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A B S T R A C T

The technology of photovoltaic power generation has been increasingly regarded in many countries as an
alternative to reduce the environmental impacts associated with climate changes and dependence on fossil fuels.
Countries such as Germany and other European countries have been developed specific regulatory mechanisms
to encourage its use either by government programs or by financial and/or tax incentives. In Brazil, despite the
large existing solar potential, the encouragement to technology is still incipient. This paper aims to demonstrate
the key aspects of the evolution of regulatory incentives to use photovoltaic solar energy in Brazil and present
the technologies and characteristics of photovoltaic power generation.

1. Introduction

The increase of the demand and consumption of energy resulting
from technological progress and from advancement in human devel-
opment are seen as the most important factors in the acceleration of
climate and environmental changes observed and described by the
scientific community. Recent studies have shown an upward trend in
energy demand as a result of economic recovery in developing
countries. The current growth trend suggests that probably in the
second decade of this century, energy consumption in developed
countries will be exceeded by consumption in developing countries
due to the improvement of socio-economic parameters in these
countries [1,2].

According to data from the International Energy Agency and Key
World Energy Statistics [3], Brazil, Russia, India and China account for
32% of world energy demand. Among them, the highlight is China with
2417 million toe (tons of oil equivalent), which corresponds to 19% of
the world energy demand. Russia comes next with 701 million toe (6%
of world demand), after India with 692 million toe (5%) and finally
Brazil with 265 million toe (2%). About this, see also [4–13].

Although China presents the greatest world's energy demand, its

per capita consumption (1.81 toe/person) is below the world average
(1.86 toe/person). Similarly, India, even reaching 5% of world demand,
has a low per capita consumption (0.59 toe/person). On the other
hand, Russia presents a per capita energy consumption (4.95 toe/
inhabitant) of developed country. Brazilian consumption (1.36 toe/
inhabitant) is in an intermediate position among the BRICs, down
slightly from Chinese consumption.

Petroleum is the major commodity in the Brazilian energy matrix,
representing about 60% of the total consumption energy sources, used
mainly to provide much of the energy demand in the transport sector.
It is also important to denote that about 40% of the energy comes from
sugarcane bagasse and traditional biomass, as shown in Fig. 1.

Currently hydropower is the main source of energy for electricity
generation in Brazil, accounting for 62.44% of production, as shown in
Fig. 2.

Hydropower is considered renewable and clean, however its
application is restricted due to the environmental impacts caused by
the flooding of large areas, by the emission of methane (CH4) resulting
from the anaerobic degradation of organic material submerged by
flooding, and due to hydrological dependence of the region to be
implemented [16].
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On the other hand, Brazil, as a country located mostly in the
intertropical region has great potential for solar energy utilization
throughout the year. The use of solar energy brings long-term benefits
for the country, enabling the development of remote regions where the
cost of electrification by conventional network is too high in relation to
the financial return on investment, regulating the energy supply during
drought periods. There is a wide range of possibilities in the medium
and long-term use of this abundant form of renewable energy, ranging
from small independent photovoltaic systems to large power plants
that use concentrated solar power [17].

According to Rüther [18], the solar photovoltaic systems, especially
those integrated with urban buildings and connected to distribution
system, offer several advantages to the electrical system, many of which
relate to avoiding costs, which are not yet considered or quantified,
such as: a) reduction of losses due to transmission and distribution of
energy, as electricity is consumed where it is produced; b) Reduction of
investment in transmission and distribution lines; c) buildings with
integrated photovoltaic technology does not require dedicated physical
area; d) solar photovoltaic buildings provide larger volumes of elec-
tricity at times of peak demand; e) When strategically distributed,
photovoltaic generators offer minimal idle generation capacity for its
great modularity short term installation, providing speed on the
demands of adding generating capacity.

However, nowadays this energy still has an incipient participation
in the Brazilian energy matrix - thermal solar energy for water heating
has aroused interest in the domestic market, mostly for the use
between classes A and B of society, in the industry and hotel services.

Much of the potential investors and producers in the energy sector
do not have information or knowledge, with the necessary scientific
background, about the options in renewable energy sources, and
because of that, they tend to avoid the economic and financial risks
associated with the development of projects in this area [19].

The present article aims to supply part of the demand for informa-
tion about the solar energy availability in Brazil, government incentives
and overview of the current legislation. Specifically for the case of the
present review, it has been possible to observe that the generation of
photovoltaic energy is an alternative to the diversification of the
Brazilian energy matrix. It will be seen that although the country come
trying over the years to encourage the photovoltaic source, as a
renewable source, this incentive is still very modest to increase its
share in the national energy matrix. The projects installed through
government actions use autonomous systems and focus on isolated
houses, far from the distribution networks. To comprehend such
picture, firstly the paper will review in Section 2 technologies and
applications of photovoltaic systems, and it will be addressed in Section
3 the main information about costs and learning curve and in Section 4
the potential use. In Section 5 it will be discussed some historical
aspects of the development of solar energy in Brazil, mainly in what
concerns to photovoltaic systems and the current situation of National
fomentation programs. Section 7 will discuss the main actual govern-
ment incentives and the Brazilian regulatory panorama, and in Section
8 it will be made some final considerations.

2. Technologies and applications of photovoltaic systems

All photovoltaic systems can be characterized into five groups:

i) Connected to the network: the photovoltaic system connected to
the network, usually installed on house roofs and buildings,
consists of a photovoltaic panel that converts the sun energy into
electricity (direct current) in which the presence of an inverter is
required, which converts direct current into alternating current
with tension and frequency compatible with the electric grid
standards to which the system is connected. The main advantages
of this type of system are high productivity, the absence of battery

Fig. 1. Brazil's energy matrix versus time. Source: MME, 2014 [14].

Fig. 2. Brazilian energy matrix. Source: ANEEL, 2014 [15].
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bank and automatic shutdown in the event of network power
shortage, avoiding isolation phenomenon [20].

ii) Isolated: isolated or independent photovoltaic systems are in-
stalled in areas of difficult access to the power grid, usually rural
areas. In this case, photovoltaics is the only source of electricity
and some storage is necessary, as in batteries [21].

iii) Hybrid - photovoltaic generation works in conjunction with others,
such as wind turbines or diesel. They are considered more
complex, such systems require a control able to integrate different
forms of energy generation. These systems can be connected to the
network, alone or have the support network [15].

iv) Solar power plants - These systems also connected to the network,
produce a lot of electricity in a single point. The size of the plant
varies from hundreds of kilowatts and megawatts.

v) Applied in consumer goods - photovoltaic cells can also be applied
in various electrical equipment such as watches, calculators, toys,
battery chargers or solar roofs for charging electric cars, irrigation
systems, signage on highways, poles or public phones, among
others.

The module is the main element of a photovoltaic system. It is
comprised of a set of photovoltaic cells, which in turn has the purpose
of obtaining electric energy through the conversion of the energy of the
solar radiation.

The main technologies that are available today in the market for
photovoltaic solar energy production can be divided according to the
raw material used in photovoltaic cells such that: Crystalline silicon (c-
SI), hydrogenated amorphous silicon (a-Si), cadmium telluride (CdTe),
copper diselenide (gallium) and indium (CIS and CIGS), colored
modules and High Power Modules [22].

According to [23], the main raw material used in the world for the
production of photovoltaic cells is silicon, which is used as semicon-
ductor element. The silicon has four electrons in its last layer, shared by
covalent bonds, however this compound is not a good conductor of
electricity requiring thus be doped with other elements such as
phosphorus which has five electrons in the last layer, which will remain
a free electron, shared not forming a silicon semiconductor N-type
negative charge. When silicon is doped with an element that has less
electron than it in its valence layer as, for example, the boron which has
three electrons in the last layer, it is formed a silicon semiconductor P-
type positive charge, and the combination of the P-N generates a
charge imbalance thereby generating an electric field. The sunlight has
the role to excite the electrons generating a flow that produces an
electric current and a difference in electrical potential.

The crystalline silicon (c-SI) has been established as the main
source of raw material according to the robustness and reliability.
These cells may be of two types: monocrystalline silicon (m-Si) and
polycrystalline silicon (p-Si). Besides being the oldest photovoltaic
technology, the monocrystalline silicon (m-Si) it produces cells with
greater efficiencies in commercial applications. This cell is produced by
pulling a kind of seed crystal in an extremely slow way (in cm/hour
order) and uniform from a molten silicon bath of high purity (Si =
99.99% a 99.9999%) in reactors under controlled atmosphere, produ-
cing a cylinder with two thin edges. Next, the crystal is cut into sections
using four cuts along its entire length. Finally, the crystal is cut into
hundreds of blades (wafers) by wire or diamond saws. This will be the
pre-product used in the production of solar cells, which involves
stoning, chemical baths, polishing, diffusion/doping processes and
deposition of conductive mask of the electricity generated. Finally,
cells will be interconnected in series to obtain the photovoltaic module
[24].

According to [25], polycrystalline silicon (p-Si), as its name implies,
is made up of several crystals, which are subsequently melted and
directionally solidified. Precisely because the edges of the crystal
particles that the efficiency of polycrystalline cells is smaller than the
monocrystalline. On the other hand, they cost much less to be

produced, requiring less material and energy. All this reflected in the
final cost of the cells, which ends up being less than the monocrystal-
line, which makes the technology holds the largest share of the solar
module market to a long term. The theoretical efficiency of a silicon cell
reaches 33%, however on a commercial scale it is 18–20%, while the
polycrystalline silicon cells reaches 15–16% [26].

Even though conventional solar cells of crystalline silicon are more
expensive, they still account for 90% of the market share due to its
greater energy efficiency. The conversion rate of light energy into
electricity (relation between the amount of photons falling on the cell
and the amount of electricity converted) called photoconversion is
24.7% for these cells. The other 10% of the market corresponds to the
inorganic thin films of amorphous silicon cells, polycrystalline silicon
or microcrystalline and sulphate of copper-indium-gallium (CIGS),
although less efficient than traditional cells (photoconversion 18.8%),
they are cheaper to produce [27–30].

In an attempt to overcome these barriers, extensive research has
been developed in Brazil and globally in search of new materials and
solar cell manufacturing processes more efficient and less costly.

Thus, the development of a new line of solar cell with production
costs lower than that of silicon wafers currently used in conventional
modules is known as solar cells of third generation (the silicon are the
first generation and the inorganic films are the second), that are mainly
of two types: organic (OPV, which stands for organic photovoltaic) or
sensitized dyes (DSSC, which stands for dye-sensitized solar cell) [27].

The OPV cells carry that name because they use carbon-based
semiconductor materials to convert light energy into electrical. As for
the DSSC run through a chemical oxidation-reduction reaction. Also
called hybrid, as they are made of inorganic and organic materials, they
are built between two glasses and contain a liquid electrolyte, typically
a solution comprising an iodine salt. The cells activated by dyes absorb
solar radiation, allowing the phenomenon of separation of charges
(positive and negative) for the production of energy. Neither the
organic cells or hybrids are marketed on a large scale in the world
[28,29].

Because they are lightweight, flexible and semi-transparent, the
range of applications of OPV and DSSC cells is wider than those of
previous generations. However, for these cells to become commercia-
lized, two major challenges remain: the low efficiency and reduced
lifespan of the new devices. The photoconversion of third generation
cells is still very low. The maximum efficiency ratio, though not
certified, already obtained for OPV cells was 12, 1% and for the
DSSC, 11.4% [27–30].

The low yield of organic cells is explained by no light absorption in
the infrared region, with a wavelength greater than 900 nm, and energy
losses caused by recombination of electric charges. On the other hand,
the reduced lifespan of these cells is a result of the presence of oxygen
or moisture inside them. With the incidence of light, especially
ultraviolet portion (UV, the presence of oxygen and humidity generate
unwanted elements that react with the organic semiconductor changing
its chemical structure and functionality [30].

However, recently, semiconductors known as organometallic triha-
lides of perovskite have the formula (CH3NH3) PbX3, where X can be
iodine, bromine or chlorine, it has attracted attention in the scenario of
photovoltaics due to its simple architecture and lower cost, the
photoconversion rate of 15% [31–37].

Organometallic of perovskite had been introduced in [33] as
absorbent materials in solar cells sensitized by dye (DSCs) based on
a liquid electrolyte [32].

A rapid development in these devices, perovskites have been
applied as coatings over a surface of a thin film of nanoparticles of
titanium dioxide (TiO2). Thus, it has been observed that perovskite
serves not only to collect light but also playing the role of carriers of the
collected charges, which has eliminated the "wet" part of the dye-
sensitized solar cells - precisely the weak link of this technology.

In these solar cells last generation of perovskites, the perovskite is
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simply pressed between the electrodes electrons (negative charges) and
holes (positive charges) the same configuration used in conventional
planar solar cells [31–37].

The great advantage is that they are very thin - about 300 nm,
compared to 150 µm of silicon cells – what gives them flexibility and
transparency [31–37]. However, recent disclosures show the use of
ferroelectric perovskite, base metal oxides, as potential candidates for
the application of solar cells [38].

The perovskite material described in Nature, by Grinberg et al. [39],
has properties that could lead to solar cells that can convert more than
half of the sun's energy directly into electricity. Furthermore, the new
material is also the first to respond well to visible light, making solar
cells twice efficient than those available on the market.

In this scenario, the perovskite promise to be an encouraging
material for solar low cost energy, due to stable mechanic al chemical
and thermal conditions these materials present and can be manufac-
tured using low-cost methods, such as sol-gel of thin film deposition,
sputtering [40,41].

Although there are many advantages in cost and efficiency linked to
perovskite, this material has some environmental concerns related
mainly to the toxicity of lead. In this respect, one of the actual key
scientific challenges is to replace the lead in the perovskite crystal with
a less toxic metal. Possible replacements for Pb in the perovskite are Sn
and Ge, also members of the group 14 metals. For example,
CH3NH3SnI3 is a possibility [42]. However, the leading complication
with the use of such metals is their chemical instability. Important
efforts to solve this problem are being made (see, for example, the
experiments described by [42–51]).

3. Costs and learning curve

Despite disposing high levels of insolation, Brazil does not convert
this resource into energy. The main explanation for this phenomenon is
the high cost compared to traditional energy sources [52–54].

In the first half of 2013, the installation of a photovoltaic system in
Germany was around 1684 euros per kilowatt of installed capacity
(kWp). In Brazil, during the same period, the cost ranged from 7000 to
10,000 reals per kWp, that is equivalent to 2000–3000 euros per kWp
(in that period).

Studies of the European Photovoltaic Industry Association (EPIA)
have shown that the competitiveness of photovoltaic energy will be
reached soon. The main factors that can contribute to this result are the
public policy incentives, investment in technologies that can reduce the
costs of cells and investments in research to increase the conversion of
systems. Fig. 3 shows the decrease of the unit cost of photovoltaic

silicon cells of 99.6% from 1977 until 2015.
It is possible to observe that the unit costs of photovoltaic dropped

from 76.67 dollars per watt in 1977 to an estimated 0.36 dollar per
watt in 2015 to crystalline silicon solar cells. This tendency allows
validating the learning curve proposed by the Richard Swanson's law,
which is similar to Moore's Law, which states that the solar cells cost
drops 20% for each duplication of industry capacity.

According to the data published by Bloomberg New Energy Finance
until 2011, the price of photovoltaic modules per MW has dropped by
60% since 2008, estimating that solar energy will have a competitive
level of retail prices especially in sunny countries. Bloomberg also
published a decline of costs of 75% from 2007 to 2012.

According to the European Photovoltaic Industry Association –
EPIA, it is estimated that the learning curve will allow in 2020 Europe
has an electrical energy cost approximately 50% more affordable than
the 2010 costs, assuring solar energy a great alternative source of
energy for its energy matrix, as shown in Fig. 4.

In Table 1 it is presented the costs to install a typical 1.5–2.0 kW
photovotaic system for each Brazilian State, calculated from solar
modules actual costs in Brazil, the regional solar irradiance and the
regional installation cost [57–60].

In Brazil, the total installation cost is composed by the following
items: PV modules (43%), inverters (24%), physical structure and
security (16%), installation project (17%) [57]. Fig. 5 shows power
electricity tariff versus cost of distributed photovoltaic generation at the
end of 2015 in Brazil.

Fig. 3. Price history of silicon PV cells in US$ per watt. Source: Bloomberg. New Energy Finance (Adapted) [55].

Fig. 4. The Photovoltaic learning curve for Europe. Adapted from [56].
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4. Use of solar potential

In addition to the weather conditions, the availability of solar
radiation, depends on the local latitude and position in time. This is
due to rotation, the slope of the imaginary axis around which the Earth
rotates daily, and translational motion, elliptical path that the Earth
describes around the sun. Thus, the period of visibility of the sun or
lightness varies in some regions and periods of the year where the
variations are more intense in the polar regions and periods solstice.

Most of the Brazilian territory is located relatively close to the
equator, so that it is not observed wide variations in the solar duration
of the day. Thus, in order to maximize the use of solar radiation, the
position of the collector or solar panel can be adjusted according to the
local latitude and time of year in which it is required more energy. In
the Southern Hemisphere, for example, a fixed solar collector system
should be oriented to the north with tilt angle similar to the local
latitude. Fig. 6 shows the annual average daily insolation in Brazil.

Although only part of the solar radiation reaches the earth's surface

due to reflection and absorption of sunlight by the atmosphere, it is
estimated that the solar energy incident on the Earth's surface is of the
order of 10,000 times the world's energy consumption [62].

In 2006, the Brazilian Atlas of Solar Energy presented a survey on
the availability of solar energy in Brazil, using a radioactive transfer
model powered by climatological data and 10 years of information
extracted from geostationary satellite images and validated by data
collected from surface stations. The mapping of solar energy potential
presented in this document has been one of the products generated by
SWERA Project (Solar and Wind Energy Resource Assessment),
funded by the United Nations Environment Program (UNEP) and co-
funded by the Global Environment Facility (GEF).

The project, started in 2001 under the coordination of the Division
of Climate and Environment of the Weather Forecasting and Climate
Studies Center of the National Institute for Space Research (DMA/
CPTEC/INPE), had the main focus to gather information from a
reliable and high quality database aiming to assist in the planning
and development of public policy to encourage national projects of
solar and wind energy and in addition to attract capital investments
from the private sector to the area of renewable energy.

The database reached is compatible with geographic information
systems (GIS) and thus can be easily used in economic feasibility
studies in the development projects.

In Table 2 it is showed the technical potential of photovoltaic
generation in residential roofs per Brazilian region (the potential
installed capacity and the potential annual generation of energy for
each Region). In Fig. 7 we show the country map with details about
such data.

5. Photovoltaic solar energy in Brazil: historical perspective
and actual situation of brazilian programs

During the 1970s and 1980s, a considerable number of develop-
ment assistance agencies attempted to sponsor renewable energy
technologies in developing countries. Small-scale rural enterprises
such as biogas biodigesters, cooking stoves, wind turbines, and solar
heaters were the main products of such financial support. Reports from
the United Nations Development Program (UNDP) and World Bank
Energy Sector Management Assistance Program indicates that a
considerable number of donor renewable energy programs experienced
a range of technical obstacles by the end of the 1980s [64,65]. As result,
many donors had become disenchanted, and aid recipients had come to
view renewables as second-class technologies that industrialized coun-
tries were unwilling to adopt themselves [66–68]. Nevertheless, from
1980 to 2000, official development assistance for renewable energy
totaled about $3 billion [69,70]. Nowadays, worldwide, at least 170
countries have policy targets for renewable energy, where many of
them have been introduced by developing countries, including Brazil,

Table 1
Maxim and minimum costs of a typical solar module in Brazil (by Brazilian State). Prices
in Reals (R$ 1 ~ US$ 0.30). Adapted from [60].

State Capital Power of reference
(kWp)

Min. price Max. price

AC Rio Branco 1.75 R$ 16,625.00 R$ 21,000.00
AL Maceió 1.47 R$ 14,700.00 R$ 19,845,00
AM Manaus 1.61 R$ 15,295.00 R$ 19,320.00
AP Macapá 1.55 R$ 15,500.00 R$ 20,925.00
BA Salvador 1.45 R$ 14,500.00 R$ 19,575.00
CE Fortaleza 1.42 R$ 14,200.00 R$ 19,170.00
DF Brasília 1.52 R$ 15,200.00 R$ 20,520.00
ES Vitoria 1.56 R$ 15,600.00 R$ 21,060.00
GO Goiânia 1.52 R$ 15,200.00 R$ 20,520.00
MA São Luiz 1.61 R$ 15,295.00 R$ 19,320.00
MG Belo Horizonte 1.74 R$ 16,530.00 R$ 20,880.00
MS Campo Grande 1.55 R$ 15,500.00 R$ 20,925.00
MT Cuiabá 1.52 R$ 15,200.00 R$ 20,520.00
PA Belém 1.57 R$ 15,700.00 R$ 21,195.00
PB João Pessoa 1.44 R$ 14,400.00 R$ 19,440,00
PE Recife 1.39 R$ 13,900.00 R$ 18,765.00
PI Teresina 1.44 R$ 14,400.00 R$ 19,440.00
PR Curitiba 2.05 R$ 19,475.00 R$ 24,600.00
RJ Rio De Janeiro 1.63 R$ 15,485.00 R$ 19,560.00
RN Natal 1.4 R$ 14,000.00 R$ 18,900.00
RO Boa Vista 1.61 R$ 15,295.00 R$ 19,320.00
RR Porto Velho 1.72 R$ 16,340.00 R$ 20,640.00
RS Porto Alegre 1.68 R$ 15,960.00 R$ 20,160.00
SC Florianópolis 1.77 R$ 16,815.00 R$ 21,240.00
SE Aracaju 1.44 R$ 14,400.00 R$ 19,440.00
SP São Paulo 1.91 R$ 18,145.00 R$ 22,920.00
TO Porto Nacional 1.55 R$ 15,500.00 R$ 20,925.00

Fig. 5. Power electricity tariff versus cost of distributed photovoltaic generation at October 2015 in Brazil for 31 power distribution companies. The upper band corresponds to the final
cost including the ‘red flag’ tariff (when it is added thermoelectric power generation costs). The line corresponds to the distributed generation level cost. From [57].

A. Ferreira et al. Renewable and Sustainable Energy Reviews 81 (2018) 181–191

185



China, Dominican Republic, Egypt, India, Korea, Malaysia, Mali, South
Africa, and Thailand [71].

Brazil has a strong hydraulic base in its electrical matrix. However,
the stimulus to other "modern" sources of renewable energy is still very
incipient compared to the world average, despite the efforts made by
the federal government through the Incentive Program for Alternative
Sources of Electricity (Proinfa). In the last thirty years, the increase in
primary energy production in Brazil has been closely tracking GDP
growth, but electricity consumption has increased more rapidly, due to
the country's increasing electrification and the installation of electro-
intensive industries, such as aluminum [72].

Solar energy research in Brazil dates back to the 1950s [73]. From a
strategic point of view, Brazil has a number of favorable natural
characteristics, such as high levels of solar irradiation and large
reserves of quality quartz, which can generate an important competi-
tive advantage for the production of high purity silicon, cells and solar
modules, potentiating the attraction of investors and the development
of an internal market, allowing an important role to be seen in the
electric matrix for this type of technology. Because of this, during the
1970s, some German universities and research institutes became
interested to begin scientific collaborations in the area. It was realized
that countries such as Brazil and India with a high level of insolation
would be ideal places for harnessing solar energy. For example, during
the 1970s, research and development of first generation thin-film solar
cells of Cu2S/CdS was carried out at the Instituto Militar de Engenharia
(IME), Rio de Janeiro, in collaboration with the Institut für
Physikalische Elektronik (IPE) at Stuttgart University. In this way, a
considerable number of other groups in Brazil also began their
activities both in scientific research and in technological advancement
of solar cells and solar cell materials. Development of solar energy
research in Brazil evolved through establishment of well-equipped
laboratories, spread of post-graduate education and basic research
during 1958-72, intense applied research on solar thermal collectors,
refrigeration, furnaces, cookers, driers, and distillation; and photo-

Fig. 6. Annual average daily insolation in Brazil (hours). Source: ATLAS Solarimetric of Brazil, 2000 (adapted) [61].

Table 2
Residential photovoltaic technical potential per Brazilian Region. Adapted from [63].

Brazilian
region

Residential
photovoltaic potential
capacity (MW)

Residential photovoltaic
technical potential (energy
generation in MW h/year)

North 2215 19,403
Northeast 8840 77,440
Center-West 2705 23,696
Southeast 14,055 123,122
South 5005 43,844
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voltaics silicon and module manufacturing during 1973-83 and again
after 1994 with higher emphasis on field-deployment of photovoltaic
(PV) systems during the 2000s [73,74].

The main research groups on PV systems during this period were
the Materials and Interfaces Laboratory, Federal University of Rio de
Janeiro (from 1970), the Solar Cells and Microelectronics Laboratory,
Military Institute of Engineering, Rio de Janeiro (from 1971), the
Microelectronics Laboratory, University of Sao Paulo (from 1974), the
Sensors and Materials Laboratory, Institute of Space Research, Sao
Jose dos Campos (from mid 1970s), the Photovoltaic Conversion
Laboratory, University of Campinas (from 1980). The financial support
came mainly from the collaboration between Brazilian and interna-
tional funding agencies as the Bank of National Development
(BNDES), the National Fund for the Development of Science and
Technology (FNDCT), the National Fund for Technical Development
(FUNTEC/BNDES), the Financing Agency for Studies and Projects
(FINEP), the National Research Council (CNPq), the Bank of Brazil, the
Research Foundation of Sao Paulo State (FAPESP), the Electrical
Utility Company of Sao Paulo State (CESP) and the Organization of
American States (OAS) [59,73–75].

From mid 1980s the industrial manufacturing of solar panels in
Brazil was inaugurated with the solar cell module assemblage employ-
ing imported solar cells. Later, such experience enabled the encourage-

ment of cell production. The first Brazilian company to make this was
Heliodinamica, that started the production of 100 mm diameter single-
crystal silicon ingots and solar cells. The process, developed locally,
consists of the growth of p-type silicon single-crystal ingots, crystal
cutting and wafer polishing, p-n junction formation by diffusion of
phosphorus using POC13, and formation of an n-p-p+ structure with
diffusion from an aluminum paste for generating the back surface field
[74].

The period after 1994 was marked by significantly larger expansion
of research development and deployment activities. The substantial
new funding from the Federal and State Governmental programs for
alternative energy led to the creation of new programs, as for example
the Program for Energy Development of States and Municipalities
(PRODEEM), established in 1994 and managed by the Brazilian
Ministry of Energy (MME). It has supplied electric power to rural
communities located in remote regions, where the energy consumption
was low [59]. During the 2000s, MME have already carried out six
International Biddings for the acquisition of modern equipment. The
installed systems are scattered throughout all the 26 Brazilian Federal
States, with higher concentration in the Northeast and North regions of
the country. After 2002, due to the problems faced in the sustenance of
PRODEEM, MME decided to promote a huge re-organization in this
Program, with the aim of reviving all the systems that were installed

Fig. 7. Technical potential of photovoltaic generation in residential roofs per municipality (MW h/day). Data from [63].
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until the end of 2006, then transferring the operation and maintenance
tasks to the utility companies all over the country as well as
incorporating them in the ‘Program Luz para Todos’ [59,73].
Regarding centralized generation projects, the first Photovoltaic Plant
was inaugurated in 2011, based on a private initiative, with 1 MWp, in
the Municipality of Tauá. In 2013, for the first time, photovoltaic
generation projects were enabled to participate in an Energy Auction,
although no project was contracted due to lack of competitiveness
compared to other sources [57,58].

Regarding the development of grid connected systems associated
with consumer units, some pilot projects began to be installed in the
country in the late 1990s, mainly in universities and research centers.
However, only in 2012 this modality of generation was regulated by the
National Electric Energy Agency (ANEEL), through Normative
Resolution No. 482/2012, which establishes the General conditions
for the access of micro and distributed minigeration to the distribution
systems of electric power, and the system of compensation of electric
energy. At the end of 2015, there were 1675 photovoltaic systems
connected under the REN 482 regime, totaling 13.4 MW and at the end
of 2016, Brazil had 51.1 MW of installed solar generation capacity,
corresponding to 3851 installations [57–59].

6. Government incentives and regulation in Brazil

The two most important taxes that encourage the use of some
photovoltaic systems are, the Tax on Circulation of Goods and Supply
of Services – ICMS, of State Jurisdiction, and the Tax on Industrialized
products – IPI, Federal Jurisdiction.

In 2008, the government made an agreement granting exemption
from ICMS and reduced to zero the IPI for some equipment of
photovoltaic power generation, valid until December 31, 2021 [76].

The answer to the question of cost is emerging from the market and
the installation of photovoltaic systems falls consistently when com-
pared to other renewable sources [69].

Currently, Brazil does not have photovoltaic systems manufac-
turers, however in 2004, the Ministry of Science and Technology signed
a technical-scientific agreement with the Solar Energy Technology
Center of the Pontifical Catholic University of Rio Grande do Sul, for
the implementation of the Brazilian Center for Photovoltaic Solar

Energy Development (CB - SOLAR). The laboratory has been consid-
ered the most modern in the field of manufacturing of photovoltaic
modules in Latin America [77].

In January of 2015 the National Bank for Economic and Social
Development (BNDES) approved financing of the first plant of photo-
voltaic panels in Brazil, with an initial investment of 26 million for the
Pure Energy company in the municipality of Marechal Deodoro, State
of Alagoas. Since 2011, Brazil has shown signs that photovoltaic energy
can be established in the national territory as another option of
complementary energy to the energy matrix. In May of 2011, the first
power plant in commercial scale was connected to the network in the
Country, of 1 MW in Tauá, Ceará, MPX. In addition, in the second half
of the same year, Coelba, in partnership with the government of Bahia,
began the installation of power plant of 400 kW in Pituaçu, in Salvador
Municipality. With the power plant, the arena will be the first in Latin
America to be powered by solar energy [59–63].

An independent survey carried out by the Photovoltaic System
Laboratory of the University of São Paulo (USP) and revised in May
2010 by the Solar Energy Laboratory of the Federal University of Santa
Catarina (UFSC) indicates that 38 solar power plants are connected to
the network, installed in universities, research institutes and utilities.
These projects have a total power of 174 kW, of which only 128 kW are
in operation today [57–59].

In order to reach the demand for regulation of distributed photo-
voltaic power generation, the National Electric Energy Agency -
ANEEL, promoted the Public Consultation No. 15/2010 (from
September 10th to November 9th, 2010) and the Public Hearing No.
42/2011 (from August 11th to October 14th, 2011), which were
introduced in order to discuss the legal provisions dealing with small
distributed generation connection in the distribution network. these
consultations have been introduced in order to discuss the legal
provisions that deal with connection of small distributed generation
in the distribution network. As a result of this consultation process and
public participation in the regulation of the electricity sector,
Normative Resolution No. 482, of April 17th, 2012, established the
general conditions for the access of micro and mini generation
distributed to power distribution systems, and created the correspond-
ing power compensation system [78].

Thus, it is possible to characterize the mini and micro distributed in

Fig. 8. Procedures and steps for access. Source: ANEEL themed books micro and distributed minigeneration, 2014 [76].
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the production of electricity from small power plants based on
hydraulic, solar, wind, biomass or qualified cogeneration, connected
to the distribution network through consumer units facilities. In Brazil,
to enable access to distributed generation consumers should follow the
procedure as shown in Fig. 8.

The electrical measurement system should be bidirectional (mea-
surement of consumption and generation) and can be made also by two
unidirectional meters, one to measure consumption and other power
generation where the adequation costs are in account of the accessing
party. After installation, the cost of maintenance is the responsibility of
accessed party. The initiative of installing micro and mini generation
system is from the user and for analysis cost-benefit it should be taken
into consideration a number of circumstances, such as generating
equipment technology, location of installation, the rate which is
subject, project payment terms, existence of other consumer units that
can take advantage of possible generation surplus credits [78,79].

The following taxes are imposed on distributed generation: the Tax
on Circulation of Goods and Supply of Services- ICMS, Social
Integration Program (PIS) and Contribution to Social Security
Financing (COFINS).

According to ANEEL recommendation, taxation, instead of what
happens, should focus only on the difference, if positive, between the
final values of consumption and excess energy injected, however, the
power to amend the tax burden on the individual distributed genera-
tion is in charge of the government, ICMS state government and PIS
and COFINS federal government.

Germany for example is considered the country with the most
successful incentive mechanism for renewable energy sources. The
price system introduced with the Electricity Feed Act (1991) – and
subsequently updated by the Renewable Energy Sources Act (2000)
and by the amendment of the Renewable Energy Sources Act (2004) –
is the key to the success of renewables in Germany.

Only in 2004, an increase of approximately 100% in photo power
installed in Germany, which at the end of 2005 was approximately
1.5 GWp connected to the public network [80]. Such examples could
server as the basis for the structure of incentives in Brazil.

The German mechanism is based on the compulsory purchase by
the network operator, of all the electricity generated by renewable
sources, paying the independent power producer (PI) a tariff premium
per kWh generated. This premium rate is relatively higher than the
price of conventional kW h and it is distinct for each technology [81–
84].

The funds for the payment of premium rates are raised through a
small increase in the standard rate for all consumers and are deposited
in a fund used to reimburse the PIs.

In this case, the incentive is paid gradually over the time of the
program period (20 years for Germany), allowing PIs recover their
investments over a period of 10–12 years [85].

7. Concluding remarks

Photovoltaic solar energy has become, in recent years, a reality in
some countries, although the development in all cases has been made
through the most diverse incentives (see, for example, [78,82,86–93]
to understand the vast scenario across the globe in the last 10 years).
Although much smaller than in the past, the costs of solar generation is
still higher than some of the main renewable energy sources used in
electricity power generation. However, the learning curve of industry in
the world is in evolution and associated costs had significant decreases.
It is considered by some authors that this trend will be maintained over
the next few years, which may mean that the source becomes
competitive without incentives in the future [94–98].

Specifically for the case of the present review, it has been possible to
observe that the generation of photovoltaic energy is an alternative to
the diversification of the Brazilian energy matrix. However it is also
noted that although the country come trying over the years to

encourage the photovoltaic source, as a renewable source, this incen-
tive is still very modest to increase its share in the national energy
matrix. The projects installed through government actions use auton-
omous systems and focus on isolated houses, far from the distribution
networks [78,79].

It is understood that to enable a more significant reduction of
production costs within the photovoltaic chain in the country it is
necessary to stimulate further development of the market for solar
energy. This would also allow the country to participate in some stage
in the chain of a high value-added industry worldwide. Brazil has
quality raw materials and industries that can be adapted for the
production of components for photovoltaic systems and indeed he-
liothermic plants. To promote the development of the local industry is
an alternative that can reduce costs and boost participation of this
energy source in the national electric matrix, bringing several devel-
opments, such as technological, economic and social development [72].
Nevertheless, the international market for such technological compo-
nents is extremely competitive. In the case of the photovoltaic industry,
what has been seen in recent years is the price dumping leading
unfortunately several manufacturers into bankruptcy [96–99].

The initial chain of silicon purification and cell production is very
expensive and requires large volume production to become competi-
tive. In the case of heliothermic, the production of higher value-added
components requires high technological know-how. Therefore, the
development of a competitive and sustainable Brazilian local industry
is a challenge for planning. The development of specific lines of credit
for solar electricity generation is vital for an expressive entry of this
source into the Brazilian electricity matrix. However, the distributed
grid generation still lacks funding lines with attractive rates that are
available across the country. One of the reasons for the few alternatives
offered is the lack of knowledge about technology by the financial
sector, which causes uncertainties and difficulties in understanding and
correctly measuring the risks of these assets. In this case, not only
direct financing solutions can be developed, but also financing mechan-
isms such as the securitization of distributed generation assets, which
would more easily facilitate different business models, such as leasing
[78,79,86–93,100–108].

In the case of distributed generation, because its competitiveness
level is defined from the energy distribution tariffs to the final
consumer, the comparison of values already allows us to say that it is
close to the condition of economic viability at the Brazilian electric grid
[61,70,78]. The same does not occur with centralized generation, of
larger size, whose prices are not competitive with those of other
renewable sources in the present [78]. To solve the problem, probably
it should be considered the contracting of centralized photovoltaic
generation, of larger size, by specific auctions, restricted to this specific
case, repeating the successful energy policies experimented by other
countries [108].
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