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An Integrated Gaussian Process Modeling
Framework for Residential Load Prediction

Guangrui Xie , Xi Chen , and Yang Weng , Member, IEEE

Abstract—While adding new capabilities, the distributed energy
resource (DER) proliferation raises great concern about challenges
such as dynamic fluctuations of voltages. For robust and efficient
operational planning purposes, we propose an integrated Gaussian
process (IGP) modeling framework for reliable hourly load pre-
diction. The proposed IGP modeling framework has the following
unique features: 1) the IGP utilizes not only the data streams gen-
erated by the target customer, but also those generated by relevant
customers in the power system; an effective input space dimension
reduction method is proposed to significantly improve the compu-
tational efficiency, while maintaining the high predictive accuracy
of the IGP; and 2) an adaptive data communication rate controlling
scheme is proposed to further enhance the predictive performance
of the IGP by optimally and dynamically adjusting the data
communication rate used for each customer under the total data
communication bandwidth constraint often imposed. Taking into
account the highly uncertain load and generation behaviors of
DERs, the proposed IGP framework is tested on various standard
IEEE test cases with load and renewable generation data collected
from real-world power systems with DERs. The superiority
and efficacy of the IGP are verified by our simulation results.

Index Terms—Load forecasting, Gaussian processes, adaptive
sampling, renewable integration.

I. INTRODUCTION

THE electric industry is undergoing structural changes as
distributed energy resources (DERs) are integrated into the

distribution grids. While adding new capabilities, the DER pro-
liferation raises great concern about the resilience of the power
grids. Dynamic fluctuations of voltage profiles, voltage stability,
islanding, line work hazards, and the distribution system oper-
ating at stability boundaries are some of the troubling issues
for distribution grid operation [1]. As a result, highly accurate
power state prediction is critical for operational planning pur-
poses to mitigate risks, e.g., capacitor bank scheduling to avoid
over-voltages in several hours.
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Many methods have been proposed for load forecasting
in power systems. These include time series models, semi-
parametric additive models, support vector regression, neural
networks, Gaussian process (GP) regression, etc.; for a non-
exhaustive review, see [2]–[13]. In [3], the authors proposed
a multiplicative seasonal ARIMA model with the multi-model
partitioning algorithm (MMPA) for short-term load forecasting
and anomaly detection. In [4] and [5], semi-parametric additive
models with different input variables were adopted for short-
term load forecasting. In [6], a sensor-based forecasting model
using support vector regression was built and applied for load
forecasting in multi-family residential buildings. In [7]–[9], dif-
ferent types of neural network models were proposed for load
forecasting. Last but not least, GP models have been recognized
as one of the most widely adopted analytics tools, and have been
applied to load forecasting; see [10]–[13] for a non-exhaustive
review on the existing GP models proposed for load forecast-
ing. These GP models mainly differ in the covariance kernels
and input variables used for prediction. In [10], the GP model
takes previous load observations as inputs to forecast future
load demands up to 24 hours ahead. In [11], the authors con-
structed the covariance kernel of GP by incorporating weather
conditions (temperature, wind speed, wind direction and cloud
cover), daily and weekly patterns to predict future loads. In [12],
the authors applied GP regression to monthly load forecasting
and examined the impact of using different types of covariance
kernels including Matérn kernel, neural net kernel, Gaussian
kernel and linear kernel on the prediction results. In [13], the
author selected three different covariance kernels which take
into account periodic time patterns and temperature effects for
load forecasting. GP models have favorable properties such as
being highly flexible to capture various features exhibited by
the data at hand and providing an uncertainty measure for the
prediction [14], [15].

Despite their many successful applications, existing methods
are significantly lacking in two important aspects: using spatial
information and adopting an adaptive sampling plan. First,
existing methods typically ignore the information contained in
the data generated by spatially correlated customers, which can
be valuable for improving load forecasting accuracy achieved
for a given target customer. Second, these methods are passive
in nature—there does not exist any sampling plan tailored to
them such that data of higher quality can be obtained to further
enhance load forecasting accuracy. The lack of considerations in
these two aforementioned aspects can lead to serious problems
when an existing method is applied for forecasting. On the one
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hand, customers living in the nearby areas tend to experience
similar weather conditions, have similar socioeconomic status
and hence exhibit similar load behaviors. The ignorance of such
spatially correlated information may lead to a deterioration
of predictive accuracy. On the other hand, poorly designed
sampling plans with a limited amount of sampling resources
available will result in poor data quality and hence inaccurate
forecasts.

We highlight potential opportunities provided by the current
infrastructure for improving data quality and also point out
the suboptimal data sampling practice currently adopted
in industry. With the development of Advanced Metering
Infrastructure (AMI), smart meters have been widely deployed
to replace traditional meters. Smart meters not only enable
two-way communications between customers and utilities but
also provide the functionality of real-time adjustment of data
sampling and communication rates. In AMI, the data sampled
from each customer in the same local area are often first ag-
gregated in a concentrator, then the data at all concentrators are
transmitted to the data center of utilities. Since more and more
utilities rely on wireless technologies for data communication,
wireless providers (e.g., Verizon [16]) often impose a limit on
data communication bandwidth. With a fixed bandwidth given,
let us consider a distribution grid in which real-time measure-
ments are available for each customer. The current practice
in industry is typically either to sample from all customers
at a common fixed rate, or to sample and transmit only the
data of a proportion of the customers. Clearly, neither of the
two data sampling and communication plans is optimal. Since
different customers often exhibit distinct load behaviors, such
non-adaptive sampling plans may result in the consequence that
the customers whose load behaviors are stable are sampled from
too often, whereas those having highly variable load behaviors
are sampled from too little. In such a case, an intelligent data
sampling plan is needed to adaptively adjust the sampling rate of
each customer such that a reasonable amount of data is obtained
from each customer. Hence, we aim to design a load forecasting
framework, which is able to provide accurate predictions when
no bandwidth constraint is imposed and to construct an adaptive
sampling plan for maintaining the level of predictive accuracy
when a bandwidth constraint enforces a data reduction. The
data reduction happens when smart meters sample data from
customers before the data are aggregated at the concentrators.
We argue that the information loss caused by the data reduction
can be minimized by adopting an optimal data sampling plan.

In this paper, we propose an online integrated GP (IGP) mod-
eling framework for day-ahead hourly residential load forecast-
ing. IGP enjoys the following unique features: (1) It utilizes not
only the data streams generated by the target customer but also
those generated by relevant customers in the power system. Due
to the “big data” problems arising from using all customers’
data streams for load prediction of a given target customer,
we further propose an effective dimension reduction method to
help significantly reduce the dimension of the input space while
maintaining the high predictive accuracy achieved by IGP. (2) It
is equipped with an adaptive data communication rate control-
ling scheme, which enhances the predictive performance of IGP

by optimally and dynamically adjusting the communication rate
of data generated by each customer under the total data com-
munication bandwidth constraint imposed. The proposed IGP
modeling framework for load prediction is tested and verified
on various IEEE distribution system test cases, i.e., 8-bus, 14-
bus, 24-bus and 123-bus systems. IGP shows superior predictive
performance in comparison with alternative prediction methods
across all cases tested.

The rest of the paper is organized as follows. In Section II,
we provide a brief review of GP modeling in the context of
load prediction and present a naive GP modeling approach.
Section III introduces the IGP framework with each subsection
detailing on one of its features. The numerical experiments are
presented in Section IV. Section V concludes the paper.

II. GAUSSIAN PROCESS MODELING FOR LOAD PREDICTION

In a power system, the hourly load data of a particular cus-
tomer i sampled by smart meters can be seen as a time series
{P t

i }. To predict future P t
i , we usually acquire the historical

data of P t
i and that of other variables related to P t

i , to construct
a dataset for training purposes. This training process aims to
capture the behavior of P t

i and its relationship with the relevant
input variables.

Specifically, the training dataset consists of a set of input-
output pairs, in which the output variable yt at time instant t is
P t

i , and the input vector at time instant t, xt , is the combination
of the variables relevant to P t

i in the training dataset. We aim
to estimate an underlying function f(·), where yt = f(xt) +
ε for all t based on the training dataset T = {(xt , yt), t =
1, 2, . . . , n}, with n denoting the training sample size and ε
being the normally distributed observation error with mean zero
and variance σ2 .

Various mathematical models can be used to perform this
inference, among which GP-based models are the most prefer-
able for their outstanding capability of capturing uncertainties.
In a GP model, a Gaussian process prior is typically placed
on f(·), for which the process is assumed to have mean μ and
covariance (or kernel) function K: f(·) ∼ GP (μ,K), and the
unknown hyper-parameters in μ and K can be estimated from
the training dataset T . The sample size of the training dataset
of GP is usually set to be at least 10 times the dimension of the
input space based on the suggestion of [17]. Denote the set of
output variables {yt} in the training dataset by Y and the set of
input vectors {xt} corresponding to {yt} by X. The relationship
between the set of future loads P t

i ’s and their corresponding in-
put vectors can be described as a testing set T ∗ = (X∗, f(X∗)),
where f(X∗) is unknown and X∗ is typically assumed known
for prediction purposes. The joint distribution of Y and f(X∗)
is given by(

Y

f(X∗)

)
∼ GP

([
μ(X)

μ(X∗)

]
,

[
K ′(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
,

where K ′(X,X) = K(X,X) + σ2In , and In is the n × n iden-
tity matrix. Then the conditional distribution of f(X∗) given X,
Y and X∗ can be obtained as Gaussian with the predictive mean
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and variance respectively given by

E[f(X∗)] = μ(X∗) + K(X∗,X)K ′(X,X)−1(Y − μ(X)),
(1)

Cov(f(X∗))=K(X∗,X�) −K(X∗,X)�K ′(X,X)−1K(X∗,X)
(2)

In particular, (1) can be used as an estimate for future P t
i .

The hyper-parameters in μ, K and σ2 can be estimated by
maximizing the log-likelihood function. See [15] for details.

A. A Naive GP Modeling Approach

In a naive GP modeling method (NGP) for load prediction
which adopts the idea of [18], the input-output pair becomes
(t, P t

i ), where the input variable takes only the time instant t.
To describe the correlation between the electric loads at differ-
ent time instants, we choose a simplified version of the quasi-
periodic kernel as used in [18] to account for the periodicity
exhibited by the load values in power systems. Specifically, the
covariance between the electric loads at two time instants t1 and
t2 is given by

K(t1 , t2) = τ 2 exp
(
− sin2(π(t1 − t2)/T )

ω
− (t1 − t2)2

α

)
,

where τ 2 , ω and α are the hyper-parameters to be estimated, and
T is the specified cycle, which is 24 in our case, since utilities
usually record hourly load P t

i per day. With the training dataset
T = {(t, P t

i )}, we note that NGP does not require any addi-
tional information to predict future load other than the observed
load P t

i of customer i at a given time t.

III. AN INTEGRATED GP MODELING FRAMEWORK

The hourly load data consist of a highly volatile time series,
as illustrated in Fig. 1. This high variability is due to not only the
randomness in the target customer’s behavior, but also changes
in behaviors of other customers in the power system. NGP uti-
lizes only the historical load data of the target customer for
prediction. However, a power system is an integrated system,
in which the target customer’s load has strong correlations with
other customers’ power states, as shown in Fig. 2.

Such a strong correlation as shown in Fig. 2 can be derived
from the well-known power flow equation:

0 = −Pi +
N∑

k=1

|Vi ||Vk |(Gik cos θik + Bik sin θik ), (3)

where Pi is the load of bus i in a power system, |Vi | is the volt-
age magnitude of bus i, θik is the difference in voltage angles
of buses i and k, Gik and Bik are coefficients describing the
relationship between buses i and k, and N is the total number of
buses in the power system. To derive the correlation between the
target customer i’s load Pi and the sine function of the differ-
ence of customer i and his/her neighbor j’s voltage angles θij ,
define ak = |Vi ||Vk |Gik , bk = |Vi ||Vk |Bik , Uk = cos θik , and
Wk = sin θik for k = 1, 2, ..., i − 1, i + 1, ..., N . Then (3) can
be reduced to Pi =

∑N
k=1 akUk +

∑N
k=1 bkWk . We have the

Fig. 1. Hourly load data of a customer and Moving Coefficient of Variation
(MCV) of the load throughout one year. Data are drawn from PJM [19] and
sampled hourly. Here MCV = s/μ, where s and μ are respectively the moving
standard deviation and moving average of loads observed over 5 hours. Notice
that MCV can be as high as greater than 2.

Fig. 2. Hourly load data of a target customer and the sine function of the
difference in voltage angles of this customer and his/her neighbor customer in
an IEEE 8-bus test case throughout one year. Data are drawn from PJM [19]
and sampled hourly. Notice that these two quantities present a strong negative
correlation.

correlation between Pi and Wj for j = 1, ..., i − 1, i + 1, ..., N
as

Corr(Pi,Wj )

=
∑N

k=1 akCov(Uk ,Wj ) +
∑N

k=1 bkCov(Wk,Wj )
(Var(Pi)Var(Wj ))

1
2

. (4)

In distribution grids, the magnitudes of the coefficients Gik and
Bik of two neighboring customers are much larger than those
of the two coefficients of two distant customers (Gik and Bik

of two distant customers tend to be 0). Let us consider a simple
case in which customer j is the only neighbor of customer i, in
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Fig. 3. Moving Correlation Coefficient (MCC) of the load data and the sine
function of voltage angle difference in Fig. 2. MCC is calculated using the most
recent 50 hours’ data as time progresses.

this case we can approximate the correlation in (4) by

Corr(Pi,Wj ) ≈ (ajCov(Uj ,Wj ) + bjVar(Wj ))

×
[(

a2
j Var(Uj )+b2

j Var(Wj )

+ 2aj bjCov(Uj ,Wj )
)
Var(Wj )

]− 1
2

=
(
ajCov(Uj ,Wj ) + bjVar(Wj )

)
·
[(

ajCov(Uj ,Wj ) + bjVar(Wj )
)2

+ a2
j

(
Var(Uj )Var(Wj )

− Cov(Uj ,Wj )2)]− 1
2 (5)

In (5), we note that Uj and Wj are cosine and sine functions
of θij , hence the correlation between Uj and Wj depends on
the distribution of θij . Numerical evaluations have shown that
the correlation between Uj and Wj is usually very close to −1,
hence Var(Uj )Var(Wj ) ≈ Cov(Uj ,Wj )2 . Therefore, we have
Corr(Pi,Wj ) ≈ 1 or −1, which indicates that there is a strong
correlation between the load of the target customer and the sine
function of the difference in the voltage angels of the target
customer and his/her neighbors. In Fig. 3 we show the Moving
Correlation Coefficient (MCC) between the two quantities as
given in Fig. 2; we can see the presence of a strong correlation
throughout the time horizon of interest.

A. Integrated GP Modeling: Utilizing Neighbors’ Data

To account for the strong correlation in customers’ data, we
incorporate the information of other customers to form the input
vector. We see from (3) that Pi depends on quantities such
as |Vi |, |Vk |, cos θik and sin θik . For the prediction of Pi for
customer i, one way of incorporating these quantities into the

input vector would be to set its value at time t as

xt =
(
Ct

i,1 , C
t
i,2 , . . . , C

t
i,i−1 , C

t
i,i+1 , C

t
i,i+2 , . . . , C

t
i,N

×St
i,1 , S

t
i,2 , . . . , S

t
i,i−1 , St

i,i+1 , S
t
i,i+2 , . . . , S

t
i,N

)�
,

where t denotes the time variable, Ct
i,k = |V t

i ||V t
k | cos θt

ik , and
St

i,k = |V t
i ||V t

k | sin θt
ik .

However, the aforementioned setting essentially applies GP
to approximate a linear relationship, which cannot fully uti-
lize GP’s capability; moreover, it entails an input space of
dimension 2(N − 1), and numerical issues often arise when
N is large. According to [20]–[22], there is usually a strong
coupling between load and voltage angle, whereas the cou-
pling between load and voltage magnitude is rather weak.
Therefore, we specify the input vector at time t as xt =
(θt

i,1 , θ
t
i,2 , . . . , θ

t
i,i−1 , θ

t
i,i+1 , θ

t
i,i+2 , . . . , θ

t
i,N−1 , θ

t
i,N )�, where

θt
i,k denotes the difference in voltage angles of bus i and bus k

at time instant t. The dimension of the input space now becomes
N − 1. We choose an automatic relevance determination (ARD)
kernel to model the correlation between the loads correspond-
ing to two arbitrary input vectors because of its well-known
capability of providing sensitivity analysis [15], [23]. Sensitiv-
ity analysis is important for further reducing the dimensionality
of input space, which will detailed in Section III-B. Then the
covariance between the loads corresponding to input vectors xt1

and xt2 follows as

K(xt1 ,xt2 ) = τ 2 exp

(
−

i−1∑
k=1

(θt1
i,k − θt2

i,k )2

2α2
k

)

× exp

(
−

N∑
k ′=i+1

(θt1
i,k ′ − θt2

i,k ′)2

2α2
k ′

)
,

where t1 and t2 are two arbitrary time instants, and αk repre-
sents the length-scale parameter corresponding to customer k
in the kernel function. We refer to this method as the integrated
GP-based prediction method (IGP) under the IGP modeling
framework.

Remark 1: The fact that real power highly depends on volt-
age angles relies on the assumption that X/R ratio is high,
which is not always true in distribution systems. Nevertheless,
we argue that the power flow equation (3) serves only as an in-
spiration to extract the most relevant and valuable information
for the load prediction purpose. As a data-driven method, we
do observe a much stronger correlation between load and volt-
age angle than that between load and voltage magnitude in our
simulations with various data sources, so retaining only volt-
age angles as the input variables suffices for the load prediction
purpose.

B. Input Space Dimension Reduction for Real-Time
Implementation

An advantage of using ARD kernel is that the length-scale
parameter estimates shed some light into the correlations be-
tween the behaviors of distinct customers in the power sys-
tem, and such information is crucial for further reducing the
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TABLE I
ESTIMATES OF α2

k ’S FOR CUSTOMERS IN AN IEEE 8-BUS TEST CASE FOR THE

PREDICTION OF CUSTOMER 1 WITH DATASETS d1 , d2 , AND d3

computational cost required by IGP, which scales as O((N −
1)3), where N denotes the total number of buses in the system.

When performing prediction for customer i, those customers
that are highly correlated with customer i typically feature a low
value of their estimated αk , which is obtained in the training
process. This makes intuitive sense because when αk is signifi-
cantly lower than the corresponding α’s of other customers, θi,k

plays a major role in the covariance kernel, so that the behavior
of customer k has a strong impact on the prediction for customer
i. In such a case, we call customer k a neighbor of customer
i. The neighbor in this sense is not based on geographical rela-
tionships, but based on prediction relevance, though neighbors
may also be in close proximity geographically in some simple
distribution systems.

Table I shows the α̂2
k ’s obtained for prediction of customer 1

in an IEEE 8-bus test case with three different training datasets
using IGP. We can see that α̂2

2 is significantly lower than the
other α̂2

k ’s, which indicates that customer 2 is a neighbor of
customer 1. Hence, we can reduce the input space dimension
for real-time implementation of IGP upon identifying relevant
neighbors. Since the information of non-neighbors is of little
value, we can retain only the difference in voltage angles of
the target customer and his/her neighbors in the input vector
for future training and prediction. Such a procedure is similar
to those for feature selection in the machine learning literature.
Specifically, in real-time implementation, assume that we want
to predict for customer i. Let the length-scale parameter corre-
sponding to customer j be αj . Define the contribution coeffi-
cient of customer j as cj = α−2

j /(
∑i−1

k=1 α−2
k +

∑N
k ′=i+1 α−2

k ′ ).
We sort the contribution coefficients in a non-increasing order,
and select the customers from the first till the one by including
which the sum of contribution coefficients exceeds a prespeci-
fied threshold. The customers selected are then identified as the
neighbors of customer i.

In this paper, the IGP model after this dimension reduction
step is referred to as RIGP and the IGP with full dimensional
information is referred to as FIGP under the IGP modeling
framework.

C. Prediction With Uncertain Inputs

In addition to the differences in their respective input vectors
and kernels used, another major difference between NGP and
IGP lies in their prediction steps. For making predictions via
(1), the input vectors of NGP at the time instants of prediction

contain only the time instants of interest, which are naturally
known to us. In contrast, the input vectors of IGP at the time
instants of prediction contain the differences in future phase
angles, which are yet to be observed.

We adopt a k-means clustering procedure to address the prob-
lem that future input vectors are unknown. Since customers usu-
ally present distinct load behaviors at different hours of a day,
upon the input space dimension reduction step we group the
hourly sampled input vectors in the training dataset into 24 sets,
such that each set corresponds to one hour of a day. We then
apply k-means clustering on each set to cluster the input vectors
sampled at each hour; see [24] for detailed implementation of k-
means algorithm. There are various algorithms to determine the
number of clusters to use; see [25], [26]. To reduce implemen-
tation complexity, following the rule of thumb in [25], we set
the number of clusters to k = �

√
n/2�, i.e., the smallest integer

not less than
√

n/2, where n denotes the number of days that
the training data are sampled from. By assuming similarity in
load behaviors of each customer on any two consecutive days,
we expect that the input vectors of these two days to lie in the
same cluster in each of the 24 sets. Therefore, in each set (for
each hour), we use the centroid of the cluster which covers the
input vector of the day prior to the prediction day as x∗ in (1)
for each hour’s prediction on the prediction day.

For quantifying the prediction uncertainty of the IGP predic-
tor, the standard way of building a 95% prediction interval no
longer applies as the input vector x∗ for IGP is random. As a
remedy, we find the maximum and minimum loads at each hour
among those days where the training data are sampled from, and
then plug their corresponding input vectors into (1) to construct
the upper and lower bounds for prediction at each hour on a
given prediction day. In this way, we obtain an upper bound and
a lower bound respectively close to the maximum and minimum
Pi at each hour in the training dataset.

D. Adaptive Control of Data Communication Rates

In this subsection, we introduce an adaptive data communica-
tion rate controlling scheme under the IGP modeling framework
to improve data quality and hence the subsequent predictive per-
formance achieved by IGP.

With a fixed wireless data communication plan, an adaptive
data communication rate controlling scheme can help adjust the
communication rate assigned to each customer according to the
individual dynamic load behavior, such that data of improved
quality can be obtained subject to a fixed bandwidth constraint.
An effective and efficient scheme must address the following
two pressing questions: which customers in the system to sample
data from at a particular hour and which variables to be included
in the sample. For the purpose of load prediction, the load data
P is the only output variable, so we cannot afford to sample less
on P for each customer. Since we only use voltage angle θ to
build the input vector for implementing IGP, the key solution is
to designing an effective sampling plan for θ that complies with
the fixed communication bandwidth given.

From the utilities’ point of view, we formulate the optimiza-
tion program given by (6) to obtain an adaptive communication
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rate controlling scheme. We define the decision horizon as the
time period that the optimal rate controlling scheme is imple-
mented for. We enforce the scheme to sample θ from each cus-
tomer at least once within the decision horizon for implementing
the k-means clustering procedure given in Section III-C. The de-
cision horizon is chosen to be 48 hours, since a longer period
will lead to too little data being collected at some hours hence
deteriorated predictive accuracy, and a shorter period will nat-
urally forbid the possibility of sampling θ at least once at each
hour within the decision horizon given a limited bandwidth. We
also assign different weights to each customer in the objective
function based on the variabilities of their respective load data
collected. Under a bandwidth constraint, the data sampled at a
particular time instant may not constitute a complete input vec-
tor for prediction of a target customer, since neighbors’ voltage
angles may be missing. We call the input vectors constituted
by all neighbors’ θ’s “valid” input vectors, and we don’t use
“invalid” input vectors for training. In (6), customers with a
higher variability are assigned larger weights, as more “valid”
input vectors are required to accurately predict their loads. The
optimization problem is given as follows:

max
N∑

i=1

48∑
j=1

wicij

s.t. xi,j + xi,j+24 = 1,

cij ≥ 1 −
(

N∑
k=1

Aik −
N∑

k=1

Aikxkj

)
,

cij ≤
N∑

k=1

Aikxkj

/ N∑
k=1

Aik ,

48∑
j=1

N∑
i=1

xij = n, xij = {0, 1}, cij = {0, 1},

i, k = 1, 2, . . . , N, j = 1, 2, . . . , 48, (6)

where xij is a binary decision variable, with xij = 1 indicat-
ing that θ is sampled at hour j from customer i, and xij = 0
otherwise. cij is a binary decision variable, with cij = 1 in-
dicating that we can form a “valid” input vector for the pre-
diction of customer i at hour j, and cij = 0 otherwise. Aik is
a known coefficient after the identification of neighbors, with
Aik = 1 denoting that customer k is a neighbor of customer i
and Aik = 0 otherwise. N is the number of customers in the
power system, and n is the total number of data points we can
communicate within the decision horizon, which is determined
by the bandwidth. ωi is the weight assigned to each customer and
wi = si/μi , where si and μi are respectively the sample stan-
dard deviation and sample mean of the load data of customer
i. Notice that si and μi can be obtained from historical dataset
of customer i. This optimization problem is an integer linear
programming problem, which can be solved by commonly used
integer programming solvers such as YALMIP [27].

A flowchart of the IGP modeling framework enhanced by the
adaptive data communication scheme is given in Fig. 4. Since

Fig. 4. Flowchart of IGP with the adaptive data communication scheme for
short-term load prediction.

the optimization program is run every two days, the flowchart
illustrates two days’ operation of the scheme. Consider a par-
ticular period of two days. At the beginning, we sample Pi’s
and θi’s (voltage angle of customer i) from the first day ac-
cording to the current sampling scheme and combine the data
with historical Pi’s and θi’s to constitute a dataset D1 . We then
pre-process D1 to obtain dataset D′

1 , which contains Pi’s and
voltage angle difference θij ’s. Then D′

1 is used for training to
obtain the parameter estimates required by IGP, and the first day
prediction is performed subsequently. For the second day of the
period, we perform the same sampling procedure and combine
the sampled data with historical data to constitute D2 ; then we
perform the same pre-processing step to obtain D′

2 and update
ωi’s based on D2 . Subsequently, D′

2 is used for training to ob-
tain parameter estimates as well as neighboring relations Aij ’s.
The entire procedure is performed periodically with two days
as the cycle.

Remark 2: The aforementioned scheme presents an optimal
hourly sampling plan for load forecasting and entails frequent
sampling of phase angles and loads of multiple customers, which
may require PMUs as metering devices. Although PMUs have
not been widely used so far by industry as compared to other
smart meters, the deployment of PMUs has been rapidly growing
and such devices will become readily available on the market in
the near future [28].

IV. NUMERICAL EXPERIMENTS

Experiments are performed on four IEEE test cases: 8-bus,
14-bus, 123-bus test cases and a 24-bus test case which is con-
structed to simulate the phase unbalance problem based on the
8-bus test case. To simulate the highly uncertain load behaviors
caused by DERs in real-life power systems, historical load pro-
files from PJM [19] and New York ISO [29] are used for simu-
lations. Specifically, the load data drawn from PJM load profiles
for the year 2014 are used for the 8-bus and 123-bus test cases
[19], and the load data drawn from New York ISO load profiles
for the year 2015 are used for 14-bus and 24-bus test cases [29].
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Fig. 5. A diagram showing relationships between the GP models under
consideration in Section IV.

Taking into account the uncertain renewable generation be-
haviors of DERs, we first pre-process the hourly PV generation
data over a year drawn from Renewable.ninja [30], and then
subtract the pre-processed data from the load data of each bus.
To obtain other measurements such as voltage magnitudes and
voltage angles, we perform power flow analysis to generate the
states of the power system at every hour over a year using the
MATLAB Power System Simulation Package (MATPOWER)
[31], [32], based on the processed load data. For all four test
cases, we use Mean Absolute Percentage Error (MAPE) to
measure the predictive performance of each method: MAPE =
nt

−1 ∑nt

t=1

∣∣∣Pt −P̂t

Pt

∣∣∣, where Pt is the actual value of load at hour

t, P̂t is the predicted value of load at hour t, and nt is the number
of predictions made. In our experiments, we set nt = 24, t =
1, 2, . . . , 24, i.e., to calculate MAPE for every prediction day.

Since a number of GP models are to be compared in this
section, to facilitate the reader’s understanding, we summarize
the relationships between the GP models considered for com-
parison in Fig. 5. The details of each model are discussed in the
following two subsections.

A. Comparison of NGP, IGP and SARIMA

In this subsection, we compare the predictive performance
of NGP, IGP, and the SARIMA model proposed in [3] as a
benchmark. For each test case, we perform prediction for 30
different days in each season for all customers using each pre-
diction method. To determine the size of training dataset for
IGP, we run a model validation procedure as shown in Fig. 6.
In order to use a minimum number of days for training while
maintaining a high predictive accuracy by taking into account
the suggestion of [17], we decided to use 15 preceding days’
data as the training dataset for 8-bus, 14-bus and 24-bus test
cases for one day’s prediction; for the 123-bus test case, we
use 60 days’ data instead. For comparison purposes, we use the
same size of training dataset for NGP and SARIMA in each
experiment.

Fig. 7(a)–(d) shows the prediction results for a target customer
on 50 different prediction days in each test case. We observe
that the SARIMA model performs the worst in all test cases.
NGP performs slightly better than SARIMA. Both RIGP and

Fig. 6. Model validation for all test cases. For each test case, different num-
bers of days’ data are used for training. MAPEs are recorded for 30 different
prediction days in each season for all customers. Then the average MAPEs
across all the prediction days and customers are calculated for all numbers of
training days in each test case to arrive at the appropriate size to use.

FIGP outperform NGP and they achieve comparable satisfactory
predictive accuracies. We note that the MAPEs obtained in the
14-bus and 24-bus test cases are significantly lower than those
in the 8-bus and 123-bus test cases; this is due to the fact that
the variability of the load data drawn from New York ISO[29]
is significantly lower than that of PJM [19] (see Fig. 1 for the
high variability of the load data from PJM).

Fig. 8 shows the boxplots of MAPEs obtained in the 8-bus
and 123-bus test cases. We observe that the variations of the
MAPEs of FIGP and RIGP are significantly lower than those of
NGP and SARIMA, which implies that both of FIGP and RIGP
are more robust when applied to multiple customers.

In addition, for a comparison of the coverage abilities
achieved by NGP and IGP, we draw a set of data from the
8-bus test case and plot the predictive mean with confidence
intervals for one day’s prediction of a customer, see Fig. 9. We
observe that the bounds constructed for IGP offer a better cov-
erage of the realized loads than the 95% confidence interval
obtained by NGP. We also show boxplots of the number of daily
load observations covered by the bounds of NGP and IGP in the
8-bus and 123-bus test cases in Fig. 10; notice that IGP exhibits
a much higher coverage capability than NGP.

B. Testing Data Communication Rate Controlling Scheme

In this subsection, we test the efficacy of our adaptive data
communication scheme. As a benchmark, we design a naive
data communication scheme for RIGP, in which data are sam-
pled equally frequently from each customer subject to a band-
width constraint. We then compare the predictive performance
of four schemes: RIGP with the adaptive scheme, NGP with
fewer training data points subject to the bandwidth constraint,
RIGP with the naive scheme and RIGP with full number of data
points as if there were no bandwidth constraint.
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Fig. 7. MAPEs obtained by the SARIMA model, naive GP, reduced-
dimension integrated GP and full-dimension integrated GP for the prediction of
a customer throughout 50 days in 8-bus, 14-bus, 24-bus and 123-bus test cases.

Fig. 8. Boxplots of MAPEs corresponding to the SARIMA model, naive GP,
full-dimension integrated GP, and reduced-dimension integrated GP. MAPEs are
obtained from the prediction results for 30 days in each season for all customers
in both 8-bus and 123-bus test cases.

Fig. 9. Coverages achieved by the 95% confidence interval of naive GP and
by the bounds of integrated GP for one day’s prediction of a customer in an
8-bus test case.

The current design of most smart meters requires 16 bits of
memory to record one single data point, e.g., OpenWay CEN-
TRON meter by Itron, Inc [33]. For a power system with N
customers, a full-rate data communication scheme that ensures
θ is sampled hourly from every customer requires a bandwidth
of 384N bits every day on average. In this experiment, we con-
sider a scenario that the actual bandwidth is two thirds of the
demand of full-rate data communication scheme, which means
that the bandwidth budget available of the concentrators can
only ensure a total of 256N bits of memory for sampling θ
from customers every day on average. We consider 2 days as a
decision horizon, as argued in Section III-D.
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Fig. 10. Boxplots of the number of daily load observations covered by the
confidence intervals obtained by of NGP and the bounds of IGP. Load data are
recorded hourly and the numbers are collected for 30 days in each season from
all customers.

In the naive scheme of RIGP, for one day, θ is sampled from
every customer hourly; for the other day, customers are evenly
divided into three groups: G1 , G2 , and G3 , and θ is sampled
from the customers in Gi only at the hi th hour, where hi ∈
{i, i + 3, . . . , i + 21}, for i = 1, 2, 3. This scheme ensures that
the data communication bandwidth budget is evenly allocated
to each customer within the decision horizon.

While the naive scheme sounds reasonable, it doesn’t take
into account correlations between different customers, which
may result in some loss of potential “valid” input vectors. In
contrast, the adaptive scheme given by (6) allocates the sampling
budget optimally based on the correlations between customers
and the variabilities of their loads. For NGP, full number of data
points of Pi is sampled on one day, and Pi is sampled every
three hours on the other day.

We performed prediction for 30 different days in each season
for all customers in each test case using the aforementioned four
schemes. Fig. 11 shows the predictive performance of different
schemes for a target customer on 50 different prediction days.
We see that in all test cases, RIGP with full number of data points
performs the best as expected. RIGP with the adaptive scheme
performs only slightly worse than RIGP with full number of
data points, and better than RIGP with the naive rate controlling
scheme. NGP gives the worst performance when fewer training
data points are given. Therefore, the efficacy of the proposed
adaptive data communication scheme is verified.

C. Comparison of Computational Effort

All the numerical experiments are performed using MATLAB
on a laptop with 6th generation Intel Core i7 processor and
8.0 GB DDR4 memory. To compare the computational effort
of different methods, the average computation times taken by
these methods to perform one day’s prediction in two extreme

Fig. 11. MAPEs obtained by naive GP under the bandwidth constraint,
reduced-dimension integrated GP with the adaptive sampling scheme, naive
sampling scheme, and full number of data points for prediction of a customer
throughout 50 days in 8-bus, 14-bus, 24-bus and 123-bus test cases.
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TABLE II
AVERAGE COMPUTATION TIMES (IN SECONDS) USED BY NAIVE GP,

FULL-DIMENSION INTEGRATED GP, REDUCED-DIMENSION INTEGRATED GP
FOR ONE DAY’S PREDICTION IN 8-BUS AND 123-BUS TEST CASES

test cases are summarized in Table II. We see that NGP is very
fast in both 8-bus and 123-bus test cases, since unlike IGP, an
increase in the number of customers does not impact its input
space dimension. FIGP consumes the most time in both cases,
since its input space dimension is the highest. The computation
time of RIGP depends on the number of neighbors of the target
customer, hence lies in between NGP and FIGP.

The computation times of these methods in the other test
cases lie in between those observed in these two extreme test
cases, and similar conclusions can be drawn as given about the
comparisons between NGP, FIGP and RIGP above. Although
some recent literature has pointed out that GP models can be
very computationally expensive to use when the number of data
points and the dimension of input space scale up [34], we did
not encounter such a problem in our experiments by using the
software package GPML [35]. As shown in Table II, even for
the most computationally expensive test case, the computation
time observed is still acceptable. While FIGP can be a bit more
time-consuming to implement, RIGP strikes a good balance
on saving computation time and achieving a high predictive
accuracy. Therefore, RIGP is considered the most desirable for
online load prediction.

D. Discussion on Experimental Results

In Section IV-A, we first compared the predictive performance
of the proposed load forecasting method IGP with a naive GP
method (NGP) and the SARIMA model studied in [3] without
considering any bandwidth constraint. The results show that
IGP outperforms both NGP and SARIMA and NGP performs
slightly better than SARIMA. The superiority of IGP is not too
surprising as NGP and SARIMA are essentially auto-regressive
models which do not take into account the spatial information
for load forecasting.

In Section IV-B, we further studied the predictive perfor-
mance of RIGP with the adaptive data communication scheme
in comparison with NGP under the bandwidth constraint, RIGP
model with a naive data communication scheme, and RIGP
model without the bandwidth constraint. The results show that
RIGP model with the adaptive scheme performs slightly worse
than itself without the bandwidth constraint, but much better
than the other two methods, which verifies the effectiveness of
the adaptive data communication scheme. We see that the adap-
tive scheme is able to dynamically adjust the sampling rate for
each customer based on their load behaviors, which is supe-
rior to the other sampling schemes that use an equal and fixed
sampling rate for each customer.

Finally, in Section IV-C, we compared the average computa-
tion time that each GP-based load forecasting model consumes

for one day’s prediction. The results show that although
IGP model can be computationally intensive to run with
full-dimension input space, IGP model with reduced-dimension
input space can be much more computationally efficient to use
for online load prediction in practice.

V. CONCLUSION

In this paper, we proposed an IGP modeling framework for
load forecasting, which not only aggregates temporal and spatial
information contained in the data generated by neighbors, but
also exploits the benefit of using an adaptive data communica-
tion rate controlling scheme in improving data quality under the
often imposed bandwidth constraint. The superior efficacy and
efficiency of the IGP framework have been tested and verified
on the standard IEEE 8-bus, 14-bus, 24-bus and 123-bus test
cases with various real-life data sources.

IGP utilizes spatial information, i.e., the voltage angle
differences with neighbors, as the input features. There is also
other spatial information that can be incorporated to further
improve the predictive accuracy, such as weather conditions and
customers’ social behaviors, since neighbors tend to experience
similar weather conditions and have similar socioeconomic
status. These types of spatial information can be readily
incorporated into IGP by adding a corresponding component
into the covariance function. However, such information is
typically more challenging to be obtained and encoded as
input variables in regression models. Besides, incorporating
such information will significantly increase the dimensionality
of the input space, which may cause computational issues.
Hence, how to effectively obtain, filter and process such spatial
information for an efficient utilization is a worthwhile research
question we would like to address in our future work.

In addition, the adaptive data communication scheme was
proposed with two days as an operation cycle in this work. This
scheme is able to adaptively adjust the sampling rate of each
customer based on the streaming data collected. For designing
a data communication scheme with a two-day operation cycle,
the integer linear program given in (6) suffices for the purpose.
A more intelligent data communication scheme can be devised
to dynamically adjust the length of the operation cycle as data
streaming in, such that the scheme can react more promptly. In
this case, the integer linear program in (6) no longer applies,
and more advanced machine learning techniques such as rein-
forcement learning methods may provide a viable option. We
will consider this as another research direction to explore in the
future.
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