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Abstract—In recent researches on inverter-based distributed
generators, disadvantages of traditional grid-connected current
control, such as no grid-forming ability and lack of inertia, have
been pointed out. As a result, novel control methods like droop
control and virtual synchronous generator (VSG) have been pro-
posed. In both methods, droop characteristics are used to control
active and reactive power, and the only difference between them is
that VSG has virtual inertia with the emulation of swing equation,
whereas droop control has no inertia. In this paper, dynamic char-
acteristics of both control methods are studied, in both stand-alone
mode and synchronous-generator-connected mode, to understand
the differences caused by swing equation. Small-signal models are
built to compare transient responses of frequency during a small
loading transition, and state-space models are built to analyze os-
cillation of output active power. Effects of delays in both controls
are also studied, and an inertial droop control method is proposed
based on the comparison. The results are verified by simulations
and experiments. It is suggested that VSG control and proposed
inertial droop control inherits the advantages of droop control, and
in addition, provides inertia support for the system.

Index Terms—DC–AC power converters, distributed power gen-
eration, droop control, microgrids, power control, power sys-
tem dynamics, power system modeling, renewable energy sources
(RES), state-space methods, virtual synchronous generator (VSG).

I. INTRODUCTION

TO solve environmental issues and energy crisis, distributed
generators (DGs) using renewable energy sources (RES),

such as photovoltaics and wind turbines, have been developed
in recent decades. These types of DGs are usually composed of
a dc link and two stages: input-side converter and grid-side con-
verter. Although the input-side converter and its controller differ
according to energy sources and technologies, the grid-side con-
verter, which is usually a dc/ac inverter, can be controlled in the
same way [1].

A traditional control method for an inverter-based DG is grid-
connected current control. In this control method, commonly a
phase-locked loop is used to synchronize the inverter to the grid
and the output current is controlled to transfer predefined active
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and/or reactive power to the grid. Two major drawbacks of this
control method have been pointed out. First, DGs equipped with
this control do not have grid-forming ability; therefore, they are
not able to work in stand-alone mode. Secondly, their penetra-
tion rate is limited because they have no inertia, which retards the
growth of RES penetration. To make DGs have grid-forming and
power-sharing ability, droop control, a control method for real
and reactive power regulation by imitating the parallel operation
characteristics of synchronous generators (SGs), was originally
proposed in [2] for uninterruptible power supply (UPS) systems,
and has been developed into a general approach for parallel in-
verters [3], especially in microgrids [4]–[30] and UPS systems
[31], [32].

There are several variants of droop control. To be applied
in low voltage (LV) network, in which the line impedance is
resistive, P–V droop control [5]–[8], instead of traditional P–ω
droop [2]–[4], has been proposed to improve power sharing and
stability. Moreover, a virtual frequency–voltage frame method
is proposed to solve this problem in any giving condition of line
impedance R/X ratio [9]. In the other hand, P–ω droop can still
be applied in LV network by adding virtual output impedance
to make the total line impedance inductive [11]–[13], [31], [32].
In microgrid applications, droop control usually plays the role
of primary control in a hierarchic structure, in which secondary
control is designed to keep the frequency and voltage around
the nominal value [10]–[15], and/or to obtain accurate reactive
power [14]–[19], harmonic and unbalance power sharing [17]
and voltage harmonic compensation [15], [20] in islanded mode,
and tertiary control is designed to manage synchronization to
the main grid, power-flow control in grid-connected mode and
optimal operation [12]–[13]. As secondary and tertiary control
need communication command from a central controller, issues
are still encouraged to be solved with a wireless manner, such
as it is proposed in [20]–[25] for accurate power sharing, in
[26] for operation with unbalance load and nonlinear load, in
[27] for harmonic components dispatch, and in [28] for reducing
frequency and voltage deviation. It has also been demonstrated
that optimization of droop coefficient [29] and supplementary
droop control loop [30] can help to enhance system stability.

However, DGs equipped with droop control still have no in-
ertia support for the power system. Therefore, a new control
method, called virtual synchronous generator (VSG) [33]–[42],
or virtual synchronous machine [43], or synchronverter [44],
[45], has been proposed to mimic not only the steady-state
characteristics of SGs, but also their transient characteristics
by applying swing equation to enhance the inertia. To facilitate
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the explication, all methods with the idea of virtual inertia are
called VSG control in this paper. With proper energy manage-
ment, DGs equipped with VSG control can use their dc-link
energy storage to play the role of the kinetic energy reservoir in
the rotating mass of SGs, and therefore, provide virtual inertia to
the system. In earlier researches on VSG control, control meth-
ods are designed for energy storages rather than DGs [34]–[36],
[46], [47], to make the energy storages behave as dedicated fre-
quency compensators. Recent years, various approaches of VSG
control for DGs have been developed [37], [38], [43]–[45]. In
these approaches, it is usually necessary to calculate complete
SG models, which makes the algorithm complicated and there-
fore requires higher processor capacity. In a simpler method,
proposed in [39]–[42], only the essential element of VSG, i.e.,
the swing equation, is considered, and the rotor frequency is
calculated directly by solving swing equation using the iterative
method. Oscillation damping method [41] and alternating mo-
ment of inertia [42] are proposed to improve transient response
and avoid overcurrent. Moreover, it is reported that modifica-
tion of droop coefficient in droop control can also contribute to
total inertia of the system [48]. Besides providing inertia, VSG
control can be used to improve transient power sharing between
SG and DG in a microgrid [49].

Comparison between droop control and VSG control in a
VSC-HVDC transmission system is demonstrated in [50], to
show that the virtual inertia helps to reduce maximum frequency
excursion during a short-time fault, and during loading transition
when secondary frequency control is applied; however, detailed
theoretical analysis is not provided. A comparison on transient
active power performance is presented in [51], but the difference
on inertia and transient frequency is not discussed in this paper.
A theoretical comparison on frequency and inertia is discussed
in [52]; however, oscillation phenomenon of VSG control is not
studied and several points need to be further developed.

In this paper, dynamic characteristics of VSG control and
droop control are compared to understand the difference of the
two control methods caused by the presence of swing equation.
Small-signal models of both methods are built, for both stand-
alone mode and SG-connected mode, to calculate theoretical
step responses of frequency change, in order to understand the
inertia effect caused by the virtual inertia. Effects of delays
in governor and P droop controller are also evaluated, and an
approximated VSG control based on droop control, i.e., inertial
droop control, is proposed. Although the idea of using first-order
lag unit in droop control to emulate virtual inertia is already
mentioned in [50] and [51], it is further developed in this paper
by adding first-order lag unit to emulate the damping factor.
State-space models of both methods are constructed to study
oscillation of output active power. Theoretical results are verified
by simulations using PSCAD/EMTDC and by experiments of a
scale-down system.

It should be pointed out that although the VSG control scheme
studied in this paper is proposed in [39]–[42], the results should
also be valid for other VSG control schemes with similar small-
signal models. Moreover, the small-signal models and state-
space models presented in this paper provide a general method

Fig. 1. Basic control systems of (a) VSG and (b) droop control.

for analyses of dynamic performances of VSG and droop
control, which should be helpful tools for future studies on
this topic.

II. PRINCIPLE OF VSG AND DROOP CONTROL

Fig. 1 shows the basic control system of VSG control pro-
posed in [39]–[42] and that of analogous droop control. The
reactive power control is identical in both control methods.
Therefore, in this paper, only the differences of active power
control are studied.

The swing equation in the block “VSG Control” of VSG in
Fig. 1(a) can be written as

Pin − Pout = Jωm
dωm

dt
+ D∗Sbase

ωm − ωg

ω0
(1)

where Pin is the virtual shaft power determined by the governor,
Pout is the measured output power, Sbase is the power rating of
DG, J is the virtual inertia,D is the virtual damping factor,
superscript ∗ indicates per unit value, ωm is the virtual rotor
angular frequency, ωg is the angular frequency of the point
where the voltage sensor is installed, and ω0 is the nominal
angular frequency. In this paper, it is assumed that the number
of pairs of poles of VSG is 1.
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The block “Governor” in Fig. 1(a) is a ω–P droop controller
which can be represented as

Pin = P0 − k∗
pSbase

ωm − ω0

ω0
(2)

where P0 is the set value of active power, and k∗
p is the droop

coefficient (in per unit)
Let kp = (k∗

pSbase)/ω0 , D = (D∗Sbase)/ω0 , and eliminate
Pin from (1) and (2), so that

P0 − kp (ωm − ω0) − Pout = Jωm
dωm

dt
+ D (ωm − ωg ) .

(3)
In [50] and [51], ωg , which is a measured parameter in this

paper to provide the synchronous frequency for damping power
calculation, is replaced by a constant value, i.e., nominal fre-
quency ω0 ; thus, the damping factor D becomes equivalent to
droop coefficient kp . This modification of swing equation re-
sults in a simpler model, and as a result, the dedicated governor
can even be omitted, as it is presented in [51]. In this case, how-
ever, no damping effect caused by damper winding is emulated,
which may results in larger output power oscillation.

The relation in “P Droop” of droop control in Fig. 1(b) is

ωm = −Pout − P0

kp
+ ω0 . (4)

Let J = 0, D = 0, (3) is equivalent to (4). In other words,
droop control can be considered as a particular case of VSG
control, where both inertia and damping factor are set to zero.

III. COMPARISONS OF TRANSIENT RESPONSES OF FREQUENCY

In this section, first, small-signal models of VSG and droop
control are built for both stand-alone mode and SG-connected
mode. Then, based on these models, step responses of fre-
quency change during a loading transition are calculated and
then compared to corresponding simulation results. The system
with slower change of frequency is preferable, because lower
df/dt indicates larger inertia. System with smaller inertia is
prone to exceed the df/dt threshold of relays during a large load-
ing transition, which may lead to unnecessary tripping and load
shedding. Moreover, system with larger inertia suffers smaller
maximum frequency excursion during a short time fault, and
during a loading transition when secondary control is applied,
as it is demonstrated in [50].

To simplify the model in order to focus on active power
control, reactive power control of both control methods is inac-
tivated in this study. Therefore, in Fig. 1, E is fixed to E0 .

A. Stand-alone Mode

First of all, a stand-alone system shown in Fig. 2(a) is studied.
The cable between DG and load is considered inductive, and its
resistance can be neglected. It is always the case in high voltage
(HV) network, and even in LV network, it becomes true when
an inductive virtual output impedance is applied [11]–[13], [31],
[32]. By calculating power flow, (5) can be deduced

ΔPout dg = EdgVbuscosδdgΔδdg /Xdg (5)

Fig. 2. (a) Stand-alone mode model. (b) Simulation circuit of stand-alone
mode.

where subscript “dg” indicates parameters related to DG, and
Xdg = Xf + Xline is the total output reactance of DG.

Knowing that Δδdg = (Δωm dg − Δωbus) /s, where ωbus is
bus frequency, let Kdg = (EdgVbuscosδdg )/Xdg which is the
synchronizing power coefficient of DG, so that (5) becomes

sΔPout dg ≈ Kdg (Δωm dg − Δωbus) . (6)

The small-signal model of (3) can be written as

− kp dgΔωm dg − ΔPout dg

= Jdg (ωm dgsΔωm dg + sΔω2
m dg )

+ Ddg (Δωm dg − Δωg dg ) . (7)

As the frequency deviation from nominal frequency is
relatively small, ωm dgsΔωm dg ≈ ω0sΔωm dg . Moreover,
second-order perturbation terms can be neglected. Therefore,
(7) becomes

− kp dgΔωm dg − ΔPout dg

= Jdgω0sΔωm dg + Ddg (Δωm dg − Δωg dg ) . (8)

If line losses are neglected, ΔPout dg = ΔPload , where Pload
is the active power consumed by the load. And if Xf � Xline ,
Δωg dg ≈ Δωbus . In this case, eliminate Δωg dg and Δωbus
from (6) and (8), so that

Δωm dg

ΔPload
= −1 + (Ddg/Kdg )s

kp dg + Jdgω0s
. (9)

Equation (9) is the transfer function of frequency change over
a small loading transition in stand-alone mode for a VSG. Let
Jdg = 0, Ddg = 0, and then the transfer function for a droop-
control-based DG can be obtained as follows:

Δωm dg

ΔPload
= − 1

kp dg
. (10)

Let s = 0 in (9), and then (9) is equivalent to (10). This implies
that steady-state gain of (9) is determined by droop coefficient
kp dg and is independent of swing equation parameters. In other
words, steady state of VSG control and droop control is the
same if droop coefficients kp dg are set equally.
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Fig. 3. Step responses of DG frequency during a loading transition in stand-
alone mode with various parameters.

TABLE I
PARAMETERS OF STAND-ALONE MODE

Parameter Value Parameter Value

Ed g 6.6 kV k ∗
p d g 20 p.u.

Sb a s e d g 1 MVA Xf 0.1298 p.u.
P0 d g 1 p.u. X l i n e 0.0076 p.u.
ω0 376.99 rad/s δd g 0
J0 56.3 kg·m2 Vb u s 6.57 kV
D ∗

0 17 p.u. ΔP l o a d 0.0095 MW

It is possible to calculate step responses of DG frequency
change during a small loading transition through (9) and (10)
with various parameters, and the results are shown in Fig. 3
(dotted lines) along with corresponding simulation results (solid
lines) obtained with PSCAD/EMTDC. Parameters used for both
theoretical calculation and simulation are the same, as listed in
Table I, except line resistance is taken into consideration in the
simulation, as shown in Fig. 2(b).

As it is demonstrated in Fig. 3, in all cases, simulation results
almost overlap corresponding theoretical results; thus, it can be
concluded that the small-signal models are verified. Ripples can
be observed in simulation result of droop control due to ripples
in measured output power ΔPout dg . Normally, a filter should be
applied to filter this ripple and its effect is discussed in Section
III-C. To understand dynamic response of basic droop control
without the filter, only a first-order filter with small time constant
at 0.005 s is applied in simulation and experiment except other
value is specified.

As for the comparison between each case, the frequency of
VSG control changes slowly, whereas that of droop control
suffers a step change. This implies that DG with VSG control
has inertia thanks to the swing equation, and that DG with
droop control has nearly no inertia. Moreover, larger value of
Jdg results in slower frequency change, which indicates that
inertia of the DG is determined by Jdg . On the other hand, Ddg

has barely any influence on dynamic response in this situation.
Besides, steady states of all cases are the same. This verifies
previous conclusion that steady states only depend on kp dg .

Fig. 4. (a) SG-connected mode model. (b) Simulation circuit of SG-connected
mode.

B. SG-Connected Mode

In this part, an SG-connected system shown in Fig. 4(a) is
studied to show the importance of inertia in a network with
high penetration level of inverter-based DG. It is assumed the
penetration rate of DG in this network is up to 50%, and the rest
of power generation comes from SG. In this case, it is preferred
to study the rotor frequency change of SG rather than that of
DG because the former is considered as the dominant one.

From the law of conservation of energy

ΔPout dg + ΔPout sg = ΔPload (11)

where subscript “sg” indicates parameters related to SG.
Let ΔPo u t d g

Δωb u s
= A and ΔPo u t s g

Δωb u s
= B, so that (11) becomes

ΔPout sg (1 + A/B) = ΔPload . (12)

The same equation as (6) holds for SG

sΔPout sg ≈ Ksg (Δωm sg − Δωbus) . (13)

Eliminate ΔPout sg from (12) and (13), so that

Δωm sg

ΔPload
=

Ksg + Bs

Ksg (A + B)
. (14)

Now if A and B are known, the required transfer function can
be obtained.

Eliminate Δωm dg from (6) and (8), and then

A =
ΔPout dg

Δωbus
= − kp dg + Jdgω0s

1 + kp d g +Dd g

Kd g
s + Jd g ω0

Kd g
s2

. (15)

Because SG has the same model as VSG, (15) is also true for
SG

B =
ΔPout sg

Δωbus
= − kp sg + Jsgω0s

1 + kp s g +Ds g

Ks g
s + Js g ω0

Ks g
s2

. (16)
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Fig. 5. (a) Step responses of SG frequency during a loading transition in
SG-connected mode with various parameters. (b) Zoom in of (a).

TABLE II
SG PARAMETERS

Parameter Value Parameter Value

Vb a s e s g 6.6 kV Xq = X ′
q 0.770 p.u.

Sb a s e s g 1 MVA X ′′
q 0.375 p.u.

P0 s g 1 p.u. T ′′
d 0.0348 s

ω0 376.99 rad/s X ′′
q 0.0346 s

Js g 56.3 kg·m2 Td s g 0.1 s
k ∗

p s g 20 p.u. Is g 43.1 A
Xs g 0.0076 p.u. ϕs g 0.00655 rad
Xd 1.90 p.u. Vb u s 6.57 kV
X ′

d 0.314 p.u. ΔP l o a d 0.0194 MW
X ′′

d 0.280 p.u.

Let Jdg = 0, Ddg = 0 in (15), and then A for droop control
can be obtained as

A =
ΔPout dg

Δωbus
= − kp dg

1 + (kp dg /Kdg )s
. (17)

However, for SG, Ksg and Dsg are not constant. They can be
calculated from SG parameters and measurement data of Vbus ,
Isg (output current of SG), and ϕsg (phase difference between
Vbus and Isg ) [53].

Based on (14)–(17), it is possible to calculate the step re-
sponses of SG frequency change during a small loading transi-
tion, and the results are shown in Fig. 5 along with corresponding
simulation results. (Note that for the calculation of B, (21) is
used instead of (16), which is explicated in next part of this
section.) Parameters of SG are listed in Table II, and parameters

Fig. 6. (a) Governor of VSG control. (b) P droop controller of droop control.

of DG are the same as those in Table I. Simulation circuit is
shown in Fig. 4(b), in which line resistance is included.

As shown in Fig. 5, simulation results verify theoretical results
obtained with the small-signal model, although slight delay dur-
ing first 0.5 s is observed. It is probably because in simulation,
the input disturbance ΔPload , which is realized by switching on
additional load, is not an ideal step due to the existence of line
reactance. It can also be noted that the amplitude of oscillations
in simulation results are slightly smaller than that in theoretical
results, probably because simulation circuits include line resis-
tance, which provides additional damping to the system. Like in
stand-alone mode, it is demonstrated that DG with VSG control
can contribute more inertia to the system than DG with droop
control, since df/dt of the former is slower. Also, larger value
of Jdg still increases the inertia of the system. In addition, sys-
tem with larger Ddg has slightly smaller oscillation. Similarly,
parameters of swing equation have no influence on steady state.

C. Effects of Delays in Governor and P Droop Controller

It is known that there is always a large delay in the mechanical
governor of SG. In previous researches on VSG, this delay is
also imitated when (2) is applied [39], [40], [42], as is shown in
Fig. 6(a). For droop control, a low-pass filter is usually added
into P droop controller to filter noises in the measured output
power Pout , as is shown in Fig. 6(b). Assuming both delays are
first-order lags with a time constant Td , kp has to be replaced by
kp/(1 + Tds) for VSG control, and by kp (1 + Tds) for droop
control in the small-signal models. This difference is caused by
the inverse of input and output in P–ω droop regulation. In VSG
control, the input is active power and the output is frequency,
whereas in droop control, it is the opposite, as illustrated in
Fig. 6.

If this effect is taken into account for VSG, in stand-alone
mode, (9) has to be modified as

Δωm dg

ΔPload
= −

1 +
(
Td dg + Dd g

Kd g

)
s + Dd g Td d g

Kd g
s2

kp dg + Jdgω0s + Jdgω0Td dg s2 . (18)

and for droop control, (10) becomes

Δωm dg

ΔPload
= − 1

kp dg + Td dgkp dg s
. (19)

Meanwhile, in SG-connected mode, for VSG and SG, (15)
and (16) have to be modified as (20) and (21) as shown bottom
of the next page
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Fig. 7. Effects of delays on step responses of (a) DG or (b) SG frequency
during a loading transition in (a) stand-alone mode and (b) SG-connected mode.

and for droop control, (17) becomes

A = − kp dg + kp dgTd dg s

1 + (kp dg /Kdg )s + (kp dgTd dg /Kdg )s2 . (22)

Based on (18)–(22), step responses of frequency can be recal-
culated and then compared with cases without consideration of
delays, as shown in Fig. 7. The time constant Td dg is assumed
to be 0.1 s. Simulation results are also provided in Fig. 7 to
verify calculated theoretical results.

Fig. 7 illustrates the point that inverse of input and output in
P–ω droop results in different effect of delay for each control
method. The delay makes the frequency of systems with VSG
control change faster, but makes that of systems with droop
control change more slowly in both stand-alone mode and SG-
connected mode. That is to say, the delay has a positive effect
on droop control but a negative effect on VSG.

Fig. 8. P droop controller of droop control with a first-order lead–lag unit.

D. Inertial Droop Control

It is interesting to compare (9) with (19), and (15) with (22).
If Td dg is increased up to

Td dg = Jdgω0/kp dg (23)

the only difference between (9) and (19), or (15) with (22)
is that the equations of VSG control have terms coming from
Ddg , whereas those of droop control do not. That is to say, by
adding a first-order lag unit, with time constant Td dg specified
by (23), into P droop controller, droop control can imitate the
performance of VSG with a moment of inertia equal to Jdg .

Furthermore, if a first-order lead unit is also added into P
droop controller, as shown in Fig. 8, (19) and (22) become

Δωm dg

ΔPload
= − 1 + Ta dg s

kp dg + Td dgkp dg s
(24)

A = − kp dg + kp dgTd dg s

1 + (kp dg /Kdg + Ta dg )s + (kp dgTd dg /Kdg )s2

(25)

respectively. If the time constant is set to

Ta dg = Ddg/Kdg (26)

then (24) is equivalent to (9), and (25) is equivalent to (15).
This conclusion is proved by Fig. 9 with both simulation

results and calculated theoretical results. By adding a first-order
lag unit with time constant specified by (23), droop control
results in similar step response to VSG control, with slightly
larger oscillation due to lack of damping factor. Additionally,
when a first-order lead unit with time constant specified by
(26) is also added, droop control leads to exactly the same
step response as VSG control in theoretical results. Although
in simulation results, there is still slight difference between the
result of droop control with specified lead–lag unit (c1) and that
of VSG (d1), probably due to the presence of line resistance,
the damping effect of lead unit is confirmed by comparing line
(b1) and line (c1). This implies that during small disturbance,
VSG can be approximated by droop control, with a first-order
lag unit to simulate inertia, and with a first-order lead unit to
simulate damping factor. Although similar conclusion on the
relation between first-order lag unit and inertia is mentioned

A = − kp dg + Jdgω0s + Td dgJdgω0s
2

1 +
(
Td dg + kp d g +Dd g

Kd g

)
s + Td d g Dd g +Jd g ω0

Kd g
s2 + Td d g Jd g ω0

Kd g
s3

(20)

B = − kp sg + Jsgω0s + Td sgJsgω0s
2

1 +
(
Td sg + kp s g +Ds g

Ks g

)
s + Td s g Ds g +Js g ω0

Ks g
s2 + Td s g Js g ω0

Ks g
s3

(21)
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Fig. 9. (a) Step responses of SG frequency during a loading transition in SG-
connected mode with specified lag or lead–lag unit in droop control. (b) Zoom
in of (a).

in [50] and [51], the relation between first-order lead unit and
damping factor has not been discussed in the literature.

IV. COMPARISONS OF ACTIVE POWER OSCILLATION

To compare the oscillation of output active power, state-space
models of SG-connected mode are built, for both VSG and droop
control, based on small-signal relations developed in Section III

{
ẋ = Ax + Bu

y = Cx + Du
(27)

where

u = [ΔPload ] (28)

y =
[
Δωm sg Δωm dg ΔPout sg ΔPout dg

]T
(29)

and other matrices are listed as follows. For VSG control: (33)
and (34) as shown bottom of the next page

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δωm sg +
Dsg

Jsgω0(Ksg + Kdg )
ΔPload

Δωm dg +
Ddg

Jdgω0(Ksg + Kdg )
ΔPload

Δδsg − 1
Ksg + Kdg

ΔPload

ΔPin sg

ΔPin dg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

C =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 Ksg 0 0

0 0 −Ksg 0 0

⎤
⎥⎥⎥⎥⎥⎦

(31)

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Dsg

Jsgω0 (Ksg + Kdg )

− Ddg

Jdgω0 (Ksg + Kdg )

Ksg

Ksg + Kdg

Kdg

Ksg + Kdg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

For droop control: (38) and (39) as shown bottom of the next
page

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δωm sg +
Dsg

Jsgω0 (Ksg + Kdg )
ΔPload

Δωm dg

Δδsg − 1
Ksg + Kdg

ΔPload

ΔPin sg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

C =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 Ksg 0

0 0 −Ksg 0

⎤
⎥⎥⎥⎥⎥⎦

(36)

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Dsg

Jsgω0 (Ksg + Kdg )

0

Ksg

Ksg + Kdg

Kdg

Ksg + Kdg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

It can be proved that the transfer function of the first output
Δωm sg over the input ΔPload deduced from this state-space
model is the same as that described by (14), (20), and (21).

Since oscillations in output variables, including DG output
power ΔPout dg , are determined by the eigenvalues of state
matrix A, it is important to analyze how these eigenvalues vary
according to different parameters, as shown in Fig. 10. In each
diagram, radial lines indicate damping ratio ζ, whereas circle
lines indicate nature frequency ωn . Parameters used for calcu-
lation are the same as those listed in Tables I and II.

It is implied that VSG control is more oscillatory than droop
control due to smaller ζ of the complex conjugate eigenvalues.
Although oscillation in output power is a common phenomenon
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in SG, it may cause overcurrent in DG and stop the inverter,
because an inverter usually has weaker overload ability than a
SG of same rating. However, this problem can be solved by
increasing damping factor Ddg and/or line reactance Xdg , as ζ
of the complex conjugate eigenvalues increases in these cases
as it is shown in Fig. 10. For example, a well-designed damp-
ing method based on modification of Ddg and considering line

resistance is presented in [41]. As for Xdg , it can be increased
by virtual impedance control, which is mentioned in [11]–[13],
[31], and [32], but for the purpose of decoupling active and re-
active power. Detailed study on this point is a future work and
is beyond the scope of this paper.

In addition, it is shown that Jdg affects the oscillation fre-
quency ωd , which is indicated by the distance between the

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− DsgKdg

Jsgω0(Ksg + Kdg )
DsgKdg

Jsgω0(Ksg + Kdg )
− Ksg

Jsgω0

1
Jsgω0

0

DdgKsg

Jdgω0(Ksg + Kdg )
− DdgKsg

Jdgω0(Ksg + Kdg )
Ksg

Jdgω0
0

1
Jdgω0

Kdg

Ksg + Kdg
− Kdg

Ksg + Kdg
0 0 0

−kp sg

Td sg
0 0 − 1

Td sg
0

0 −kp dg

Td dg
0 0 − 1

Td dg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Ksg

Jsgω0 (Ksg + Kdg )
− DsgDdgKdg

JsgJdgω2
0 (Ksg + Kdg )

2 +
D2

sgKdg

J2
sgω

2
0 (Ksg + Kdg )

2

− 1
Jdgω0

+
Ksg

Jdgω0 (Ksg + Kdg )
− DsgDdgKsg

JsgJdgω2
0 (Ksg + Kdg )

2 +
D2

dgKsg

J2
dgω

2
0 (Ksg + Kdg )

2

− DsgKdg

Jsgω0 (Ksg + Kdg )
2 +

DdgKdg

Jdgω0 (Ksg + Kdg )
2

kp sgDsg

Td sgJsgω0 (Ksg + Kdg )

kp dgDdg

Td dgJdgω0 (Ksg + Kdg )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− DsgKdg

Jsgω0 (Ksg + Kdg )
DsgKdg

Jsgω0 (Ksg + Kdg )
− Ksg

Jsgω0

1
Jsgω0

0 − 1
Td dg

Ksg

kp dgTd dg
0

Kdg

Ksg + Kdg
− Kdg

Ksg + Kdg
0 0

−kp sg

Td sg
0 0 − 1

Td sg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Ksg

Jsgω0 (Ksg + Kdg )
+

D2
sgKdg

J2
sgω

2
0 (Ksg + Kdg )

2

− 1
kp dgTd dg

+
Ksg

kp dgTd dg (Ksg + Kdg )

− DsgKdg

Jsgω0 (Ksg + Kdg )
2

kp sgDsg

Td sgJsgω0 (Ksg + Kdg )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)
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Fig. 10. Eigenvalues when (a) Jdg of VSG varies from 1.5−4J0 to 1.55J0 , (b) Ddg of VSG varies from 2−4D0 to 25D0 , (c) Xdg of VSG varies from 2.5−4 ×
0.1374 to 2.55 × 0.1374 p.u., (d) Tdd g

of VSG varies from 1.09−4 × 0.1 to 1.095 × 0.1 s, and (e) Tdd g
of droop control varies from 1.25−4 × 0.1 to 1.255 × 0.1 s.

eigenvalues and the real axis, but has barely any effect on the
damping ratio. It is also shown that the increase of Td dg not
only results in higher df/dt as discussed in last section, but also
makes the system more oscillatory. Therefore, it is better not to
simulate governor delay in VSG control.

Droop control may also become oscillatory if the lag time
constant Td dg is very large. In this case, its distribution of
eigenvalues becomes similar to that of VSG control. This verifies
the conclusion in last section, that droop control can be used to
simulate VSG by increasing Td dg .

Moreover, for both control methods, no matter how param-
eters change, no right-half-plan pole is observed. This implies
that parameters evaluated in this paper do not influence the sta-
bility of active power control in SG-connected mode.

V. EXPERIMENTAL RESULTS

Scale-down experiments are also executed to support the
points in Section III. Experimental circuits of stand-alone mode
and of SG-connected mode are shown in Fig. 11(a) and (b), re-
spectively. Three-phase power supply rectified by a diode bridge
is used to imitate the dc output of a DG. The block “transmission
line (TU)” in these graphs is a Π circuit to simulate a section of
40 km HV transmission line, which is demonstrated in Fig. 12.
Parameters of stand-alone mode and of SG-connected mode
are listed in Tables III and IV, and the results of stand-alone
mode and SG-connected mode are shown in Figs. 13 and 14,
respectively.

For stand-alone mode, experimental results (solid lines) coin-
cide with corresponding theoretical results (dotted lines). This
proves again that the small-signal models and the conclusions
discussed in Section III are correct.

Fig. 11. Experimental circuit of (a) stand-alone mode and (b) SG-connected
mode.

Fig. 12. TU.

For SG-connected mode, by comparing experimental results,
the same conclusions can be drawn as those in Section III. In
Fig. 14(a), system with VSG control still results in slower fre-
quency change than that with droop control, and the frequency
changes faster when Jdg decreases. In Fig. 14(b), it can still
be noticed that the delay (Td dg = 0.1 s) makes the frequency
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TABLE III
EXPERIMENTAL PARAMETERS OF STAND-ALONE MODE

Parameter Value Parameter Value

Ed g 207 V J0 0.2815 kg · m2

Sb a s e d g 5 kVA D ∗
0 17 p.u.

P0 d g 1 p.u. δd g 0
ω0 376.99 rad/s Vb u s 447.05 V
k ∗

p d g 20 p.u. ΔP l o a d 0.34 kW

TABLE IV
EXPERIMENTAL PARAMETERS OF SG-CONNECTED MODE

Parameter Value Parameter Value

Vb a s e s g 230 V Xq 1.31 p.u.
Sb a s e s g 10 kVA X ′

q 0.55 p.u.
P0 s g = P0 d g 0 p.u. X ′′

q 0.27 p.u.
ω0 376.99 rad/s T ′′

d 0.01 s
Js g 0.563 kg · m2 T ′′

q 0.02 s
k ∗

p s g 20 p.u. Is g 4.77 A
Xd 1.35 p.u. ϕs g 0.76 rad
X ′

d 0.48 p.u. Vb u s 454.8 V
X ′′

d 0.27 p.u. ΔP l o a d 1.29 kW

Other DG parameters are the same as those in Table III

Fig. 13. Experimental results of stand-alone mode to verify (a) effects of
parameters and (b) effects of delays.

Fig. 14. Experimental results of SG-connected mode to verify (a) effects of
parameters, (b) effects of delays, and (c) inertial droop control.

change faster in VSG control, but makes the frequency change
more slowly in droop control. Similarly, in Fig. 14(c), with spec-
ified lag unit or lead–lag unit, droop control has similar dynamic
response to VSG. Although in experimental results, it is diffi-
cult to confirm the difference in amplitude of oscillations due
to noises and insufficient measurement resolution, simulation
results are sufficient to confirm authors’ points.

VI. CONCLUSION

In this paper, small-signal models of VSG control and of
droop control were built, for both stand-alone mode and SG-
connected mode, to compare the dynamic responses of the two
control methods. All results were verified by simulations and
experiments. Oscillation phenomena were studied through state-
space models. Results are summarized as follows.

1) It was demonstrated that VSG has larger inertia than droop
control and therefore better frequency stability, and the
amount of inertia depends on virtual moment of inertia
J whereas the damping ratio depends on damping factor
D and output reactance X . It was also proved that the
delay in governor of VSG reduces the inertia and ampli-
fies oscillation. As a result, it was suggested to remove
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governor delay from VSG control. Contrarily, delay in P
droop controller of droop control can increase the inertia.

2) It was shown that droop control with a well-designed first-
order lead–lag unit in P droop controller has equivalent
small-signal model to that of VSG control. This modified
droop control, which can be called inertial droop con-
trol, provides a novel solution of virtual inertia, which is
more familiar to engineers working on UPS and microgrid
applications.

3) It was also pointed out that the output active power of
VSG is more oscillatory than that of droop control, but
this problem can be resolved by tuning the damping factor
and/or the output reactance. Besides, it was proved that
active power controls of both VSG control and droop
control are stable.

4) It was shown that VSG control and proposed inertial droop
control inherit the advantages of droop control, and in
addition, provides inertia support for the system. This
implies that in the applications where inertia is an impor-
tant index, e.g., in microgrids, VSG control and proposed
inertial droop control have the potential to replace con-
ventional inertia-less droop control.

5) The small-signal models and state-space models presented
in this paper provide novel analytical approaches for un-
derstanding the dynamic characteristics of VSG and droop
control, which may stimulate new ideas on improving dy-
namic performances of both control methods.
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