
Solar Energy 155 (2017) 727–738
Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier .com/locate /solener
Firefly-inspired algorithm for optimal sizing of renewable hybrid system
considering reliability criteria
http://dx.doi.org/10.1016/j.solener.2017.06.070
0038-092X/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: kaabeche67@gmail.com (A. Kaabeche).
Abdelhamid Kaabeche a,⇑, Said Diaf a, Rachid Ibtiouen b

aCentre de Développement des Energies Renouvelables, B.P. 62, 16340 Bouzareah, Algiers, Algeria
b Ecole Nationale Supérieure Polytechnique d’El Harrach, Algiers, Algeria

a r t i c l e i n f o
Article history:
Received 9 March 2017
Received in revised form 15 June 2017
Accepted 30 June 2017

Keywords:
Hybrid energy system
Optimization
Reliability concept
Cost of Energy (COE)
a b s t r a c t

Renewable energy sources are usually seen as a response to actual environmental, social and economic
issues. However, the random nature of these sources requires the development of sizing rules and the
use of these systems for their exploitation. This article presents the results of a developed hybrid PV/wind
optimization sizing method, taking into account the strong combination between the intermittent energy
resource (solar and wind), the storage capacity and a given load profile. This optimization method is
based on the use of metaheuristic techniques. These algorithms, often inspired by nature, are designed
to solve complex optimization problems. Among the most recent metaheuristics, we used the Firefly
Algorithm (FA), considering the Load Dissatisfaction Rate (LDR) criteria and the Electricity Cost (EC) indi-
cator for power reliability and system cost. The suggested method determines the system optimum con-
figuration, which can achieve the desired LDR with minimum EC. To achieve this aim, an objective
function is formulated for the EC. It must be kept to a minimum while respecting the reliability con-
straints (LDRdesired). The effectiveness of the FA in solving a hybrid system optimization problem is scru-
tinized and its performance is compared to other renamed optimization algorithms. To highlight the
propounded method performance a real case study has been conducted and the results are discussed.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

To face the climate change challenges, increasing energy
demand, fossil fuels scarcity and their fluctuating prices, and the
adverse effects on the environment, many countries around the
world have changed their energy policies. The first strategy was
to make energy savings. For example, Algeria aims at saving energy
at about 63 million TOE by 2030 by implementing programs in
order to reduce consumption and improve energy efficiency in
industry, residential sector, and tertiary and transport (Nouveau
programme national de développement des énergies
renouvelables (2015–2030)). The second strategy is to use renew-
able energy sources in autonomous systems as well as in large-
scale energy production. Now, the energy produced by systems
using these resources is known to be less competitive than the
one produced by conventional production systems, mainly due to
the relatively high system cost. In addition, the random and inter-
mittent nature of renewable energies makes them difficult to con-
trol. Therefore, it is necessary to characterize as accurately as
possible changes occurring in these resources. However, they have
several advantages, such as reducing dependence on fossil fuels
and reducing greenhouse emissions into the atmosphere. The
impact of their random nature may be reduced by coupling two
or more sources of energy, renewable–renewable or conventional,
connected to a power grid, or supplying an isolated load (autono-
mous systems) in a Hybrid System for Renewable Energy Sources
(HSRES).

In order to design efficient, reliable and economic hybrid sys-
tem, the optimal sizing must be pursed. The design of such hybrid
system is a very complex problem because it is necessary to model
each system component (Fathy, 2016). In this context, numerous
optimization methods for hybrid system sizing have been reported
in the literature. Thus, Hossain et al. (2017) have used the HOMER
software to optimize the design of several configurations of hybrid
systems. The results showed that a PV/wind/diesel/battery choice
is further viable economically in comparison with diesel generator
only.

A further techno-economic survey of various configurations of
hybrid systems in three small rural communities in Colombia
was presented in Haghighat Mamaghani et al. (2016). Seven
configurations have been proposed and assessed based on
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combinations of PV panels, wind turbines, and diesel generators.
The net present cost (NPC) and energy unit cost (EUC) were
selected as the economic indicators. The results showed that com-
bined diesel-renewable configurations have a low carbon footprint
and are most economically relevant.

Yahiaoui et al. (2016) proposed a new method to optimize the
PV/Diesel/Battery hybrid system. The Particulate Swarm Optimiza-
tion (PSO) algorithm was applied to simultaneously minimize the
system global cost, loss of load probability (LLP) and CO2 emission.
The optimization results reveal the interest of using the PV and
battery subsystems. Without their contribution, the annual cost
of diesel generator becomes substantially high.

In Al-Sharafi et al. (2017), a new methodology allowing the
optimal selection of the hybrid energy system configuration has
been presented. In a case study, a system composed of photovoltaic
panels/wind turbines/diesel generator/batteries was studied. This
multi-source system is designed to supply a residential unit in
the Dhahran area, KSA. Taking into account economic and environ-
mental considerations, two performance valuation cases were
investigated. In the economical case, emphasis was made on reduc-
ing the cost of energy (COE) without taking into account the envi-
ronmental impact of the system. In this case, the EC is 0.611 $/
kW h; however, the renewable contribution (RC) of this system is
only 50%. In the second case, the importance was given to the envi-
ronmental impact. In this case, RC is 100%; however, the COE with
this system is relatively high up to 0.938 $/kW h.

A study to determine the optimal configuration of a hybrid PV/
wind system was performed by Maleki et al. (2015) in various
remote areas of Iran. Authors studied the effectiveness of five mod-
ified PSO technics and three more algorithms viz: tabu search, sim-
ulated annealing and harmony search. The authors concluded that
PSO-CF was the most performing PSO variant and PV–battery
based hybrid systems are suitable for most areas of the country
due to the good solar radiation availability and low windy nature.

In order to minimize the total annual cost of a hybrid PV/Wind/
Battery system, Maleki and Pourfayaz (2015) have used seven
heuristic algorithms. Authors found that Artificial Bee Swarm Opti-
mization (ABSO) showed more promising results than the other six
algorithms. A new optimization method of hybrid PV/wind/diesel/
battery system using a multi-objective evolutionary algorithm
(MOEA) to minimize the total net present cost (TNPC) and maxi-
mize human development index (HDI) and job creation (JC) was
presented by Dufo-López et al. (2016). HDI depends on the electric-
ity consumption and JC depends on the evolution of technology.
The resulting values showed that the three objectives were often
contradictory so a Pareto-optimization MOEA is a good option to
obtain a set of possible solutions in which no solution is better than
another one for all three objectives (optimal Pareto set).

With a view to optimally size of hybrid PV/wind system,
Ahmadi and Abdi (2016) proposed an efficient method based on
Hybrid Big Bang–Big Crunch (HBB–BC) algorithm to minimize
the total net present cost (TNPC). To evaluate the performance
of the suggested algorithm, a comparison was made with two
other algorithms namely: Discrete Harmony Search and PSO. Sim-
ulation results confirm the high precision of HBB-BC to find the
optimal solution and its superiority on two mentioned
algorithms.

A new optimal sizing approach based on Cuckoo Search (CS)
algorithm to minimize the total system cost of a hybrid PV/wind
system was presented in Sanajaoba and Fernandez (2016). Three
system configurations namely: PV-Battery, Wind-Battery and PV-
Wind-Battery systems applicable to isolated locations in India have
been considered in this study. In order to assess the performance of
the proposed algorithm, a comparison was made with two other
algorithms viz: Genetic Algorithm and PSO. The optimization
results show that a PV/wind/battery alternative is more reliable
and economical compared to PV/battery system or Wind/Battery
for the study area.

Maleki et al. (2016) presented the modeling and optimization of
a hybrid PV/wind generation system for electrification of remote
rural communities in Rafsanjan, Iran by Particle Swarm Optimiza-
tion Algorithm-based Monte Carlo Method. Their results proved
that the Monte Carlo Simulation Method could provide a novel
approach to tools already used in the field of optimization. In addi-
tion, the case study showed that the Wind/battery option was the
most reliable and economical.

In this paper, a PV/wind hybrid optimization method, which
employs one of the most recent Nature Inspired Algorithm (NIA),
called Firefly Algorithm (FA), considering the Load Dissatisfaction
Rate (LDR) criteria and the Electricity Cost (EC) indicator for power
reliability and system cost is presented. The recommended method
determines the system optimum configuration, which can attain
the desired LDR with minimum EC. For this purpose, an objective
function is formulated for the EC. It must be kept to a minimum
while respecting the reliability constraints (LDRdesired). The effec-
tiveness of the FA in solving a hybrid system optimization problem
is scrutinized and its performance is compared to other well-
known optimization algorithms. To highlight the proposed method
performance a real case study has been carried out and the results
are inspected.

2. Hybrid system overview

The hybrid energy production system in its most general view is
the one that combines and exploits several readily available
sources. The studied system consists of two energy production
parts (PV generator and wind turbine) passing through an electro-
chemical storage. Fig. 1 presents the synoptic scheme of the stud-
ied system.

3. Hybrid system model

Modeling is an essential step before any optimal sizing phase.
The studied hybrid system is composed of three energy sources
namely: wind turbine, PV generator and batteries as shown above
(Fig. 1). The modeling of each component is detailed below.

3.1. PV generator model

The output power delivered by the PV module depends on the
module temperature, Tcell and the irradiance incident on the mod-
ule plane, Gb (Huld et al., 2010):

PðGb; TcellÞ ¼ PSTC
Gb

GSTC
grelðG0; T 0Þ ð1Þ

With PSTC is the power module at the standard test conditions (STC)
and grel is the instantaneous relative efficiency given by:

grelðG0; T 0Þ ¼ 1þ k1 logG
0 þ k2½logG0�2 þ T 0ðk3 þ k4 logG

0

þ k5½logG0�2Þ þ k6T
0 ð2Þ

where G0 and T0 are normalized parameters with respect to the stan-
dard conditions, defined by:

G0 ¼ Gb

GSTC

� �
ð3Þ

And

T0 ¼ ðTcell � TSTCÞ ð4Þ
The coefficients k1-k6 must be found by fitting the model to the

experimental data measured in one or more test sites.
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Fig. 1. Schematic diagram of grid-independent hybrid PV/wind/system with battery storage.
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Fig. 2. A typical wind turbine output characteristics.
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Tc in Eq. (5) is given by Tahani et al. (2015) and Xydis (2013):

Tcell ¼ Tamb þ ½ðNOCT � 20Þ=800�Gb ð5Þ
where Tamb is the ambient temperature (�C) and NOCT is the nomi-
nal cell operating temperature (�C).

3.2. Wind turbine model

The output power of a wind turbine Pout(v) at different wind
speeds is formulated as follows (Kaabeche et al., 2011).

PoutðvÞ ¼
avk þ b; vC 6 v 6 vR

PR; vR 6 v 6 vF

0; Otherwise

8><
>: ð6Þ

where PR is the rated power; k is Weibull shape factor; vC is the cut-
in speed; vR is the rated speed; and vF is the cut-off speed. Constants
a and b may be found through the subsequent formulas:

a ¼ PR

vk
R � vk

C

� � ð7Þ

b ¼ PRvk
c

vk
c � Vk

R

� � ð8Þ

Pout (v) at a given site depends essentially on wind speed at hub
height and speed characteristics of the turbine (Fig. 2). Wind speed
at hub height can be calculated by using power-law equation
(Soheyli et al., 2016; Wen et al., 2009):

Vmes ¼ Vest
hhub

href

� �a

ð9Þ

where Vmes and Vest are the measured and estimated wind speeds at
the reference height, href and hub height, hhub respectively. a is a
coefficient which depends on the considered ground roughness.

3.3. Battery bank model

The charge and discharge of the energy stored in the battery
bank depends on the difference between the energy produced by
the renewable sources and the energy consumed by the load. Dur-
ing charging, the battery state of charge can be calculated as fol-
lows (Singh et al., 2016):

EBatðtÞ ¼ EBatðt � 1Þ þ ½EProdðtÞ � ELoadðtÞ=ginv � � gBat ð10Þ
In the discharge phase, it is given by Singh et al. (2016):

EBatðtÞ ¼ EBatðt � 1Þ � ½ELoadðtÞ=ginv � EProdðtÞ� ð11Þ
where EBat(t) and EBat(t � 1) are the energy stored in battery bank
(W h) at hour t and t � 1, respectively; EProd(t) is the overall energy
produced by PV and wind turbine generators; ELoad(t) is load
demand at the time t; ginv and gB are the efficiency of inverter
and charge efficiency of battery bank, respectively.

4. Formulation of optimization problem

4.1. Objective function

In this study, the objective function of the optimum design
problem is the minimization of the Electricity Cost (EC). EC is
defined as the sum of the discounted costs of energy production
divided by the amount of energy consumed. To optimally design



Define objective function to minimize
Define bound limits of variables and constraints (if exist)

Define parameters of Firefly Algorithm FA

Generate an initial population of n fireflies xi (i = 1, 2, ..., n).
Calculate f (xi)

Ranking fireflies by their light intensity

k=1

Reducing alpha

Evaluate f (xi)
Verify constraints & bound limits

Find the current best

Move all fireflies to the better locations

Yes
k = k+1 k< N_iteration

Save the solution

No

Start 

End 
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the hybrid system, the optimization problem described by Eq. (12),
should be resolved using an advanced optimization algorithm.

Minimise EC ð$=kW hÞ ¼ LCC � CRFP8760
t¼1 ELoadðtÞ

ð12Þ

where LCC is the life cycle cost and CRF is the capital recovery factor
given by Baneshi and Hadianfard (2016) and Nacer et al. (2016):

CRFðd; LSÞ ¼ dð1þ dÞLS
ð1þ dÞLS � 1

ð13Þ

In which d is the interest rate and LS is the system lifespan in years
(25 years).

The LCC can be expressed as follows:

LCC ð$Þ ¼ CInit þ Cmain þ Crep ð14Þ
where CInit is the initial cost of the system components (incorporat-
ing costs of civil work, installation and connections), and Cmain and
CRep are maintenance and replacement costs respectively. These two
costs are recurrent throughout the system life cycle. They require
discounted over time. The cumulative cost of replacement is calcu-
lated as follows (Messenger and Ventre, 2010):

Crep ¼ Pwor;fact � Cacq ð15Þ
where Cacq is the component acquisition cost and Pwor,fact represents
the present worth factor of this cost if the component would be pur-
chased n years later. This factor is given by Messenger and Ventre
(2010):

Pwor;fact ¼ 1þ i
1þ r

� 	n
¼ Xn ð16Þ

With

X ¼ 1þ i
1þ r

� 	
ð17Þ

i represents the inflation rate which is a measure of the lasting
decline in the value of money. r is the discount rate per year; this
is the percentage return on investment (remuneration for advanced
capital) and n represents the number of years from now on.

The cumulative cost of maintenance is obtained as follows:

Cmain ¼ ðCm0Þ � 1� Xn

1� X

� 	
� ðXÞ ð18Þ

where Cm0 is the maintenance cost in the first year. This cost is
expressed as a fraction of the component cost.

4.2. Constraints

The constraints considered in this studied hybrid system are as
follows:

– The minimum and maximum number of system components.

NMin
i 6 Ni 6 NMax

i ð19Þ

where Ni is the number of component i, NMin
i and NMax

i are the min-

imum and maximum number of the component i, respectively. NMin
i

is considered equal to zero in this study.

– The minimum and maximum energy stored in the battery bank.
EBat;Min 6 EBatðtÞ 6 EBat;Max ð20Þ
EBat,Max and EBat,Min being the maximum and minimum storage
energies allowed.
– In the design process of hybrid systems, reliability of power
supply system is considered a primary criterion. In our study,
the system reliability is expressed in terms of Load Dissatisfac-
tion Rate LDR (%). The LDR varies between 0 % (total load satis-
faction) and 100 % (total load shedding). Thus, LDR is defined by
the ensuing equation:

LDR ¼
PT

t¼1ðELoadðtÞ � ESuppðtÞÞPT
t¼1ELoadðtÞ

ð%Þ ð21Þ

where ELoad(t) is the required energy at hour t, T is the period anal-
ysis of the system, and ESupp(t) is the hourly energy actually pro-
vided to the user. ESupp(t) is given by the subsequent expression:

ESuppðtÞ ¼ ½EProdðtÞ þ EBatðt � 1Þ � EBat;Min�ginv ð22Þ



Table 1
Technical and economic parameters values used for the studied hybrid energy system
(Kaabeche and Ibtiouen, 2014).

Description Data

Financial parameters
Interest rate d (%) 8
Inflation rate i (%) 4
Discount rate r (%) 4

Specifications of the PV module
Type BP 3160
Pmax 160 W
Unit Price (US$/W) 2.29 (US$/W)
Maintenance cost in the first year (%) 1% of price
Life time (year) 25

Specifications of the wind turbine
Type Bergey BWC XL1
Rated power 1 kW
Unit Price (US$/W) 3 (US$/W)
Maintenance cost in the first year (%) 3% of price
Life time (year) 20

Specifications of the single battery
Type Fiamm FG 2M009
Nominal capacity 200 Ah
Minimum state of charge (%) 50%
Round-trip efficiency (%) 85%
Unit Price (US$/W h) 0.213 (US$/W h)
Maintenance cost in the first year (%) 3% of price
Life time (year) 4

Specifications of the inverter
Unit Price (US$/W) 0.711 (US$/W)
Maintenance cost in the first year (%) 0%
Life time (year) 10
Efficiency (%) 90%
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Fig. 4. Hourly load profile.
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To highlight the relevance of reliability criterion represented by
the LDR, the following constraint is taken into consideration during
the optimization process:

LDR 6 LDRDesired ð23Þ
where LDRDesired is the maximum admissible LDR, which is specified
by the user.
5. Methodology

As the optimal sizing problem is formulated as a constrained
nonlinear optimization problem, Firefly-inspired metaheuristic
algorithm is utilized in this paper to solve the objective optimiza-
tion problem and its performance is compared with other well-
known optimization algorithms like Accelerated Particle Swarm
Optimization (APSO) algorithm, Generalized Evolutionary Walk
Algorithm (GEWA), and Bat algorithm (BA).

5.1. Firefly algorithm

Firefly Algorithm (FA) is a metaheuristic algorithm for global
optimization proposed by Xin-She Yang in late 2007/early 2008
(Yang, 2010a, 2010b). The FA was inspired by the flashing of fire-
flies in nature. There are thousands of species of fireflies, the
majority of which generate bioluminescence of their abdomen
(Lewis and Cratsley, 2008). Each species of firefly produces its



Table 2
The results of optimal sizing problem obtained by Firefly (FA) algorithm for various reliability levels.

Hybrid system LDRDesired (%) NPV NWT NBAT EC ($/kW h)

PV/wind/battery 0 232 7 92 1.8306
0.01 242 4 82 1.6480
1 221 6 43 1.1666

PV/battery 0 250 0 107 2.9728
0.1 250 0 95 2.6172
1 280 0 48 1.9562

Wind/battery 0 0 163 428 10.3882
0.1 0 163 404 9.9325
1 0 163 428 8.1862

Table 3
Comparison of the results obtained by the algorithms for LDRDesired (%) = 0%.

LDRDesired = 0%

Hybrid system Algorithm Mean Std. Best Worst

NPV NWT NBAT EC ($/kW h) NPV NWT NBAT EC ($/kW h)

PV/wind/battery FA 1.8760 0.0341 232 7 92 1.8306 347 17 70 2.0207
APSO 1.9821 0.1083 232 7 92 1.8306 377 42 46 2.4018
GEWA 2.0165 0.1151 233 7 92 1.8366 350 41 56 2.4520
BAT 2.0562 0.1331 238 7 92 1.8479 142 17 145 2.5806

PV/battery FA 2.1167 0.1652 250 0 107 1.8781 851 0 104 2.9728
APSO 2.7634 0.6253 250 0 107 1.8781 1076 0 339 2.6172
GEWA 2.3231 0.4085 250 0 107 1.8838 1314 0 104 3.8453
BAT 2.6102 0.5523 250 0 107 1.8951 133 0 350 4.7234

Wind/battery FA 9.6619 0.1357 0 163 428 9.5471 0 102 616 10.3882
APSO 11.2949 1.5659 0 163 428 9.5471 0 324 751 17.6622
GEWA 10.2179 0.7703 0 163 428 9.5471 0 56 1117 15.5546
BAT 10.8460 1.0449 0 164 429 9.5848 0 502 349 17.0572

Table 4
Comparison of the results obtained by the algorithms for LDRDesired (%) = 0.1%.

LDRDesired = 0.1%

Hybrid system Algorithm Mean Std. Best Worst

NPV NWT NBAT EC ($/kW h) NPV NWT NBAT EC ($/kW h)

PV/wind/battery FA 1.6741 0.0217 242 4 82 1.6480 346 16 52 1.7666
APSO 1.7901 0.1087 250 4 81 1.6505 132 14 141 2.4360
GEWA 1.7842 0.0958 242 4 82 1.6480 223 0 138 2.2183
BAT 1.8332 0.1135 243 4 83 1.6625 167 20 114 2.3119

PV/battery FA 1.9792 0.1763 250 0 95 1.7267 756 0 90 2.6172
APSO 2.6064 0.6441 248 0 96 1.7356 1076 0 339 6.3617
GEWA 2.1628 0.4098 250 0 95 1.7267 1365 0 89 3.7522
BAT 2.4234 0.5202 248 0 97 1.7482 1408 0 125 4.2874

Wind/battery FA 9.3607 0.1286 0 163 404 9.2443 0 113 558 9.9325
APSO 11.0504 1.6271 0 163 404 9.2443 0 324 751 17.6622
GEWA 9.9217 0.8122 0 163 404 9.2443 0 56 1117 15.5546
BAT 10.5133 1.1611 0 162 409 9.2823 0 60 1271 17.5979

Table 5
Comparison of the results obtained by the algorithms for LDRDesired (%) = 1%.

LDRDesired = 1%

Hybrid system Algorithm Mean Std. Best Worst

NPV NWT NBAT EC ($/kW h) NPV NWT NBAT EC ($/kW h)

PV/wind/battery FA 1.1725 0.0103 221 6 43 1.1666 166 19 39 1.3387
APSO 1.2957 0.1266 221 6 43 1.1666 424 27 32 1.9373
GEWA 1.2846 0.1102 222 6 43 1.1685 115 5 126 1.9889
BAT 1.3290 0.1309 247 4 44 1.1780 500 18 42 1.9809

PV/battery FA 1.3457 0.1487 280 0 48 1.1903 740 0 40 1.9562
APSO 2.0465 0.6529 280 0 48 1.1903 982 0 276 5.3897
GEWA 1.4737 0.3204 280 0 48 1.1903 1223 0 41 2.8790
BAT 1.7840 0.5012 298 0 46 1.1990 1294 0 77 3.4670

Wind/battery FA 6.9441 0.1314 0 140 260 6.8504 0 60 525 8.1862
APSO 8.9707 1.8471 0 139 262 6.8505 0 556 232 16.9361
GEWA 7.4712 0.6753 0 141 259 6.8629 0 462 127 13.2526
BAT 8.3350 1.2739 0 140 260 6.8505 0 568 130 15.9504
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own model of flashes. For many species, the male is attracted to a
sedentary female. In other species, the female can copy the signal
of a different species, so that the males of this species are attracted
to it. The flashing can also be used to send information between
fireflies. The idea of this attractiveness and passing information is
what leads to inspiration for the FA. The FA idealizes many aspects
of firefly in nature. First, real fireflies flash in discrete patterns,
whereas the modeled fireflies will be treated as always glowing.
Then, three rules can be applied to manage the algorithm and
develop a modeled firefly behavior (Yang, 2009).
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Fig. 6. Convergence process of the algorithms for finding the optimum size of the
(a) PV/wind/Batt; (b) PV/Batt system; (c) Wind/Batt hybrid systems.
1. All fireflies are unisexual, therefore positively attracted to each
other.

2. The attractiveness is proportional to the brightness and both
decrease when their distance increases. Thus, for any two flash-
ing fireflies, the less brighter one will move to the brighter one.
If there is no other brighter source, the firefly will move at
random.

3. The firefly brightness is influenced by the objective function
topology.

The light intensity varies exponentially with distance as follow:

IðrÞ ¼ I0e�!r ð24Þ
where I(r) is the light intensity; r is distance between two flies; I0 is
the initial light intensity; � is light absorption coefficient.

As a firefly’s attractiveness is proportional to the light intensity
seen by adjacent fireflies, we can now define the variation of
attractiveness b with the distance r by:

bðrÞ ¼ b0e
�!r2 ð25Þ

where b0 is the initial attractiveness at r = 0.
The distance between any two fireflies i and j at xi and xj respec-

tively, is given by the Euclidean distance equation,

rij ¼ jjxi � xjjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k¼1

ðxi;k � xj;kÞ2
vuut ð26Þ

where xi,k is the kth component of the spatial coordinate xi of ith
firefly.

The movement of a firefly i is attracted to another, more attrac-
tive firefly j as determined by:

xtþ1
i ¼ xti þ b0e

�!r2 ðxtj � xti Þ þ /t�ti ð27Þ
Where the second term is due to the attraction. The third term is
randomization with at being the randomization parameter, and �ti
is a vector of random numbers drawn from a Gaussian or other dis-
tribution at time t.

5.2. Application of the firefly algorithm (FA) for optimal sizing problem

In this article, a Firefly-inspired metaheuristic algorithm is
applied to solve the objective optimization problem, particularly
in finding the optimal sizing of the recommended hybrid system.
The control variables, in this study are: the number of PV modules,
wind turbines and batteries. Thus, the use of FA for this application
type can be described in the following steps:

Step 1: In this step, the input data are defined including the
costs of investment, maintenance and replacement of hybrid
system components, the data related to the load demand, solar
irradiation, ambient temperature and wind speed in the consid-
ered region, the rated power and efficiency of system compo-
nents, the number of fireflies (n), the randomness factor (a),
the initial attractiveness of a firefly (b0), the light absorption
coefficient of medium (!), and the iterations number.
Step 2: Generate initial population of fireflies placed at random
positions within the n-dimensional search space, xi. Define the
light absorption coefficient, �.
Step 3: Define the light intensity of each firefly, Ii, as the value of
the cost function for xi.
Step 4: For each firefly, xi, compare its light intensity, Ii, with the
light intensity, Ij, of every other firefly, xj.
Step 5: If Ii is less than Ij, then move firefly xi towards xj in
n-dimensions using Eq. (27).
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Step 6: Calculate the new values for the cost function for each
fly, xi, and update the Light Intensity, Ii.
Step 7: Rank the fireflies and determine the current ‘best’.
Step 8: Repeat steps 3 to 7 until definite termination conditions
are met, such as a pre-defined number of iterations or a failure
to make progress for a fixed number of iterations.

Finally, the suggested algorithm is reached the optimal number
of the hybrid system components and the Electricity Cost (EC) of
the corresponding system. The flowchart for firefly algorithm in
hybrid system optimization is presented in Fig. 3.
6. Results and discussion

6.1. Case study

In order to highlight the recommended method, a case study is
lead to scrutinize a PV/wind hybrid system, which is designed to
supply a group of twenty households, located in Bouzaréah, Algeria
(36�480N, 3�10E, 345 m). The considered hybrid system components
include PV subsystem, wind power subsystem, a power conditioning
unit and battery bank storage, whose the technical and economic
specifications are itemized in Table 1. The average hourly load
demand considered in this study is presented in Fig. 4. Hourly data
of solar radiation on horizontal surface, wind velocity as well as
ambient temperature recorded at Bouzaréah (Algeria) for the year
2012 are used in system optimal sizing. Fig. 5 shows the meteoro-
logical conditions for the considered site. MATLAB software is used
to implement and execute the nature-inspired metaheuristic
algorithms. To effectively compare performance of proposed
algorithm with those of APSO, GEWA and BA algorithms, fifty inde-
pendent runs are executed and the results are presented. The
suggested algorithm parameters are adjusted as follows:

FA: population size (N) = 40, a = 0.5, b = 0.2, c = 1, maximum
iteration number = 100.
APSO: population size (N) = 40, b = 0.8, c = 0.99, maximum iter-
ation number = 100.
GEWA: population size (N) = 40, a = 0.5, maximum iteration
number = 100.
BAT: population size (N) = 40, Qmin = 0, Qmax = 2, A = 0.25,
r = 0.75, maximum iteration number = 100.

In this study, the minimum and maximum control variables
bounds are set to 0 and 400 respectively for the PV modules and
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wind turbines and set to 0 and 900 respectively for the battery
banks. To perform the simulation, different configurations are con-
sidered such as:

– Photovoltaic system only with batteries.
– Wind system only with batteries.
– Hybrid PV/wind system with batteries.

In each case study, the simulation is performed for three differ-
ent values of LDR (0%, 0.001% and 0.01%). Table 2 indicates the
results of optimal sizing problem which obtained by Firefly (FA)
algorithm. The number of PV panels, wind turbines, battery banks
and Electricity Cost (EC) are presented in this table. As can be seen,
the hybrid PV/wind/battery system is the most cost-effective
hybrid system for different LDR (%). In addition, the single-source
PV/Battery system has lower cost than single-source Wind/Battery
system. Simulation results also show that reduction of LDR (%) and
reliability improvement leads to increase the system costs. For the
hybrid PV/wind/battery system and LDR (%) = 0%, Electricity Cost is
obtained 1.8306 $ which is more than EC for LDR (%) = 0.1%
(1.6480 $) and LDR (%) = 1% (1.1666 $).

Simulation results for optimal sizing problem obtained by FA,
APSO, GEWA and BA algorithms are presented in Tables 3–5. In
these tables, the mean (Mean), standard deviation (Std.), worst
(Worst) and best (Best) indexes of each algorithm for each config-
uration and with various reliability levels are given. The indexes
have been reported over 50 runs. With comparison of the different
indexes, it can be concluded that FA algorithm yields better result
than the other algorithms in all cases. In addition, APSO algorithm
is better than GEWA and BA algorithms. The low values of FA’s Std.
show the robustness of this algorithm. Std. index for BA algorithm
has higher values than FA and this algorithm cannot find the best
solution in most trials.

For example, for the hybrid PV/wind/battery system and LDR
(%) = 0%, the mean and standard deviation values of EC obtained
by FA over 50 runs are 1.8760 ($/kW h) and 0.0341, respectively.
Therefore, FA in all cases can find the best solution. On the other
hand, APSO give 1.9821 ($/kW h) and 0.1083, GEWA give 2.0165
($/kW h) and 0.1151, and BA give 2.0562 and 0.1331. According
to these results, APSO and GEWA could not find the best solution
in some cases and BA did not give any satisfactory result.

Fig. 6 shows the convergence process of algorithms for finding
the optimum design for the hybrid, PV/Wind/Battery, PV/Battery
and Wind/Battery systems for LDR = 0%. In this figure, the
minimum EC (corresponding to the best performance) during the
iterations has been shown. As the figure shows, during the itera-
tions, the EC decreases. This means that the optimization tech-
nique reduces the energy cost by moving toward the optimum
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size. For such system, there is no information about the optimum
size. Therefore, any reduction of the cost function is significant
because it leads to having more knowledge about the optimal siz-
ing. It is also shown that FA converges to the optimal solution more
quickly than APSO, GEWA and BA.

Fig. 7 presents the evolution of EC obtained via metaheuristic
algorithms for the hybrid PV/wind system after 50 runs. Fig. 7a
presents the different performance indexes obtained by FA algo-
rithm. The best solution value which is 1.831($/kW h) is obtained
after 39 runs. The mean value and the standard deviation for EC
are 1.8760 ($/kW h) and 0.0341, respectively. The same perfor-
mance indexes obtained by APSO algorithm have been presented
in Fig. 7b, with a best solution of 1.831 ($/kW h) obtained in 13
runs. The mean value and the standard deviation are 1.9821 ($/
kW h) and 0.1083 respectively. Fig. 7c displays the same perfor-
mance indexes given by GEWA algorithm with a best solution
value of 1.848 ($/kW h) obtained after 31 runs. The corresponding
mean value and the standard deviation are 2.0165 ($/kW h) and
0.1151 respectively. The similar performance indicators obtained
by BAT algorithm are shown in Fig. 6d, with a best solution of
1.891 ($/kW h) obtained after 41 runs. The mean value and the
standard deviation are 2.0165 ($/kW h) and 0.1151 respectively.
These results validate further the overall superiority of the FA algo-
rithm performances compared to the APSO, GEWA and BAT
algorithms.

Fig. 8 presents the variation of iteration number vs. run number
for the studied hybrid system and LDR = 0%. Fig. 8a illustrates this
variation in applying Firefly algorithm. It can be seen from this fig-
ure that the best solution (EC = 1.831 $/kW h for LDR = 0%) is
obtained after 33 iterations and 39 runs. The same optimal value
(EC = 1.831 $/kW h) has been obtained with APSO algorithm after
66 iterations and 13 runs (Fig. 8b). Otherwise, GEWA and BAT algo-
rithms cannot find the best solution. Thus, the solution found by
GEWA is 1.848 $/kW h after 93 iterations and 31 runs, while the
one obtained by BAT is 1.891 $/kW h after 39 iterations and 41
runs.

Fig. 9 presents the evolution of EC obtained via the different
algorithms after several runs for sizing of PV/wind hybrid energy
system for the year concerned. It can be seen that the lowest values
of the EC relatively to the three indexes (Best, Mean and Worst
solutions) presented in Fig. 9a, b and c are obtained with FA. On
the other hand, the highest values of EC are obtained with the
BAT algorithm. These simulation results show that FA can find
the optimal solution with high accuracy and it has the best perfor-
mance compared to the three others algorithms. It sustains also,
that FA is very effective in dealing with multimodal, highly nonlin-
ear problems.

Based on the 1-year simulation data, Fig. 10 describes the
hourly state of charge (SOC) variations of battery bank for optimal
configuration of hybrid power generation system and for high reli-
ability level (LDR = 0%). Generally speaking, the seasonal changes
of the battery SOC are well marked. It can be seen that the maxi-
mum depth of discharge is approximately 49.4%, thus indicating
the system capability to supply reliably the consumer load. As
seen also in Fig. 10, the lower limit of SOC is achieved mainly in
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Fig. 11. Hourly variation of the SOC of battery bank for optimal hybrid PV/wind system in a day (a) case of theleast-sunny day of the year; (b) case of the sunniest day of the
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February (between 1197 h and 1238 h) and in December (between
8054 h and 8176 h), which perfectly meets the objective set in the
management and control strategy of the battery.

Fig. 11 shows the hourly variation of the state of charge (SOC) of
battery bank for optimal hybrid PV/wind system during a day.
Fig. 11a illustrates this variation for the least-sunny day of the
year. It can be seen that SOC between 01am and 11am is almost
constant with a SOC of 93%, and it decreases to 70% at midnight.
Otherwise, the variation of the SOC for the sunniest day of the year
is illustrated in Fig. 11b. A clear feature is that SOC increases
between 7 am and 9 am to reach 100%, and it remains full up to
07 pm. This increase of observed battery state of charge (SOC) cor-
responds well to the daytime period when solar radiation is
available.

In Fig. 12, the hourly SOC variation for optimal hybrid PV/wind
system during a day has been presented. Fig. 12a illustrates this
variation for the least-windy day of the year. It can be seen that
the state of charge oscillates between 72% and 87% with low charg-
ing and discharging phases during the day and this, according to
the energy balance involved in the system. Moreover, Fig. 12b illus-
trates the variation of the SOC for the windiest day of the year. It
can be seen that the SOC reaches the maximum state of charge
(100%) between 11am and 04 pm and varies during the rest of
the day, depending on production and consumption conditions
(According to the wind speed evolution and load demand level).
7. Conclusions

This paper proposes a PV/wind hybrid optimization method,
which employs one of the most recent Nature Inspired Algorithm
(NIA), called Firefly Algorithm (FA), considering the Load Dissatis-
faction Rate (LDR) criteria and the Electricity Cost (EC) indicator
for power reliability and system cost. The recommended method
determines the system optimum configuration, which can attain
the desired LDR with minimum EC. For this purpose, an objective
function is formulated for the EC. It must be kept to a minimum
while respecting the reliability constraints (LDRdesired). The
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effectiveness of Firefly algorithm (FA) in solving hybrid system
design problem is scrutinized and its performance is compared to
other well-known optimization algorithms such as Accelerated
Particle Swarm Optimization (APSO) algorithm, Generalized Evolu-
tionary Walk Algorithm (GEWA) and Bat Algorithm (BA).

In order to highlight the recommended method, a case study is
lead to scrutinize a PV/wind hybrid system, which is designed to
supply a group of twenty households located in Bouzaréah, Algeria
(36�480N, 3�10E, 345 m). The algorithm input data set consists of
hourly solar radiation on the horizontal surface, wind velocity,
ambient temperature recorded at Bouzaréah for the 2012 year,
the energy requirements expressed by the load throughout the
year and the specifications of the system devices.

The PV/wind hybrid system is simulated by running the devel-
oped computer program. Fifty independent runs are executed and
the results are presented. From the optimization viewpoint, it is
found that Firefly algorithm (FA) yields more promising results
than Accelerated Particle Swarm Optimization (APSO) algorithm,
Generalized Evolutionary Walk Algorithm (GEWA) and Bat Algo-
rithm (BA), in terms of the Electricity Cost (EC). It can be also con-
ducted that the PV/wind/battery choice is more economically
viable compared to the stand-alone wind and stand-alone PV sys-
tems. The results also show that more the consumer tolerates
shedding, more the hybrid system is undersized and therefore
cheaper in terms of electricity costs. Indeed, there is a considerable
variation in the cost (up to 36%) between the sizing of a system
that provides 99% and 100% of the electrical requirements of the
user.
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