propose Route 2. In this route, the
user walks to the closest bus stop and takes the bus to the stop
next to the Spire and walks the rest of the trip.

Figure 1 represents the behaviour to be implemented in each
middleware to support the defined scenario. The middleware
searches for software services, which provide the necessary in-
formation to fulfill the user’s request. If the weather conditions
are permitting (defined as: temperature above 15◦, humidity
less than 80% and wind speed less than 4m/s), then, using
Bike Service, check if there are any bikes available. Otherwise,
using Bus Service, retrieve the bus status. Bike availability is
checked at the bike stations next to The Science Gallery using

Bike Service. If there are bikes available, the feature Get Route
of Routing Service can be called with the parameter bikeAvail-
able, otherwise is called with parameter bikeNotAvailable. Bus
availability at the stops next to The Science Gallery is checked
using Bus Service. If there are buses available then Get Route
is called with the parameter busAvailable, otherwise is called
with the parameter busNotAvailable. For an unforeseen event,
the route segment which triggered the event is passed as a
parameter to Get Route. The output is the recommended route
to the user (i.e., Response to the User). The route can be
a multi modal route which combines two or more transport
modes.

Five use cases capture the basic workflow and the dynamic
requirements in the scenario: (i) Simple Route Generation: No
relevant events in the environment or related to the services
have occurred. The middleware should return a route to the
user; (ii) Event Happens: An event happens in the environment
(e.g., a bridge is closed). The middleware should return an
alternative route to the user taking into account the event; (iii)
Service Not Available: A software service is not available (e.g.,
bike service not available), and the information to make a de-
cision in the basic workflow is not complete. The middleware
should try to return the route with the available information.
If this is not possible, the user should be informed; (iv)
Intermittent Service: A software service is intermittent (e.g.,
the bike service is not available for a few seconds and then
comes back on line). The middleware should manage the
intermittent service and return the route to the user without
any failure. (v) Service Replacement: A software service is
not available but there is an alternative service that provides
the same functionality (e.g., the bike service is not available
but there is an alternative service). The middleware should
manage these services and return the route to the user. Each
use case simulates a possible event (e.g., environment event
or software service event) with the goal of identifying and
quantifying how each middleware responds to these events.
Each use case can happen after the route request. The route
planner should proactively adapt its response according to the
events.

3) Methodology for Middleware Selection. Analytic hier-
archy process (AHP) [11] framework was used to analyse
and select the IoT middleware solutions for evaluation, using
the IoT middleware requirements as selection criteria. We
surveyed 60 middleware solutions [4], and made an initial
selection of 10 of the most advanced approaches that consider
the key IoT middleware requirements: OpenIoT, CHOReOS,
UBIWARE, Linksmart, SOCRADES, Xively, Carriots, Prisma,
Impala, MOSDEN [4]. Open-source middleware proposals
had a higher preference. A score for each middleware was
calculated by adding the scores of each requirements from
their qualitative evaluation [4]. The features of interest were
identified as follows: autonomy, heterogeneity, usability and
response time for Service Registration, architecture (i.e.,
centralised or decentralised), autonomy, interoperability and
response time for Service Discovery and Service Composi-
tion, online documentation, documented APIs, source code

repository and ease-of deployment for the Developer Support
component, and whether the proposal is non-proprietary, and
continuously enhanced with a reasonably-sized community to
offer technical support. CHOReOS, OpenIoT, UBIWARE and
LinkSmart have scored higher than the other middlewares
and also they have a low variation in their scores. These
middlewares were selected for further evaluation.

III. EXPERIMENTAL SETUP

This section describes the metrics used for the study, the
infrastructure used during evaluation, and the detailed scenario
implementation in each selected middleware.

1) Evaluation Metrics. We define metrics for service reg-
istration, discovery and composition separately, with some
additional general perspectives as summarised in Table I. The
scalability of service registration, service discovery and service
composition is measure in a range from 5 to 1000 records.
For interoperability, we count how many data formats can be
managed by each middleware.

2) Common Experimental Architecture. A common experi-
mental architecture for the 4 middlewares was implemented to
support the services, workflow and use cases described in the
scenario definition (see Figure 2). This architecture assumes
a city-wide IoT environment, where there are sensors to get
information about different variables in the city. In particular,
for our mobility scenario we are interested in the sensors
spread along the zone between the Science Gallery and the
Dublin Spire and in the sensors inside the transport modes
which move between those points.

COMMON

EXPERIMENTAL

ARCHITECTURE

MIDDLEWARE

Cloud/Internet

Bike Service

Data

Bus

Service

Data

Weather

Data
Events

Data

Gateway

Request/Reply
Request/Reply

Bike Service

Operator

Bus Service

Operator

TelosB

Motes

User

Applications

RaspberryPi

Fig. 2. Common Architecture Infrastructure

A set of sensors is responsible for collecting the weather
data, which is exposed as Weather Service in the gateway.
The gateway also hosts the Unforeseen Events Service, which
simulates information about events in the streets of the city.
Additionally, data is collected from the sensors in the transport
modes: Bus Service and Bike Service, which are exposed as a
service on the Internet by their operators (i.e., Bus Service
Operator, Bike Service Operator). Each service exposes a
REST interface. Finally, the middlewares are deployed on
independent virtual machines and they make requests to the
services on the Internet and the gateway in order to get the
required information to provide the best route to the user.

IV. RESULTS

This section presents the results of the evaluation, and are
summarised in Table I.

TABLE I
EVALUATION RESULTS

SERVICE REGISTRATION
Metric UBIWARE LinkSmart OpenIoT CHOReOS

Human intervention:
(Autonomy)
- Fully automated.
- Semi automated.
- Not automated.

Semi
automated

Semi
automated

Semi
automated

Not
automated

Number of resources types
supported by the middleware
(i.e., SOAP, REST, etc.)
(Heterogeneity)

2 resources
types
- Handlers
- Services

1 resource
type
- SOAP
services

Unlimited

1 resource
type
- SOAP
services

Programming effort,time in hours.
(Usability Developer Perspective) 2 hours 1 hours 3 hours 2 hours

Response time in service registry (ms).
(Performance)

See
Figure 3

See
Figure 3

See
Figure 3

See
Figure 3

SERVICE DISCOVERY
Metric UBIWARE LinkSmart OpenIoT CHOReOS

Human intervention:
- Fully automated.
- Semi automated.
- Not automated.
(Autonomy)

Semi
automated

Semi
automated

Semi
automated

Semi
automated

Programming effort, time in hours.
(Usability Developer Perspective) 4 hours 2 hours 0.05 hours 0.05 hours

Reliability in search results:
- Checked.
- Does not check.
(Look Up & Matching)

Does not
check

Does not
check

Does not
check

Does not
check

Precision in search results (P):

P =
truePos

truePos+ falsePos
(Search Accuracy)

0.67 0.67 1 (by altering
SPARQL query) 0.67

Recall in search results (R):

R =
truePos

truePos+ falseNeg
(Search Accuracy)

0.5 0.5 1 (by altering
SPARQL query) 0.5

Response time in service discovery (ms).
(Performance)

See
Figure 4

See
Figure 4

See
Figure 4

See
Figure 4

SERVICE COMPOSITION
Metric UBIWARE LinkSmart OpenIoT CHOReOS

Human intervention:
- Fully automated.
- Semi automated.
- Not automated.
(Autonomy)

Not
automated

Not
automated

Not
automated

Not
automated

Programming effort, time in hours
(Usability Developer Perspective). 120 hours 80 hours 10 hours 5 hours

Response time in simple service
composition, (ms).
(Performance)

See
Figure 5

See
Figure 5

See
Figure 5 -

Response time with a event in the
scenario, (ms).
(Performance)

See
Figure 6

See
Figure 6

See
Figure 6 -

Response time when service is not
available, (ms).
(Performance)

See
Figure 7

See
Figure 7

See
Figure 7 -

Response time when a service is
intermittent, (ms)
(Performance)

See
Figure 8

See
Figure 8

See
Figure 8 -

Response time when a service is
not available but there is an
alternative service, (ms).
(Performance)

See
Figure 9

See
Figure 9

See
Figure 9 -

GENERAL
Metric UBIWARE LinkSmart OpenIoT CHOReOS

Ease-of deployment, time in hours.
(Usability) 4 hours 40 hours 10 hours 50 hours

Number of formats allowed in the
middleware.
(Interoperability)

6 data
formats Unlimited Unlimited 1 data

format

Service Registration. The results for service registration
show that all the middlewares provide a semi-automated ser-
vice registration component. However, in each case, a manual
process is required to finalise the registration. None of the
recorded times includes developer learning time. In our eval-
uation, we recorded the time to perform this process: 2 hours
for UBIWARE, 1 hour for LinkSmart, 3 hours for OpenIoT
and 2 hours for CHOReOS. In UBIWARE, the recorded time
includes the development the handlers for different agents and
the business logic of the communication between the scenario
agents and the UDF agent. In LinkSmart, we counted the
implementation time of the functionality necessary to use the
registration capability provided by the network manager. In
OpenIoT, the implementation time of the required connectors

Fig. 3. Service Registration Response Time Fig. 4. Service Discovery Response Time Fig. 5. Service Composition Response Time

Fig. 6. Unforeseen Event Response Time Fig. 7. No Alternative Service Response Time Fig. 8. Intermittent Service Response Time

Fig. 9. Alternative Service Response Time

was counted. Also, in our case, it was necessary to imple-
ment a custom wrapper to handle the output of services. In
CHOReOS, the implementation time of service wrappers for
each service was counted. Figure 3 summarises the service
registration performance. CHOReOS had the best performance
with a median of 1 milliseconds in 1000 executions, followed
by OpenIoT, UBIWARE and LinkSmart with medians of 34,
68 and 240 milliseconds respectively. CHOReOS performs
well because it does not use persistent storage.

With reference to heterogeneity, CHOReOS and LinkSmart
allow the registration of only 1 resource type (i.e., SOAP
services), whereas UBIWARE supports 2 generic resources:
services and handlers. In this case, each service is defined by
a set of handlers (i.e., functions), and each handler is provided
by one or more agents. In OpenIoT, an unlimited number of
resources can be connected. This is possible because of the
virtual sensor concept . A wrapper and a metadata file needs
to be created for each resource connected to the middleware
which increases the programming effort.

Service Discovery. All the middlewares provide a semi-
autonomous discovery component and we programmed the

functions to discover the services using the component pro-
vided by each middleware. None of the recorded times in-
cludes developer learning time. The usability (programming
effort) of those components was 2 hours for LinkSmart and
4 hours for UBIWARE. In UBIWARE, this is the time
needed to program the behaviours to send messages to the
UDF agent, the subscriptions to different services and the
rules that manage the output from the UDF agent for each
discoverable service. In LinkSmart, this is the time needed
to program a function to call the network manager and the
instructions to manage the output from each service. OpenIoT
and CHOReOS took approximately 3 minutes, which mainly
involved accessing the necessary user interfaces.

For the look up and matching feature, none of the middle-
wares checks the reliability of the returned services. In UBI-
WARE, LinkSmart and CHOReOS the metrics of precision
and recall are subject to the correct naming of the services,
as well as exact matching between the search inputs and the
services name. For this reason, the values of precision and
recall in the service discovery process were the same for both
(i.e., 0.67 of precision and 0.5 of recall) with our defined set
of services. In OpenIoT, the location is used as a parameter
in the search process, and the result varies according to the
number of services available at a particular location. A better
precision and recall can be obtained by adding the capabilities
of the service to the SPARQL query. The response time shows
(Figure 4) that LinkSmart and CHOReOS had a high and
stable performance with different scale of simulated services
(i.e., 5, 25, 50, 75, 100, 200, 500 and 1000 simulated services),
meanwhile, UBIWARE and OpenIoT did not scale well, and
the number of services affects their performance considerably.
The drawback in UBIWARE is that there is just one UDF

agent, which is responsible for managing all the requests and
the big number of messages that the process generates.

Service Composition. None of the selected middlewares
provides support for automated service composition. The
implementation of the proposed scenario took 5 hours us-
ing CHOReOS, 10 hours using OpenIoT, 80 hours using
LinkSmart and 120 hours using UBIWARE. In CHOReOS,
the scenario can be implemented using any BPMN2 diagram
editor. The implementation time is bounded to the program-
ming effort of the diagram editor. In OpenIoT, the mashup
tool provided is limited, and the user needs to complete the
implementation of the scenario in SPARQL. In LinkSmart and
UBIWARE the implementation took considerably more time
than in the other two middlewares because there are no user
support tools. In these middlewares, the scenario was written
as a script, and executed by the middleware at runtime. We
were unable to execute the composed service in CHOReOS.
We got the following results for UBIWARE, LinkSmart and
OpenIoT:

1) Simple Route Generation: OpenIoT had the lowest re-
sponse time (Figure 5) in a simple execution of the com-
position, followed by UBIWARE. Both response times were
stable with different numbers of simulated services/agents.
LinkSmart started with an acceptable performance but after
200 simulated services, its response time increased consid-
erably because the middleware network manager returns an
increasing number of services after the service discovery
process. The middleware network manager has to manage a
higher number of services.

2) Event Happens: UBIWARE had the lowest response time
as the agent which identifies the event sends a notification
message to the composition agent autonomously. This use
case is managed similarly by LinkSmart, but it uses SOAP
messages for the notification, which slightly increases its
response time compared to UBIWARE (Figure 6). OpenIoT
had the highest response time as it stores the data into a
database. In all cases, the response time was stable for different
numbers of simulated services/agents.

3) Service Not Available: OpenIoT had the lowest response
time (Figure 7) when a necessary service is not available,
followed by UBIWARE. In both cases, the response times
scale well with the numbers of simulated services/agents.
LinkSmart had the highest response time, and it does not
scale well with the number of simulated services. In this case,
the composition process takes a longer time because there are
more services returned.

4) Intermittent Service: OpenIoT had the lowest response
time (Figure 8) when a service is intermittent, followed by
UBIWARE. In both cases, the response times scale well
with the numbers of simulated services/agents. The agent
communication-schema in UBIWARE keeps the response time
low regardless of the number of agents, whereas in LinkSmart
the number of returned services in the service discovery affects
the composition process, so the response time was the highest.

5) Service Replacement: OpenIoT had the lowest response
time followed by UBIWARE when a service is not available

but there is a replacement. In both cases, the response times
scale well with the numbers of simulated services/agents.
UBIWARE keeps the response time low because of its agent
communication-schema. In LinkSmart, the number of returned
services by the network manager affects the response time
of the composed service by increasing the response time
(Figure 9). OpenIoT performed better than UBIWARE and
LinkSmart. However, the virtualised sensors approach used
in OpenIoT is a concern for real-time data based applications.
While the virtualised sensor approach decouples the infrastruc-
ture from the middleware, the data stored in the middleware’s
database can be out-of-date. This means that the data services
keep executing, while providing potentially out-of-date data.

General. UBIWARE was easier to deploy than the other
middlewares. While we got a functional instance of UBI-
WARE in 4 hours, the deployment time for OpenIoT, LinkS-
mart and CHOReOS was 10, 40 and 50 hours respectively.
The interoperability results show that LinkSmart and OpenIoT
do not have limits in the supported data formats, whereas
CHOReOS has a limited number of allowed data formats. In its
current form, UBIWARE has a limited number of allowed data
formats, but it can be extended to support new data formats.

V. OPEN RESEARCH CHALLENGES

Autonomous Service Registration, Discovery and Compo-
sition: The selected middlewares offer semi-automated or
non-automated components to address resource registration,
discovery and composition. In IoT, human intervention should
be minimized as it leads to errors and a non-scalable solution.
In particular, the selected middlewares are unsuitable for
systems with self-* properties (e.g., self-adaptive) includ-
ing M2M communication systems, because of their semi-
autonomous or non-autonomous service registration, discovery
and composition. Along with the wider exploitation of context
(e.g., QoS), integration and exploitation of intelligence (e.g.,
rich semantic service description), self-* properties of an IoT
middleware system is a rich open research area for fully
automated mechanisms for service registration, discovery and
composition.

Scalable Service Registration, Discovery and Composition:
The response times of service registration, discovery and
composition of the middlewares are not ideal even in small
scale scenarios. Scalability is a system-wide requirement,
every component of a middleware, including resource reg-
istration, discovery and composition needs be scalable to
achieve system-wide scalability. Probabilistic service registra-
tion and discovery is a potential solution for scalable service
registration, discovery and composition in service oriented
middlewares.

Heterogeneity: The selected middlewares support one or two
types of resources, which is insufficient for IoT’s heteroge-
neous resources. Support for application level heterogeneity
in these middlewares is limited because of inflexible and non-
autonomous service registration, discovery and composition.
New approaches are required to manage resource and appli-
cation level heterogeneity in ultra large-scale networks where

those resources/applications can evolve or be created in a short
period of time.

Interoperability: Syntactical interoperability is supported by
the selected middlewares, but they lack support for semantic
and network/resource interoperability. Heterogeneity of de-
vices is a common feature of the IoT, and, since there are no
ontology standards, semantic interoperability is challenging.
In addition, a lack of support for mediation at data, network
and process level introduces restrictions on network/resource
level interoperability. An abstraction layer between the re-
sources/network and the middleware is a potential solution
to improve the interoperability at this level. Research on
global, scalable, understanding of IoT services’ resources and
semantics is required.

VI. RELATED WORK

A number of quantitative studies into IoT middleware ad-
dressed individual elements of an IoT middleware ecosystem
such as specific components of the middleware [3], or different
types of IoT middlewares (e.g., M2M [12], RFID [13]).
Also, each of the presented middleware were quantitatively
evaluated individually as follows: Nikitin et al. [14] evaluated
the reusability of semantic components in the context of
UBIWARE, and Kostelnik et al. [10] analysed the interop-
erability in the context of LinkSmart. Muhammad et al. [15]
quantitatively evaluated the average processing time of with
varying number of services and the scalability of X-GSN
and LSM server of OpenIoT, but did not consider usability
and performance of the specific business logic (i.e., scenario
implementation). CHOReOS was quantitatively evaluated in
3 separate use cases. Scalability, interoperability, and hetero-
geneity of Service Registration, Service Discovery and Service
Composition components were analysed [8]. The results for
scalability in Registration and Discovery confirms our find-
ings, whereas heterogeneity and interoperability analysis was
limited to cross-cloud provider, and did not consider data
level interoperability. These related studies also conclude that
awareness and adaptability are still open challenges.

VII. CONCLUSION

This article presented a quantitative evaluation of 4 rep-
resentative proposals: OpenIoT, CHOReOS, LinkSmart and
UBIWARE to complement the existing qualitative studies of
IoT middlewares. The evaluation is based on a small scale
scenario that captures the innovative capabilities (e.g., auton-
omy, context-awareness, interoperability) that the IoT brings to
software service development. The selected middlewares were
evaluated at two different levels: (i) a component (service reg-
istration, discovery and composition) level against autonomous
behaviour, heterogeneity (resource level), usability and re-
sponse time metrics and (ii) a general level against deployment
time and interoperability metrics. In summary, (i) none of the
selected middlewares supports fully autonomous and scalable
service registration, discovery and composition, (ii) only Ope-
nIoT supports resource level heterogeneity, and (iii) none of
them scales well in service discovery and service composition

response time (e.g., LinkSmart and CHOReOS scale well in
discovery not in composition, UBIWARE and OpenIoT scale
well in composition not in discovery). UBIWARE is easier to
deploy than the other middlewares. LinkSmart and OpenIoT
offer full scale syntactical interoperability, whereas UBIWARE
offers a limited scale syntactical interoperability.

There is a significant scope for future work in the area of
autonomous and scalable service registration, discovery and
composition, heterogeneity, and interoperability of IoT mid-
dlewares, and our future endeavours will focus on autonomous
and scalable service registration, discovery and composition
for service oriented middlewares.

ACKNOWLEDGMENT

This work was funded by the Science Foundation Ireland
(SFI) under grant 13/IA/1885.

REFERENCES

[1] B. Benatallah, R. M. Dijkman, M. Dumas, and Z. Maamar, “Service
Composition: Concepts, Techniques, Tools and Trends,” 2005.

[2] W. Wang, S. De, G. Cassar, and K. Moessner, “Knowledge representa-
tion in the Internet of Things: Semantic modelling and its applications,”
Automatika–Journal for Control, Measurement, Electronics, Computing
and Communications, vol. 54, no. 4, 2013.

[3] S. De, B. Christophe, and K. Moessner, “Semantic enablers for dynamic
digital-physical object associations in a federated node architecture for
the internet of things,” Ad Hoc Networks, 2014.

[4] M. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middle-
ware for internet of things: A survey,” Internet of Things Journal, IEEE,
vol. 3, no. 1, Feb 2016.

[5] S. Li, L. Xu, and S. Zhao, “The internet of things: a survey,” Information
Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” Communications Surveys Tutorials, IEEE,
vol. 17, no. 4, 2015.

[7] J. Kim and J.-W. Lee, “Openiot: An open service framework for the
internet of things,” in Internet of Things (WF-IoT), 2014 IEEE World
Forum on. IEEE, 2014, pp. 89–93.

[8] A. Hamida, F. Kon, N. Lago, A. Zarras, D. Athanasopoulos, D. Pil-
ios, P. Vassiliadis, N. Georgantas, V. Issarny, G. Mathioudakis,
G. Bouloukakis, Y. Jarma, S. Hachem, and A. Pathak, “Integrated
CHOReOS middleware - Enabling large-scale, QoS-aware adaptive
choreographies (D3.3).”

[9] A. Katasonov and M. Cochez, “UBIWARE Platform - RAB overview,”
p. 42, 2012. [Online]. Available: http://www.cs.jyu.fi/ai/OntoGroup/
ubidoc/RAB\ overview.pdf

[10] P. Kostelnik, M. Sarnovsk, and K. Furdik, “The semantic middleware
for networked embedded systems applied in the Internet of Things
and Services domain,” Scalable Computing: Practice and Experience,
vol. 12, no. 3, 2011.

[11] T. L. Saaty, “Decision making with the analytic hierarchy process,”
International journal of services sciences, 2008.

[12] F. Campos and J. Pereira, “An experimental evaluation of machine-to-
machine coordination middleware,” in Proceedings of the 30th Annual
ACM Symposium on Applied Computing, 2015.

[13] G. O. Oh, D. Y. Kim, S. I. Kim, and S. Y. Rhew, “A quality evaluation
technique of rfid middleware in ubiquitous computing,” in Hybrid
Information Technology, 2006. ICHIT ’06. International Conference on,
vol. 2, Nov 2006, pp. 730–735.

[14] S. Nikitin, A. Katasonov, and V. Terziyan, “Ontonuts: Reusable semantic
components for multi-agent systems,” in Autonomic and Autonomous
Systems, 2009. ICAS ’09. Fifth International Conference on, April 2009,
pp. 200–207.

[15] M. I. Ali, N. Ono, M. Kaysar, K. Griffin, and A. Mileo, “A semantic
processing framework for iot-enabled communication systems,” in The
Semantic Web - ISWC 2015, ser. Lecture Notes in Computer Science.
Springer International Publishing, 2015, vol. 9367, pp. 241–258.

