
future internet

Article

Dynamic Traffic Scheduling and Congestion Control
across Data Centers Based on SDN

Dong Sun 1, Kaixin Zhao 2, Yaming Fang 3 and Jie Cui 3,* ID

1 Experimental Management Center, Henan Institute of Technology, Xinxiang 453000, China;
dongdong@hait.edu.cn

2 Department of Computer Science and Technology, Henan Institute of Technology, Xinxiang 453003, China;
13849371368@hait.edu.cn

3 School of Computer Science and Technology, Anhui University, Hefei 230039, China; 13721032191@139.com
* Corresponding: cuijie@mail.ustc.edu.cn

Received: 20 June 2018; Accepted: 7 July 2018; Published: 9 July 2018
����������
�������

Abstract: Software-defined Networking (SDN) and Data Center Network (DCN) are receiving
considerable attention and eliciting widespread interest from both academia and industry. When the
traditionally shortest path routing protocol among multiple data centers is used, congestion will
frequently occur in the shortest path link, which may severely reduce the quality of network services
due to long delay and low throughput. The flexibility and agility of SDN can effectively ameliorate
the aforementioned problem. However, the utilization of link resources across data centers is still
insufficient, and has not yet been well addressed. In this paper, we focused on this issue and proposed
an intelligent approach of real-time processing and dynamic scheduling that could make full use of
the network resources. The traffic among the data centers could be classified into different types,
and different strategies were proposed for these types of real-time traffic. Considering the prolonged
occupation of the bandwidth by malicious flows, we employed the multilevel feedback queue
mechanism and proposed an effective congestion control algorithm. Simulation experiments showed
that our scheme exhibited the favorable feasibility and demonstrated a better traffic scheduling effect
and great improvement in bandwidth utilization across data centers.

Keywords: data center; dynamic scheduling; congestion control; OpenFlow; software-defined networking

1. Introduction

Big data has become one of the hottest topics among academia and industry. With the development
of big data, the amount of data from different sources such as the Internet of Things, social networking
websites, and scientific research is increasing at an exponential rate [1]. The scale of data centers has
gradually extended. Meanwhile, an increasing number of data are being transmitted in data center
networks, and traffic exchange among the servers in data centers has also been growing fast. The most
direct result may be low utilization ratio, congestion problems, service latency, and even DDOS
attacks [2]. Data centers are always interconnected through wide area networks [3]. When traditional
routing protocols are used in data center networks, flows are forced to preempt the shortest path to
be routed and forwarded, which might lead the shortest path link to be under full load while some
new flows are still competing for it, and other links are under low load. Without shunting for flows,
the link would easily be congested and unable to provide normal network services. The most direct,
but expensive solution, is to remold and upgrade the network. However, on account of the scale,
complexity, and heterogeneity of current computer networks, traditional approaches to configuring the
network devices, monitoring and optimizing network performance, identifying and solving network
problems, and planning network growth would become nearly impossible and inefficient [4].

Future Internet 2018, 10, 64; doi:10.3390/fi10070064 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0001-7258-3418
http://www.mdpi.com/1999-5903/10/7/64?type=check_update&version=1
http://dx.doi.org/10.3390/fi10070064
http://www.mdpi.com/journal/futureinternet

Future Internet 2018, 10, 64 2 of 12

Software-defined networking (SDN) is one of the most notable forms of computer networking. It is
receiving considerable attention from academic researchers, industry researchers, network operators,
and some large and medium-sized networking enterprises [5]. SDN is considered as a promising
modality to rearchitect our traditional network [6]. The core idea of SDN is to decouple the control
plane from the data plane to achieve flexible network management, efficient network operation,
and low-cost maintenance through software programming [7]. Specifically, infrastructure devices
merely execute packet forwarding depending on the rules installed by the SDN controller [8]. In the
control plane, the SDN controller can oversee the topology of the underlying network and provide an
agile and efficient platform for the application plane to implement various network services. In this new
network paradigm, innovative solutions for realizing specific and flexible services can be implemented
quickly and efficiently in the form of software and deployed in real networks with real-time traffic.
In addition, this paradigm allows for the logically centralized control and management of network
devices in the data plane in accordance with a global and simultaneous network view and real-time
network information. Compared with traditional networks, it is much easier to develop and deploy
applications in SDN [9].

This paper concentrated on the problem of data center traffic management and attempted to avoid
congestion to make full use of the bandwidth resources. We proposed a new solution based on SDN
for traffic engineering in data center networks by developing two modules on top of an open source
SDN controller called Floodlight. The traffic among the data centers can be classified into different
types. Different strategies are adopted upon the real-time changes of the link states. The dynamic
traffic scheduling can take full advantage of the network resources better. Given the prolonged
occupation of the bandwidth by malicious flows, we proposed an effective congestion control algorithm
by adopting a multilevel feedback queue mechanism. Considering a large-scale IP network with
multiple data centers, the basic components are shown in Figure 1a. With traditional routing protocol,
all flows from S1 and S2 to D would traverse or congest paths (A, B, C) without using (A, D, E, C).
In contrast, the scheme DSCSD in this paper can route flows from S1 and S2 to D to select different
paths according to their types and the real-time link information (Figure 1b), and the congestion can
also be well controlled.

Future Internet 2018, 10, x FOR PEER REVIEW 2 of 12

performance, identifying and solving network problems, and planning network growth would
become nearly impossible and inefficient [4].

Software-defined networking (SDN) is one of the most notable forms of computer networking.
It is receiving considerable attention from academic researchers, industry researchers, network
operators, and some large and medium-sized networking enterprises [5]. SDN is considered as a
promising modality to rearchitect our traditional network [6]. The core idea of SDN is to decouple
the control plane from the data plane to achieve flexible network management, efficient network
operation, and low-cost maintenance through software programming [7]. Specifically, infrastructure
devices merely execute packet forwarding depending on the rules installed by the SDN controller
[8]. In the control plane, the SDN controller can oversee the topology of the underlying network and
provide an agile and efficient platform for the application plane to implement various network
services. In this new network paradigm, innovative solutions for realizing specific and flexible services
can be implemented quickly and efficiently in the form of software and deployed in real networks
with real-time traffic. In addition, this paradigm allows for the logically centralized control and
management of network devices in the data plane in accordance with a global and simultaneous
network view and real-time network information. Compared with traditional networks, it is much
easier to develop and deploy applications in SDN [9].

This paper concentrated on the problem of data center traffic management and attempted to
avoid congestion to make full use of the bandwidth resources. We proposed a new solution based on
SDN for traffic engineering in data center networks by developing two modules on top of an open
source SDN controller called Floodlight. The traffic among the data centers can be classified into
different types. Different strategies are adopted upon the real-time changes of the link states. The
dynamic traffic scheduling can take full advantage of the network resources better. Given the
prolonged occupation of the bandwidth by malicious flows, we proposed an effective congestion
control algorithm by adopting a multilevel feedback queue mechanism. Considering a large-scale IP
network with multiple data centers, the basic components are shown in Figure 1a. With traditional
routing protocol, all flows from S1 and S2 to D would traverse or congest paths (A, B, C) without
using (A, D, E, C). In contrast, the scheme DSCSD in this paper can route flows from S1 and S2 to D to
select different paths according to their types and the real-time link information (Figure 1b), and the
congestion can also be well controlled.

S1

S2
D

B
A

E

C S1

S2
D

B
A

D E

C

router

destination
D

flowsource

(a) (b)

Figure 1. Flows that preempt the shortest path (a) can be shunted into two different paths (b) with
DSCSD.

The main contributions of this paper are as follows. First, we proposed a new approach for
traffic scheduling that could route a newly arrived flow based on the real-time link information, and
also dynamically schedule flows on the link. Better than traditional approaches and the SDN-based
scheme with threshold value, we could improve the efficiency of the link utilizing the shortest paths.
Second, we innovatively adopted a multilevel feedback queue mechanism of congestion control
suitable for different types of flows and could realize anomaly detection by preventing malicious
flows from occupying the bandwidth for a long time.

The remainder of the paper is organized as follows: In Section 2, we review the traditional
network and SDN used in data centers. Then, we elaborate on the design and implementation of our
proposed scheme, DSCSD (Dynamic Scheduling and Congestion control across data centers based

Figure 1. Flows that preempt the shortest path (a) can be shunted into two different paths
(b) with DSCSD.

The main contributions of this paper are as follows. First, we proposed a new approach for traffic
scheduling that could route a newly arrived flow based on the real-time link information, and also
dynamically schedule flows on the link. Better than traditional approaches and the SDN-based scheme
with threshold value, we could improve the efficiency of the link utilizing the shortest paths. Second,
we innovatively adopted a multilevel feedback queue mechanism of congestion control suitable for
different types of flows and could realize anomaly detection by preventing malicious flows from
occupying the bandwidth for a long time.

The remainder of the paper is organized as follows: In Section 2, we review the traditional network
and SDN used in data centers. Then, we elaborate on the design and implementation of our proposed
scheme, DSCSD (Dynamic Scheduling and Congestion control across data centers based on SDN) in

Future Internet 2018, 10, 64 3 of 12

Section 3. The performance evaluation of DSCSD is presented in Section 4. Finally, Section 5 concludes
the paper.

2. Related Work

This section reviews recent studies on traffic engineering in data centers which served as our
research background and theoretical foundation. We discussed this from two aspects including a data
center based on a traditional network and a data center based on SDN as well as its challenges. The first
aspect explains the development of distributed data centers and the limitations of the traditional
network protocols used in current data centers. These limitations exactly prove the demand of our
proposed research. The other aspect shows some recent research progress of SDN-based data centers.

2.1. Data Center Based on Traditional Network

In the traditional data center model, the traffic is mainly generated between the server and the
client, with a low proportion of east–west traffic among the data centers [10]. With the extensive use of
the Internet and the integration of the mobile network, Internet of Vehicle [11], cloud computing, big
data, and other new generations of network technology and development have come into being to
deal with massive-scale data and large-scale distributed data centers, bringing about the accelerated
growth of east–west traffic exchanged among servers, for example, the Google File System (GFS) [12],
Hadoop Distributed File System (HDFS) [13], and Google framework MapReduce [14]. However,
when the traditionally shortest path routing protocols in current data centers are used, congestion will
frequently occur in the shortest path link, and it may further reduce the quality of network services
due to the long delay and low throughput.

Traffic scheduling and congestion control are important technologies to maintain network capacity
and improve network efficiency. Traditional networks have some congenital defects. The main
disadvantages can be summarized as follows: First, there is no global coordinative optimization.
Each node independently implements the traffic control strategy, which can only achieve the local
optimum. Moreover, there is no dynamic and self-adaptive adjustment. The predefined strategies in
routers cannot meet the frequently changing demands of business flows. In addition, traditional
networks find it difficult to achieve the effective and accurate control of every network device.
The configurations of network devices are numerous and diverse where the commands are so
complicated that it is very difficult to find the network errors caused by configurations. Consequently,
it is of great urgency to figure out how to effectively manage and dominate network traffic, which has
pushed network architects to take advantage of SDN to address these problems in data centers.

2.2. Data Center Based on SDN

A higher-level of visibility and a fine-grained control of the entire network can be achieved in
the SDN paradigm. The SDN controller is able to program infrastructural forwarding devices in the
data plane to monitor and manage network packets passing through these devices in a fine-grained
way. Therefore, we can use the SDN controller to implement the periodic collection of these statistics.
Furthermore, we can also obtain a centralized view of the network status for the SDN applications via
open APIs and notify the up-level applications of a change in a real-time network [15].

Data centers are typically composed of thousands of high-speed links such as the 10 G Ethernet.
In conventional packet capture mechanisms like switch port analyzer and port mirroring, infeasibility
is completely reflected from a cost and scale perspective because a stupendous number of physical
ports might be used. Adopting the SDN-based approaches to data center networks has become the
focus of current research [1]. Tavakoli et al. [16] first applied SDN to data center networks by using
NOX (the first SDN controller) to efficiently actualize addressing and routing of the typical data center
networks VL2 and PortLand. Tootoonchian [17] proposed HyperFlow, a new distributed control plan
for OpenFlow. Multiple controllers cooperate with each other to make up for the low scalability of
a single controller while the advantage of centralized management is retained. The cooperation of

Future Internet 2018, 10, 64 4 of 12

distributed controllers can realize the expansion of the network and conveniently manage network
devices [18–20]. Koponen et al. [21] presented Onix, on which the SDN control plane could be
implemented as a distributed system. Benson et al. [22] proposed MicroTE, a fine-grained routing
approach for data centers where he found a lack of multi-path routing, plus an overall view of
workloads and routing strategies in data center networks based on a traditional network. Hindman
et al. [23] presented Mesos, a platform for fine-grained resource sharing in data centers. Curtis [24]
proposed Mahout to handle elephant flows (i.e., large flows) while large flows in Socket buffers
were detected. Due to the burst of the traffic and the failure of the equipment, congestion and
failure frequently occur. Large flows and small flows are always mingled in data center networks.
Kanagavelu et al. [25] proposed a flow-based edge–to–edge rerouting scheme. When congestions
appeared, it focused on rerouting the large flows to alternative links. The reason for this mechanism is
that shifting these short-lived small flows among links would additionally increase the overhead and
latency. Khurshid et al. [26] provided a layer between a software-defined networking controller and
network devices called VeriFlow. It is a network debugging tool to find faulty rules issued by SDN
applications and anomalous network behavior. FP Tso [27] presented the Baatdaat flow scheduling
algorithm using spare data center network capacity to mitigate the performance degradation of heavily
utilized links. This could ensure real-time dynamic scheduling, which could avoid congestion caused
by instantaneous flows. Li et al. [28] proposed a traffic scheduling solution based on the fuzzy synthetic
evaluation mechanism, and the path could be dynamically adjusted according to the overall view of
the network.

In summary, most of the current active approaches solving traffic engineering in data center
networks based on SDN have two alternatives. The first common approach is based on a single
centralized controller, with the problem of scalability and reliability. The other method is based on
multiple controllers, but the cooperation of multiple controllers and the consistent update mechanism
has not been well addressed thus far [29]. Our proposed scheme is an attempt that first applies the
multilevel feedback queue mechanism to traffic scheduling and congestion control across data centers
based on SDN, and can also provide a new solution to congestion caused by the prolonged occupation
of malicious flows.

3. The Design and Implementation of DSCSD

Usually, the links among data centers are highly probable for reuse, and the burst of instantaneous
traffic leads to the instability and dynamicity of the network. Traffic scheduling and congestion control
among multiple data centers can be well addressed with DSCSD by taking advantage of the flexibility
and agility of SDN. Data centers are always interconnected through wide area networks. The network
traffic is not constant at all times and has an unbalanced distribution. The traffic during the peak
hours could increase by twice that of the average link load. However, the traditional routing protocols
route and forward flows abide by the shortest paths algorithm, without shunting away flows to
balance the link load. To satisfy the requirement of bandwidth during peak hours, we have no choice
but to purchase 2–3× bandwidth as well as upgrade to large-scale routing equipment. As a result,
the cost of network operation, administration, and maintenance are increased sharply, and also causes
the waste of bandwidth in ordinary times. If we can meet the requirements of network services,
the average link utilization rate of wide area networks can only achieve 30–40% [30]. Saying that some
malicious flows extend the occupation of links, congestion might bring about interruptions in the
transmission of their services [31–34]. In this paper, we propose DSCSD, a scheme of dynamic traffic
scheduling and congestion control with a multilevel feedback queue mechanism that can address the
problems above-mentioned to some extent. The following sections explain the design in detail and its
implementation process.

Future Internet 2018, 10, 64 5 of 12

3.1. System Model

Our scheme was designed and innovated on the basis of data center networking. In the following
presentation, we briefly describe the components of the system model in Figure 2. (i) Data center
servers. PC1, PC2, and PC3 are three individual data centers, and the fs from PC1 to PC3 takes priority
over the flows from PC2 to PC3. (ii) OpenFlow switches. With the five switches, two distinct paths
are formed, and the path (S1, S4, S5) is the shortest path leaving (S1, S2, S3, S4) the second shortest.
(iii) SDN controller. We selected the open source OpenFlow controller Floodlight as the centralized
controller and it can be used to control the behavior of OpenFlow switches by adding, updating,
and deleting flow table entries in the switches.

Future Internet 2018, 10, x FOR PEER REVIEW 5 of 12

3.1. System Model

Our scheme was designed and innovated on the basis of data center networking. In the
following presentation, we briefly describe the components of the system model in Figure 2. (i) Data
center servers. PC1, PC2, and PC3 are three individual data centers, and the fs from PC1 to PC3 takes
priority over the flows from PC2 to PC3. (ii) OpenFlow switches. With the five switches, two distinct
paths are formed, and the path (S1, S4, S5) is the shortest path leaving (S1, S2, S3, S4) the second
shortest. (iii) SDN controller. We selected the open source OpenFlow controller Floodlight as the
centralized controller and it can be used to control the behavior of OpenFlow switches by adding,
updating, and deleting flow table entries in the switches.

PC3

PC2

PC1

S5

SDN Controller

S4

S1

S3S2
low priority

traffic

high priority
traffic

Figure 2. System model.

3.2. Dynamic Traffic Scheduling

We classified the flows among multiple data centers into different types. As for data
duplication flows, we set a lower priority for them, while the other flows of high quality requirement
had a higher priority. The higher priority flows traverse the shortest path, and the lower priority can
select a path depending on the real-time link states. The concrete link states on the shortest path are
categorized into the following four cases.

State 1: The time when a low priority flow arrives. In this state, we still have several different
possibilities. First, if bandwidth remains on the shortest path (S1, S4, S5), then it will directly select
this path. If the shortest path (S1, S4, S5) is fully occupied by a high priority flow, then it will have no
choice but be transmitted on the second shortest path (S1, S2, S3, S5). The last possibility is that this
flow should go into the congestion control with multilevel feedback queues, given all paths have no
bandwidth to be used.

State 2: The time when a high priority flow arrives. In this state, we also have several different
possibilities. First, if bandwidth remains on the shortest path (S1, S4, S5), then it will directly select
this path. If the shortest path (S1, S4, S5) is fully occupied by a high priority flow, then it will have no
choice but be transmitted on the second shortest path (S1, S2, S3, S5). The last possibility is that this
flow should go into the congestion control with multilevel feedback queues, given all paths have no
bandwidth to be used.

State 3: The time when a high priority flow is transmitting on the link. Due to the high priority,
we do nothing with it.

State 4: The time when a low priority flow is transmitting on the link. From state 1, we can learn
that the low priority flow can select any one of the two paths adapting to data fluctuation. Therefore,
if there is no available bandwidth on the shortest path link when a new flow with high priority
arrives at this point, it will vacate the shortest path link and be scheduled to the second shortest path
link. Otherwise, if the new flow has an equally low priority and no subsequent low priority flow
needs transmitting, the shortest path is allotted to the newly arrived flow.

According to the aforementioned analysis of the link states, we can realize dynamic traffic
scheduling to improve the utilization of bandwidth resources.

Figure 2. System model.

3.2. Dynamic Traffic Scheduling

We classified the flows among multiple data centers into different types. As for data duplication
flows, we set a lower priority for them, while the other flows of high quality requirement had a higher
priority. The higher priority flows traverse the shortest path, and the lower priority can select a path
depending on the real-time link states. The concrete link states on the shortest path are categorized
into the following four cases.

State 1: The time when a low priority flow arrives. In this state, we still have several different
possibilities. First, if bandwidth remains on the shortest path (S1, S4, S5), then it will directly select
this path. If the shortest path (S1, S4, S5) is fully occupied by a high priority flow, then it will have no
choice but be transmitted on the second shortest path (S1, S2, S3, S5). The last possibility is that this
flow should go into the congestion control with multilevel feedback queues, given all paths have no
bandwidth to be used.

State 2: The time when a high priority flow arrives. In this state, we also have several different
possibilities. First, if bandwidth remains on the shortest path (S1, S4, S5), then it will directly select
this path. If the shortest path (S1, S4, S5) is fully occupied by a high priority flow, then it will have no
choice but be transmitted on the second shortest path (S1, S2, S3, S5). The last possibility is that this
flow should go into the congestion control with multilevel feedback queues, given all paths have no
bandwidth to be used.

State 3: The time when a high priority flow is transmitting on the link. Due to the high priority,
we do nothing with it.

State 4: The time when a low priority flow is transmitting on the link. From state 1, we can learn
that the low priority flow can select any one of the two paths adapting to data fluctuation. Therefore,
if there is no available bandwidth on the shortest path link when a new flow with high priority arrives
at this point, it will vacate the shortest path link and be scheduled to the second shortest path link.
Otherwise, if the new flow has an equally low priority and no subsequent low priority flow needs
transmitting, the shortest path is allotted to the newly arrived flow.

Future Internet 2018, 10, 64 6 of 12

According to the aforementioned analysis of the link states, we can realize dynamic traffic
scheduling to improve the utilization of bandwidth resources.

3.3. Congestion Control with Multilevel Feedback Queues

As part of DSCSD, dynamic traffic scheduling has an obvious effect on the classification and
diversion of flow. However, when malicious flows exist, congestion also might occur in the shortest
path link due to the long-term occupation of limited link resources and the burst of network
instantaneous traffic. The algorithm of congestion control with multilevel feedback queues not only
provides a queuing service for congested flows, but also settles the problem of vicious prolonged
occupation. The specific description is shown as follows.

In the initial phase of the scheme, we define two multilevel feedback queues to store the flows
waiting to be scheduled. One is the multilevel feedback queue of low priority and the other is the
multilevel feedback queue of high priority. Then, in each feedback queue, we define three sub-queues,
and give the highest priority to flow waiting queue 1, the second highest priority to flow waiting queue
2, and the lowest priority to flow waiting queue 3. As is shown in Figure 3, the transmission time of
these flow waiting queues are different after being scheduled. Sub-queue 1 has the time t, sub-queue 2
has the time 2t that is twice the time of sub-queue 1, and sub-queue 3 has the time 3t that is triple the
time of sub-queue 1.

For the pseudo codes of the algorithm, see Algorithm 1.

Algorithm 1: The Algorithm of Multilevel Feedback Queue

Input: G: topology of data center network;
Factive: set of active flows;

Fsuspend: set of suspended flows;
Fnew: a new flow;
Ffirst: a flow from the first of the Fsuspend.

Output: {<e.state, e.path>}: scheduling state and path selection of each flow in G. When a new
flow arrives
1 if (e.path = IDLEPATH) then
2 Factive←Factive + Fnew;
3 end
4 else Fsuspend←Fsuspend + Fnew;

5 while
(

Fsuspend 6= ∅) do

6 if (e.path = IDLEPATH) then

7 if
(

Fsuspend1 6= ∅) then

8 Select the flow at the first of Fsuspend1;
9 Fsuspend1←Fsuspend1 − Ff irst;
10 Factive←Factive + Ff irst;
11 Transmission time of the Ff irst is t;
12 end

13 else if
(

Fsuspend2 6= ∅) then

14 Select the flow at the first of Fsuspend2;
15 Fsuspend2←Fsuspend2 − Ff irst;
16 Factive←Factive + Ff irst;
17 Transitssion time of the Ff irst is 2t;
18 end
19 else
20 Select the flow at the first of Fsuspend3;
21 Fsuspend3←Fsuspend3 − Ff irst;
22 Factive←Factive + Ff irst;
23 Transit time of the Ff irst is 3t;
24 end
25 return {<e.state, e.path>};

Future Internet 2018, 10, 64 7 of 12

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 12

21 3suspendF 3suspend firstF F− ;

22 activeF active firstF F+ ;

23 Transit time of the firstF is 3t;

24 end
25 return {<e.state, e.path>};

flow waiting queue 1
Link

transmission

flow waiting queue 2

flow waiting queue 3

Link
transmission

Link
transmission

t

2t

3t

Figure 3. Multilevel feedback queue.

4. Experiment Results and Performance Analysis

The SDN controller selected in our scheme is a free open source Floodlight that runs in the
eclipse environment on the Ubuntu system. The virtual switch uses open source Open vSwitch 2.3.0.
The virtual network was created by Mininet in Ubuntu 14.04.

We implemented DSCSD on top of the Floodlight v1.2 controller in our simulation experiments.
Floodlight is a free source, and modules can be randomly added and deleted, so that it provides
much more convenience for our test. In our experimental setup, the virtual switch was created by
Open vSwitch. The Floodlight was chosen as the SDN controller. We added two modules named
initflowtable and trafficmanage on Floodlight. The module initflowable was used to initialize the
variable with a value and install some flow tables of preprocessing. The main function of our scheme
was the module trafficmanage that could monitor the Packet-in messages and the Flow-removed
messages of the OpenFlow protocol and recode the installed flow tables as well as link information
including congestion and bandwidth. When a new flow arrives or a flow needs to be scheduled, the
module trafficmanage can achieve accurate and real-time detection and control.

As shown in Figure 4, we used several virtual hosts to simulate three data centers; h1 and h2
were the servers of two individual data centers; c1, c2, c3, c4, and c5 were collectively used as
another data center. Certainly, we should assign virtual IP addresses and MAC addresses for them.
We also used the flows from any one of h1 and h2 to any one of c1, c2, c3, c4, and c5 to simulate the
interconnected flows among the data centers. In accordance with the system model in Figure 2, the
path (S1, S4, S5) was the shortest path leaving (S1, S2, S3, S4) the second shortest. Here, we
conducted two tests to verify the effectiveness and performance of DSCSD.

Test 1: Verify the effectiveness of DSCSD. We used Mininet to set a 4 M-bandwidth for both
the shortest path and the second shortest path, and we also utilized the tool iperf to simulate four
flows from h1 to c1 and c2, and from h2 to c3 and c4. Each link was equipped with the requirement
of a 2 M-bandwidth. We discussed and analyzed the performance of the traditional network and
DSCSD. Then, we chose a span under the selfsame condition to test the loss tolerance and real-time
bandwidth of these flows. Some of these data are presented in Table 1. Here, we adopted four
symbolic notations. The notation “h1–1” means the traffic from h1 to c1. By analogy, “h1–2” means
the traffic from h1 to c2; “h2–c3” means the traffic from h2 to c3; and “h2–c4” means the traffic from
h2 to c4. We also calculated the overall link utilization of both cases as is shown in Figure 5.

In Test 1, it held that the loss tolerance of the four flows in a traditional network was high, with
two of them close to 100%. As for the overall link utilization, the average link utilization of our

Figure 3. Multilevel feedback queue.

4. Experiment Results and Performance Analysis

The SDN controller selected in our scheme is a free open source Floodlight that runs in the
eclipse environment on the Ubuntu system. The virtual switch uses open source Open vSwitch 2.3.0.
The virtual network was created by Mininet in Ubuntu 14.04.

We implemented DSCSD on top of the Floodlight v1.2 controller in our simulation experiments.
Floodlight is a free source, and modules can be randomly added and deleted, so that it provides
much more convenience for our test. In our experimental setup, the virtual switch was created by
Open vSwitch. The Floodlight was chosen as the SDN controller. We added two modules named
initflowtable and trafficmanage on Floodlight. The module initflowable was used to initialize the
variable with a value and install some flow tables of preprocessing. The main function of our scheme
was the module trafficmanage that could monitor the Packet-in messages and the Flow-removed
messages of the OpenFlow protocol and recode the installed flow tables as well as link information
including congestion and bandwidth. When a new flow arrives or a flow needs to be scheduled,
the module trafficmanage can achieve accurate and real-time detection and control.

As shown in Figure 4, we used several virtual hosts to simulate three data centers; h1 and h2 were
the servers of two individual data centers; c1, c2, c3, c4, and c5 were collectively used as another data
center. Certainly, we should assign virtual IP addresses and MAC addresses for them. We also used
the flows from any one of h1 and h2 to any one of c1, c2, c3, c4, and c5 to simulate the interconnected
flows among the data centers. In accordance with the system model in Figure 2, the path (S1, S4, S5)
was the shortest path leaving (S1, S2, S3, S4) the second shortest. Here, we conducted two tests to
verify the effectiveness and performance of DSCSD.

Test 1: Verify the effectiveness of DSCSD. We used Mininet to set a 4 M-bandwidth for both the
shortest path and the second shortest path, and we also utilized the tool iperf to simulate four flows
from h1 to c1 and c2, and from h2 to c3 and c4. Each link was equipped with the requirement of a 2
M-bandwidth. We discussed and analyzed the performance of the traditional network and DSCSD.
Then, we chose a span under the selfsame condition to test the loss tolerance and real-time bandwidth
of these flows. Some of these data are presented in Table 1. Here, we adopted four symbolic notations.
The notation “h1–1” means the traffic from h1 to c1. By analogy, “h1–2” means the traffic from h1 to c2;
“h2–c3” means the traffic from h2 to c3; and “h2–c4” means the traffic from h2 to c4. We also calculated
the overall link utilization of both cases as is shown in Figure 5.

Future Internet 2018, 10, 64 8 of 12

Future Internet 2018, 10, x FOR PEER REVIEW 8 of 12

scheme was kept at 97%, while that of traditional network was just 48%. For a comparison, we
verified the high improvement of link utilization by using DSCSD.

h2

h1

S5

Floodlight

S4

S1

S3S2 C1

C2

C3

C4

C5
Figure 4. Experimental topology.

Table 1. Real-time bandwidth comparison.

bps Traditional Network DSCSD
Time h1–1 h1–c2 h2–c3 h2–c4 h2–c4 h2–c4 h2–c4 h2–c4
0–1 s 106 k 1.87 M 1.91 M 25.3 k 1.95 M 1.94 M 1.95 M 1.94 M
1–2 s 11.8 k 1.86 M 1.81 M 70.6 k 1.94 M 1.95 M 1.94 M 1.94 M
2–3 s 11.8 k 1.89 M 1.89 M 35.3 k 1.94 M 1.94 M 1.94 M 1.95 M
3–4 s 153 k 1.92 M 1.80 M 11.8 k 1.95 M 1.94 M 1.94 M 1.94 M
4–5 s 35.3 k 1.75 M 1.94 M 176 k 1.94 M 1.95 M 1.95 M 1.94 M
5–6 s 82.3 k 1.94 M 1.89 M 82.3 k 1.82 M 1.94 M 1.94 M 1.94 M
6–7 s 35.3 k 1.95 M 1.88 M 23.5 k 1.94 M 1.94 M 1.87 M 1.95 M
7–8 s 23.5 k 1.94 M 1.88 M 58.8 k 1.95 M 1.94 M 1.93 M 1.94 M
8–9 s 11.8 k 1.89 M 1.92 M 23.5 k 1.95 M 1.95 M 1.94 M 1.94 M

9–10 s 23.5 k 1.91 M 1.90 M 11.8 k 1.94 M 1.95 M 1.94 M 1.93 M

Figure 5. Overall link utilization comparison.

Test 2: Congestion control with multilevel feedback queues. In this test, we still used the
simulation of Test 1. The difference was that we were only interested in the shortest path (S1, S4, S5)
and set a 5 M-bandwidth. The time t was 20 s. Then, we let c5 send UDP flows to h1 with a 3
M-bandwidth consistently, while c1, c2, c3, and c4 sent UDP flows to h2 with a 1 M-bandwidth.
Here, we divided Test 2 into two cases: real-time bandwidth without congestion control queues and
real-time bandwidth with congestion control queues, then we discussed and analyzed the

Figure 4. Experimental topology.

Table 1. Real-time bandwidth comparison.

bps Traditional Network DSCSD

Time h1–1 h1–c2 h2–c3 h2–c4 h2–c4 h2–c4 h2–c4 h2–c4

0–1 s 106 k 1.87 M 1.91 M 25.3 k 1.95 M 1.94 M 1.95 M 1.94 M
1–2 s 11.8 k 1.86 M 1.81 M 70.6 k 1.94 M 1.95 M 1.94 M 1.94 M
2–3 s 11.8 k 1.89 M 1.89 M 35.3 k 1.94 M 1.94 M 1.94 M 1.95 M
3–4 s 153 k 1.92 M 1.80 M 11.8 k 1.95 M 1.94 M 1.94 M 1.94 M
4–5 s 35.3 k 1.75 M 1.94 M 176 k 1.94 M 1.95 M 1.95 M 1.94 M
5–6 s 82.3 k 1.94 M 1.89 M 82.3 k 1.82 M 1.94 M 1.94 M 1.94 M
6–7 s 35.3 k 1.95 M 1.88 M 23.5 k 1.94 M 1.94 M 1.87 M 1.95 M
7–8 s 23.5 k 1.94 M 1.88 M 58.8 k 1.95 M 1.94 M 1.93 M 1.94 M
8–9 s 11.8 k 1.89 M 1.92 M 23.5 k 1.95 M 1.95 M 1.94 M 1.94 M

9–10 s 23.5 k 1.91 M 1.90 M 11.8 k 1.94 M 1.95 M 1.94 M 1.93 M

Future Internet 2018, 10, x FOR PEER REVIEW 8 of 12

scheme was kept at 97%, while that of traditional network was just 48%. For a comparison, we
verified the high improvement of link utilization by using DSCSD.

h2

h1

S5

Floodlight

S4

S1

S3S2 C1

C2

C3

C4

C5
Figure 4. Experimental topology.

Table 1. Real-time bandwidth comparison.

bps Traditional Network DSCSD
Time h1–1 h1–c2 h2–c3 h2–c4 h2–c4 h2–c4 h2–c4 h2–c4
0–1 s 106 k 1.87 M 1.91 M 25.3 k 1.95 M 1.94 M 1.95 M 1.94 M
1–2 s 11.8 k 1.86 M 1.81 M 70.6 k 1.94 M 1.95 M 1.94 M 1.94 M
2–3 s 11.8 k 1.89 M 1.89 M 35.3 k 1.94 M 1.94 M 1.94 M 1.95 M
3–4 s 153 k 1.92 M 1.80 M 11.8 k 1.95 M 1.94 M 1.94 M 1.94 M
4–5 s 35.3 k 1.75 M 1.94 M 176 k 1.94 M 1.95 M 1.95 M 1.94 M
5–6 s 82.3 k 1.94 M 1.89 M 82.3 k 1.82 M 1.94 M 1.94 M 1.94 M
6–7 s 35.3 k 1.95 M 1.88 M 23.5 k 1.94 M 1.94 M 1.87 M 1.95 M
7–8 s 23.5 k 1.94 M 1.88 M 58.8 k 1.95 M 1.94 M 1.93 M 1.94 M
8–9 s 11.8 k 1.89 M 1.92 M 23.5 k 1.95 M 1.95 M 1.94 M 1.94 M

9–10 s 23.5 k 1.91 M 1.90 M 11.8 k 1.94 M 1.95 M 1.94 M 1.93 M

Figure 5. Overall link utilization comparison.

Test 2: Congestion control with multilevel feedback queues. In this test, we still used the
simulation of Test 1. The difference was that we were only interested in the shortest path (S1, S4, S5)
and set a 5 M-bandwidth. The time t was 20 s. Then, we let c5 send UDP flows to h1 with a 3
M-bandwidth consistently, while c1, c2, c3, and c4 sent UDP flows to h2 with a 1 M-bandwidth.
Here, we divided Test 2 into two cases: real-time bandwidth without congestion control queues and
real-time bandwidth with congestion control queues, then we discussed and analyzed the

Figure 5. Overall link utilization comparison.

In Test 1, it held that the loss tolerance of the four flows in a traditional network was high,
with two of them close to 100%. As for the overall link utilization, the average link utilization of our
scheme was kept at 97%, while that of traditional network was just 48%. For a comparison, we verified
the high improvement of link utilization by using DSCSD.

Test 2: Congestion control with multilevel feedback queues. In this test, we still used the
simulation of Test 1. The difference was that we were only interested in the shortest path (S1, S4,
S5) and set a 5 M-bandwidth. The time t was 20 s. Then, we let c5 send UDP flows to h1 with
a 3 M-bandwidth consistently, while c1, c2, c3, and c4 sent UDP flows to h2 with a 1 M-bandwidth.

Future Internet 2018, 10, 64 9 of 12

Here, we divided Test 2 into two cases: real-time bandwidth without congestion control queues and
real-time bandwidth with congestion control queues, then we discussed and analyzed the effectiveness
of congestion control in these two cases. The real-time bandwidths in two cases are respectively shown
in Figures 6 and 7.

Future Internet 2018, 10, x FOR PEER REVIEW 9 of 12

effectiveness of congestion control in these two cases. The real-time bandwidths in two cases are
respectively shown in Figures 6 and 7.

Figure 6. Real-time bandwidth without congestion control queues.

Figure 7. Real-time bandwidth with congestion control queues.

At 10 s, the path (S1, S4, S5) has been saturated with the flows from c5, c1, and c2. At 20 s, we
received the request of the normal flows from c3 and c4. At this time, if we do not use congestion
control queues (case 1), the flow from c5 with high priority directly affects the quality of the
transmission of other flows, which can be observed in Figure 6. In contrast, we noticed the
comparison in Figure 7. If we used congestion control queues (case 2), when we received the request
of normal flows from c3 and c4, flows from c5 were scheduled into the congestion control queues.
Considering the bandwidth remained on the path, the flow from c5 will be rescheduled to the path
to be transmitted. With this mechanism, we can provide a new solution to control the congestion
caused by the prolonged occupation of malicious flows.

As shown in Figure 8, we demonstrated the comparison of the link delay in the two
aforementioned cases. We can easily draw the conclusion that by using the congestion control
queue, the congestion caused by malicious flows can be well addressed with a relative reduction in
link delay.

Figure 6. Real-time bandwidth without congestion control queues.

Future Internet 2018, 10, x FOR PEER REVIEW 9 of 12

effectiveness of congestion control in these two cases. The real-time bandwidths in two cases are
respectively shown in Figures 6 and 7.

Figure 6. Real-time bandwidth without congestion control queues.

Figure 7. Real-time bandwidth with congestion control queues.

At 10 s, the path (S1, S4, S5) has been saturated with the flows from c5, c1, and c2. At 20 s, we
received the request of the normal flows from c3 and c4. At this time, if we do not use congestion
control queues (case 1), the flow from c5 with high priority directly affects the quality of the
transmission of other flows, which can be observed in Figure 6. In contrast, we noticed the
comparison in Figure 7. If we used congestion control queues (case 2), when we received the request
of normal flows from c3 and c4, flows from c5 were scheduled into the congestion control queues.
Considering the bandwidth remained on the path, the flow from c5 will be rescheduled to the path
to be transmitted. With this mechanism, we can provide a new solution to control the congestion
caused by the prolonged occupation of malicious flows.

As shown in Figure 8, we demonstrated the comparison of the link delay in the two
aforementioned cases. We can easily draw the conclusion that by using the congestion control
queue, the congestion caused by malicious flows can be well addressed with a relative reduction in
link delay.

Figure 7. Real-time bandwidth with congestion control queues.

At 10 s, the path (S1, S4, S5) has been saturated with the flows from c5, c1, and c2. At 20 s,
we received the request of the normal flows from c3 and c4. At this time, if we do not use congestion
control queues (case 1), the flow from c5 with high priority directly affects the quality of the
transmission of other flows, which can be observed in Figure 6. In contrast, we noticed the comparison
in Figure 7. If we used congestion control queues (case 2), when we received the request of normal
flows from c3 and c4, flows from c5 were scheduled into the congestion control queues. Considering
the bandwidth remained on the path, the flow from c5 will be rescheduled to the path to be transmitted.
With this mechanism, we can provide a new solution to control the congestion caused by the prolonged
occupation of malicious flows.

As shown in Figure 8, we demonstrated the comparison of the link delay in the two
aforementioned cases. We can easily draw the conclusion that by using the congestion control queue,
the congestion caused by malicious flows can be well addressed with a relative reduction in link delay.

Future Internet 2018, 10, 64 10 of 12

Figure 8. Comparison of the link delay.

5. Conclusions and Future Work

In this paper, we focused on the problem of traffic scheduling and congestion control across data
centers and aimed to provide an approach that could greatly improve link utilization. To realize this
goal, we designed DSCSD, a dynamic traffic scheduling and congestion control scheme across data
centers based on SDN. The moment a flow arrives, it relies on the connection of traffic parameters and
link information to select paths. Furthermore, it can achieve real-time dynamic scheduling to avoid
congestion caused by the burst of instantaneous traffic, and can also balance the link loads. Compared
with traditional approaches, the experiment and analysis had an obvious effect on the classification
and diversion of flows, thereby improving the link utilization across data centers. Better than the
SDN-based scheme with threshold value, the real-time monitoring and dynamic scheduling of the
shortest paths were fully reflected. Meanwhile, we innovatively adopted the mechanism of a multilevel
feedback queue for congestion control, which is suitable for different types of flows and can implement
anomaly detection by preventing malicious flow from chronically occupying the bandwidth.

Our proposed DSCSD scheme can be easily deployed to the existing data center networks to deal
with the low utilization of link resources such as the data centers of live video streaming platforms
and online video platforms. Although our scheme solved the traffic scheduling problem efficiently,
there are still some limitations. First, our scheme is based on SDN, but DSCSD is not applicable in
traditional network environments or a hybrid network environment. Second, more fine-grained and
flexible hierarchical control might be helpful to further enhance the experimental result. In addition,
we did not take into account the issue of energy saving in the traffic scheduling and congestion control
of data center networks. Accordingly, we would like to enrich DSCSD with energy management in
the future.

Author Contributions: D.S. conceived and designed the system model and algorithm; K.Z. was responsible for
literature retrieval and chart making; Y.F. performed the experiments, analyzed the data, and wrote the paper;
J.C. designed the research plan, conceived the algorithm model, and polished the paper.

Funding: This research was funded by the [National Natural Science Foundation of China] grant number
[61502008], the [Key Scientific Research Project of Henan Higher Education] grant number [16A520084],
the [Natural Science Foundation of Anhui Province] grant number [1508085QF132] and [the Doctoral Research
Start-Up Funds Project of Anhui University].

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2018, 10, 64 11 of 12

References

1. Cui, L.; Yu, F.R.; Yan, Q. When big data meets software-defined networking: SDN for big data and big data
for SDN. IEEE Netw. 2016, 30, 58–65. [CrossRef]

2. Lan, Y.L.; Wang, K.; Hsu, Y.H. Dynamic load-balanced path optimization in SDN-based data center networks.
In Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital
Signal Processing, Prague, Czech Republic, 20–22 July 2016; pp. 1–6.

3. Ghaffarinejad, A.; Syrotiuk, V.R. Load Balancing in a Campus Network Using Software Defined Networking.
In Proceedings of the Third GENI Research and Educational Experiment Workshop, Atlanta, GA, USA,
19–20 March 2014; pp. 75–76.

4. Xia, W.; Wen, Y.; Foh, C.; Niyato, D.; Xie, H. A Survey on Software-Defined Networking. IEEE Commun.
Surv. Tutor. 2015, 17, 27–51. [CrossRef]

5. Nunes, A.; Mendonca, M.; Nguyen, X.; Obraczka, K.; Turletti, T. A Survey of Software-Defined Networking:
Past, Present, and Future of Programmable Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634.
[CrossRef]

6. Lin, P.; Bi, J.; Wang, Y. WEBridge: West–east bridge for distributed heterogeneous SDN NOSes peering.
Secur. Commun. Netw. 2015, 8, 1926–1942. [CrossRef]

7. Sezer, S.; Scott-Hayward, S.; Chouhan, P.K.; Fraser, B.; Lake, D.; Finnegan, J.; Viljoen, N.; Miller, M.; Rao, N.
Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag.
2013, 51, 36–43. [CrossRef]

8. Mckeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.
OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008,
38, 69–74. [CrossRef]

9. Kim, H.; Feamster, N. Improving network management with software defined networking.
IEEE Commun. Mag. 2013, 51, 114–119. [CrossRef]

10. Greenberg, A.; Hamilton, J.; Maltz, D.A.; Patel, P. The cost of a cloud: Research problems in data center
networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 39, 68–73. [CrossRef]

11. Cheng, J.; Cheng, J.; Zhou, M.; Liu, F.; Gao, S.; Liu, C. Routing in Internet of Vehicles: A Review. IEEE Trans.
Intell. Transp. Syst. 2015, 16, 2339–2352. [CrossRef]

12. Ghemawat, S.; Gobioff, H.; Leung, S.T. The Google file system. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, Bolton Landing, NY, USA, 19–22 October 2003; pp. 29–43.

13. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The Hadoop Distributed File System. In Proceedings of the
IEEE 26th Symposium on MASS Storage Systems and Technologies, Incline Village, NV, USA, 3–7 May 2010;
pp. 1–10.

14. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. In Proceedings of the
6th Conference on Symposium on Opearting Systems Design & Implementation, San Francisco, CA, USA,
6–8 December 2004; pp. 137–150.

15. Ali, S.T.; Sivaraman, V.; Radford, A.; Jha, S. A Survey of Securing Networks Using Software Defined
Networking. IEEE Trans. Reliab. 2015, 64, 1–12. [CrossRef]

16. Tavakoli, A.; Casado, M.; Koponen, T.; Shenker, S. Applying NOX to the Datacenter. In Proceedings of the
Eighth ACM Workshop on Hot Topics in Networks (HotNets-VIII), New York, NY, USA, 22–23 October 2009.

17. Tootoonchian, A.; Ganjali, Y. HyperFlow: A distributed control plane for OpenFlow. In Proceedings of the
Internet Network Management Conference on Research on Enterprise Networking, San Jose, CA, USA,
27 April 2010; p. 3.

18. Yu, Y.; Lin, Y.; Zhang, J.; Zhao, Y.; Han, J.; Zheng, H.; Cui, Y.; Xiao, M.; Li, H.; Peng, Y.; et al. Field
Demonstration of Datacenter Resource Migration via Multi-Domain Software Defined Transport Networks
with Multi-Controller Collaboration. In Proceedings of the Optical Fiber Communication Conference,
San Francisco, CA, USA, 9–13 March 2014; pp. 1–3.

19. Zhang, C.; Hu, J.; Qiu, J.; Chen, Q. Reliable Output Feedback Control for T-S Fuzzy Systems with
Decentralized Event Triggering Communication and Actuator Failures. IEEE Trans. Cybern. 2017,
47, 2592–2602. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/MNET.2016.7389832
http://dx.doi.org/10.1109/COMST.2014.2330903
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://dx.doi.org/10.1002/sec.1030
http://dx.doi.org/10.1109/MCOM.2013.6553676
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/MCOM.2013.6461195
http://dx.doi.org/10.1145/1496091.1496103
http://dx.doi.org/10.1109/TITS.2015.2423667
http://dx.doi.org/10.1109/TR.2015.2421391
http://dx.doi.org/10.1109/TCYB.2017.2668766
http://www.ncbi.nlm.nih.gov/pubmed/28252415

Future Internet 2018, 10, 64 12 of 12

20. Zhang, C.; Feng, G.; Qiu, J.; Zhang, W. T-S Fuzzy-model-based Piecewise H_infinity Output Feedback
Controller Design for Networked Nonlinear Systems with Medium Access Constraint. Fuzzy Sets Syst. 2014,
248, 86–105. [CrossRef]

21. Koponen, T.; Casado, M.; Gude, N.S.; Stribling, J.; Poutievski, L.; Zhu, M.; Ramanathan, R.; Iwata, Y.;
Inoue, H.; Hama, T.; et al. Onix: A distributed control platform for large-scale production networks.
In Proceedings of the Usenix Symposium on Operating Systems Design and Implementation, Vancouver,
BC, Canada, 4–6 October 2010; pp. 351–364.

22. Benson, T.; Anand, A.; Akella, A.; Zhang, M. MicroTE: Fine grained traffic engineering for data centers.
In Proceedings of the CONEXT, Tokyo, Japan, 6–9 December 2011.

23. Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A.D.; Katz, R.; Shenker, S.; Stoica, I. Mesos:
A Platform for Fine-Grained Resource Sharing in the Data Center. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, San Jose, CA, USA, 25–27 April 2012;
pp. 429–483.

24. Curtis, A.R.; Kim, W.; Yalagandula, P. Mahout: Low-overhead datacenter traffic management using
end-host-based elephant detection. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai,
China, 10–15 April 2011; pp. 1629–1637.

25. Kanagavelu, R.; Mingjie, L.N.; Mi, K.M.; Lee, B.; Francis; Heryandi. OpenFlow based control for re-routing
with differentiated flows in Data Center Networks. In Proceedings of the 18th IEEE International Conference
on Networks, Singapore, 12–14 December 2012; pp. 228–233.

26. Khurshid, A.; Zou, X.; Zhou, W.; Caesar, M.; Godfrey, P.B. Veriflow: Verifying network-wide invariants in
real time. ACM SIGCOMM Comput. Commun. Rev. 2012, 42, 467–472. [CrossRef]

27. Tso, F.P.; Pezaros, D.P. Baatdaat: Measurement-based flow scheduling for cloud data centers. In Proceedings
of the 2013 IEEE Symposium on Computers and Communications (ISCC), Split, Croatia, 7–10 July 2013.

28. Li, J.; Chang, X.; Ren, Y.; Zhang, Z.; Wang, G. An Effective Path Load Balancing Mechanism Based on SDN.
In Proceedings of the IEEE 13th International Conference on Trust, Security and Privacy in Computing and
Communications, Beijing, China, 24–26 September 2014; pp. 527–533.

29. Li, D.; Wang, S.; Zhu, K.; Xia, S. A survey of network update in SDN. Front. Comput. Sci. 2017, 11, 4–12.
[CrossRef]

30. Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Venkata, S.; Wanderer, J.; Zhou, J.; Zhu, M.;
et al. B4: Experience with a globally-deployed software defined wan. ACM SIGCOMM Comput. Commun. Rev.
2013, 43, 3–14. [CrossRef]

31. Alizadeh, M.; Atikoglu, B.; Kabbani, A.; Lakshmikantha, A.; Pan, R.; Prabhakar, B.; Seaman, M. Data center
transport mechanisms: Congestion control theory and IEEE standardization. In Proceedings of the 46th
Annual Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, IL, USA,
23–26 September 2008; pp. 1270–1277.

32. Duan, Q.; Ansari, N.; Toy, M. Software-defined network virtualization: An architectural framework for
integrating SDN and NFV for service provisioning in future networks. IEEE Netw. 2016, 30, 10–16. [CrossRef]

33. Zhong, H.; Fang, Y.; Cui, J. Reprint of “LBBSRT: An efficient SDN load balancing scheme based on server
response time”. Futur. Gener. Comput. Syst. 2018, 80, 409–416. [CrossRef]

34. Shu, R.; Ren, F.; Zhang, J.; Zhang, T.; Lin, C. Analysing and improving convergence of quantized congestion
notification in Data Center Ethernet. Comput. Netw. 2018, 130, 51–64. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.fss.2013.09.006
http://dx.doi.org/10.1145/2377677.2377766
http://dx.doi.org/10.1007/s11704-016-6125-y
http://dx.doi.org/10.1145/2534169.2486019
http://dx.doi.org/10.1109/MNET.2016.7579021
http://dx.doi.org/10.1016/j.future.2017.11.012
http://dx.doi.org/10.1016/j.comnet.2017.11.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Data Center Based on Traditional Network
	Data Center Based on SDN

	The Design and Implementation of DSCSD
	System Model
	Dynamic Traffic Scheduling
	Congestion Control with Multilevel Feedback Queues

	Experiment Results and Performance Analysis
	Conclusions and Future Work
	References

