
Information and Software Technology 93 (2018) 163–185

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A systematic review of requirements change management

Shalinka Jayatilleke, Richard Lai ∗

Department of Computer Science and Information Technology, La Trobe University, Bundoora, Victoria 3086, Australia

a r t i c l e i n f o

Article history:

Received 4 May 2017

Revised 11 August 2017

Accepted 10 September 2017

Available online 12 September 2017

Keywords:

Requirements change management

Agile

Systematic review

a b s t r a c t

Context: Software requirements are often not set in concrete at the start of a software development

project; and requirements changes become necessary and sometimes inevitable due to changes in cus-

tomer requirements and changes in business rules and operating environments; hence, requirements

development, which includes requirements changes, is a part of a software process. Previous work has

shown that failing to manage software requirements changes well is a main contributor to project failure.

Given the importance of the subject, there’s a plethora of research work that discuss the management of

requirements change in various directions, ways and means. An examination of these works suggests that

there’s a room for improvement.

Objective: In this paper, we present a systematic review of research in Requirements Change Management

(RCM) as reported in the literature.

Method: We use a systematic review method to answer four key research questions related to require-

ments change management. The questions are: (1) What are the causes of requirements changes? (2)

What processes are used for requirements change management? (3) What techniques are used for re-

quirements change management? and (4) How do organizations make decisions regarding requirements

changes? These questions are aimed at studying the various directions in the field of requirements change

management and at providing suggestions for future research work.

Results: The four questions were answered; and the strengths and weaknesses of existing techniques for

RCM were identified.

Conclusions: This paper has provided information about the current state-of-the-art techniques and prac-

tices for RCM and the research gaps in existing work. Benefits, risks and difficulties associated with RCM

are also made available to software practitioners who will be in a position of making better decisions on

activities related to RCM. Better decisions will lead to better planning which will increase the chance of

project success.

© 2017 Elsevier B.V. All rights reserved.

1

d

s

w

t

c

c

p

v

i

s

r

o

i

w

w

a

c

c

f

r

t

a

i

h

0

. Introduction

Change is an intrinsic characteristic of the software engineering

iscipline compared to other engineering disciplines. In real-world

cenarios, it is difficult to specify all the requirements for soft-

are as the need and the circumstance of the scenario is subject

o change. Factors such as customer needs, market change, global

ompetition, government policies, etc. contribute profoundly to the

hanging nature of requirements. The need for increasingly com-

lex software is in high demand as organizations struggle to sur-

ive in a highly competitive market. Therefore, managing change

n software development is not just important but crucial for the

uccess of the final product.
∗ Corresponding author.

E-mail addresses: sejayatilleke@students.latrobe.edu.au (S. Jayatilleke),

.lai@latrobe.edu.au , lai@cs.latrobe.edu.au (R. Lai).

s

d

S

i

s

ttp://dx.doi.org/10.1016/j.infsof.2017.09.004

950-5849/© 2017 Elsevier B.V. All rights reserved.
Nurmuliani [1] defines requirements volatility as “the tendency

f requirements to change over time in response to the evolv-

ng needs of customers, stakeholders, the organisation and the

ork environment”. Requirements, in principle, are the needs and

ants of the users and stakeholders of the system captured by

n analyst through an elicitation process [2] . These requirements

hange throughout the system development and maintenance pro-

ess, which includes the whole lifecycle of a system: requirement

ormation, analysis, design, evaluation and learning [1–15] . As this

eview progresses, we discuss in detail the factors that can cause

hese requirements changes. Therefore, requirements change man-

gement (RCM) can be defined as the management of such chang-

ng requirements during the requirements engineering process,

ystem development and the maintenance process [2,5,16] . This

efinition of RCM is an adaptation of the definition provided by

ommerville [2] who states RCM is a process of “managing chang-

ng requirements during the requirements engineering process and

ystem development”.

http://dx.doi.org/10.1016/j.infsof.2017.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.09.004&domain=pdf
mailto:sejayatilleke@students.latrobe.edu.au
mailto:r.lai@latrobe.edu.au
mailto:lai@cs.latrobe.edu.au
http://dx.doi.org/10.1016/j.infsof.2017.09.004

164 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

3

s

h

i

E

t

R

b

D

D

i

c

3

t

a

w

3

w

c

t

S

t

3

t

T

f

3

f

3

w

f

i

o

r

A

(

(
Managing such evolving changes has proved to be a major

challenge [12–15] . The consequences of unmanaged or improperly

managed requirement changes can spell disaster for system devel-

opment. These negative consequences can result in software cost

and schedule overrun, unstable requirements, endless testing and

can eventually cause project failure and business loss [1,17–23] .

Therefore, the proper management of change can be both reward-

ing and challenging at the same time.

The research area of RCM is of importance to many parties as

requirements change is a constant factor. Many research studies

on have been conducted on improving RCM and many more have

been conducted to look for answers in the knowledge gaps found

in the current research. The main motivation of this research pa-

per is to bring together the plethora of research work done in the

area of RCM into one location. This will enable software practition-

ers and researchers alike a reference point in acquiring knowledge

on the current practices, benefits, risks and difficulties associated

with RCM. As a result, they can form realistic expectations before

making decisions on activities related to RCM. Better decision mak-

ing will lead to better planning which will increase the chance of

project success. An equally important reason to conduct this re-

search is to identify the knowledge gaps in the area of RCM. Given

that a lot of research work has been done in this area, we felt

it is important for us as well as other researchers to understand

the future of RCM. Although this is a widely researched area, there

are many gaps still remaining that once recognized and remedied

could assist organizations immensely.

2. Research questions

To gain an understanding of current trends, practices, benefits

and challenges in RCM, we formulated the following four ques-

tions;

RQ 1 : What are the causes of requirement changes?

The motivation behind this question is to understand why re-

quirement changes occur, which leads to the realization as to why

this has been an evolving topic. To answer this question, we inves-

tigated various events and uncertainties that have been mentioned

in literature. We also investigate whether there is any commonal-

ity between these events that would lead to a recognition pattern

in predicting RCs.

RQ 2 : What processes are used for requirements change man-

agement?

The motivation behind this question is to understand the vari-

ous steps involved in managing RCs. To answer this question, we

investigated the following: (1) recommendations for semi-formal

methods of managing change; (2) formal process models available

for RCM

RQ 3 : What techniques are used for requirements change man-

agement?

The motivation for this question is to identify and understand

the state-of-the-art techniques in managing major areas of the

RCM process. To answer this question, we identify the main steps

required to manage RC based on the answer to RQ 2 and then iden-

tify in the literature what techniques have been used in each of

these steps.

RQ 4 : How do organizations make decisions regarding require-

ments changes?

The motivation behind this question is to discover what factors

are involved in making decisions regarding RCs at different organi-

zational levels. To answer this question, we first identify the main

levels of an organization and use the information available in the

literature on RCM that can be mapped to each level.
. Review approach

The systematic review was designed in accordance with the

ystematic review procedures and processes defined by Kitchen-

am [24,25] . According to Kitchenham [24] , there are 10 sections

n the structure of a systematic review: 1. Title; 2. Authorship; 3.

xecutive summary or abstract; 4. Background; 5. Review ques-

ions; 6. Review Method; 7. Inclusion and exclusion of studies; 8.

esults; 9. Discussion; and 10. Conclusion. The first 5 sections have

een covered so far. The review method comprises four sections: 1.

ata search strategy; 2. Study selection; 3. Data extraction; and 4.

ata synthesis. This section comprises the review method and the

nclusion and exclusion of studies. The results, discussion and con-

lusion are presented in the next section.

.1. Study objectives

As noted earlier, the objective of this literature review is to

horoughly study the background and existing methods in RCM

nd thereby provide a critical analysis of the relevant research

ork and identify future directions for improvement.

.2. Selected sources

In order to carry out a comprehensive analysis, search strings

ere established by combining the keywords through the logi-

al connectors “AND” and “OR”. The studies were obtained from

he following search sources: IEEE, ACM, Science Direct (Elsevier),

pringer, Wiley Inter Science, and Google Scholar. The quality of

hese sources guarantees the quality of the study.

.3. Selected language

The English language is the most commonly used language in

he world and most of the available research is written in English.

herefore, only papers which are written in English were selected

or the literature review.

.4. Data search

To answer the research question, we undertook the search using

our steps;

Step 01 – Identify the fundamental areas to finalize the scope

of the review.

Step 02 – Select key words/strings from the defined areas. Key

words/strings were limited to seven (see Table 1).

Step 03 – Describe search expressions based on the first two

steps i.e. [Expression = (A 1 OR A 2 OR A 3 OR A 4 OR A 5 OR A 6

OR A 7 OR A 8 OR A 9 OR A 10 OR A 11) AND (B 1 OR B 2 OR B 3

OR B 4 OR B 5)].

Step 04 – Use the search expression in the libraries mentioned

in the selected sources.

.5. Study selection (Inclusion and exclusion of studies)

Once the research questions and the data search mechanism

ere defined, we started the process of selecting studies which

ell under the defined scope and contained the keywords set out

n the review process. As shown in category A of Table 1 , the area

f RCM has a lot of potential as change is a constant factor. As a

esult, our search yielded hundreds of research papers and studies.

fter screening these papers, we came to the conclusion that 28%

184) were relevant to the study.

Papers were excluded for a number of reasons related to format

editorial, seminar, tutorial or discussion), repetition, lack of peer

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 165

Table 1

Categories and keywords.

Category Area Keywords/strings

A Requirement

change

manage-

ment

A 1 – Requirement change/volatility/creep

A 2 – Requirement change difficulties

A 3 – Requirement change management

A 4 – Requirement change management

models/Processes

A 5 – Requirement change identification/type

A 6 – Requirement change analysis

A 7 – Requirement change factors/causes

A 8 – Requirement change decisions

A 9 – Change impact analysis

A 10 – Agile requirement change management

A 11 – Requirement change cost estimation

B Nature of

study

B 1 – Case study

B 2 – Experiment

B 3 – Surveys

B 4 – Industrial

B 5 – Literature reviews

Table 2

Study selection process.

Analysis phase Inclusion criteria Number of papers

1. Initial search • Papers written in English 650

• Available online

• Contain search keywords and strings

2. Scrutinizing

titles

• Only published in journals,

conferences, workshops and books

573

• Not an editorial, seminar, tutorial or

discussion

3. Scrutinizing

abstract

• Experiments, case studies, literature

reviews, industrial and surveys

340

4. Analysing

introduction and

conclusion

• Main contribution in the areas of

search strings

230

5. Analysing main

contribution

• Reported significant contribution 184

• Originality of work

• Sole focus related to the theme of

this review study

Table 3

Classification of exclusion.

Exclusion criteria No.

Paper format (editorial, seminar, tutorial or discussion) 95

Repetitions 43

Lack of peer review 75

Lack of a focus on RC and RCM 110

Redundancy 98

Lack of quality 45

Total 466

r

q

i

s

s

h

I

p

c

r

t

c

o

c

d

Table 4

Data extraction process.

Aspects Details

Study ID Paper ID

Title Title of paper

Authors Names of authors

Publishers Name of publishing authority

Publishing date Date of publication

Causes of RCs Factors that cause requirement changes

Study focus Focus and perspective of paper

RCM processes/models Processes/models listed for managing RC

RCM techniques Techniques used for RCM (identification, impact

analysis, cost estimation, etc.)

Reported challenges in

RCM

Challenges and consequences associated with RCM

Decision making in RCM Factors involved in decision making related to RCM

Study findings Lessons learned from the paper

Knowledge gaps in RCM Implications for future work

3

s

T

c

p

a

p

a

3

d

t

o

s

s

u

p

o

c

b

4

c

l

c

w

r

o

a

p

t

r

v

a

m

p

r

e

r

a
eview, lack of a focus on RC and RCM, redundancy and lack of

uality. Several papers appeared in more than one research repos-

tory. We eliminated the repetitions and only considered one in-

tance of a paper. Details on repeated articles do not provide any

ignificant information, except the names of the articles which

ave been published by more than one publishing authority (e.g.

EEE, ACM). As a result, we do not mention the names of the re-

eated articles which were found during the study selection pro-

ess. In the initial phase, the extracted papers were independently

eviewed by both authors based on the inclusion and exclusion cri-

eria. In the secondary phase, both authors compared their out-

ome of their selection and through discussion, came to agreement

n the inclusion and exclusion of papers. The overall inclusion pro-

ess comprised five steps, as shown in Table 2 . Table 3 provides

etails of the reasons for the exclusion of 466 papers.
.6. Data extraction

After completing the study selection process, we recorded ba-

ic information on each paper in data extraction form (refer to

able 4) to gather information on the causes of RCs, the study fo-

us, RCM processes/models, RC identification, RCM techniques, re-

orted challenges in RCM, decision making in RCM, study findings

nd knowledge gaps in RCM. The non-experimental models which

resented a proposal without conducting experiments were also

pplied.

.7. Data synthesis

Kitchenham [24,25] states that there are two main methods of

ata synthesis: descriptive (qualitative) and quantitative. The ex-

racted data were analysed using a qualitative method to answer

ur research questions, which leads to a descriptive data synthe-

is. One of the co-authors of this paper has published qualitative

ystematic reviews [26,27] using similar techniques. The analysis

sed the constant comparison method [28] in comparing studies

ast and present in RCM. Using this method, we present the focus

f the studies, the proposed methods, applicability to requirement

hange management, lessons learned from the studies and draw-

acks and limitation of the studies.

. Results for RQ 1 : what are the causes of requirements

hanges?

It is anticipated that requirements will change during a project

ife cycle. Whilst this fact is a constant, delayed discovery of such

hanges poses a risk to the cost, schedule and quality of the soft-

are [3,29–31] and such volatility constitutes one of the top ten

isks to successful project development [30–32] . Pfleeger [33] rec-

mmends that a method needs to be developed to understand and

nticipate some of the inevitable changes during the development

rocess in order to reduce these risks. The identification of factors

hat cause or influence requirements uncertainty is a necessity. The

ecognition of such factors will support requirements change risk

isibility and also facilitate better recording of change data [30,31] .

Change cause factors were collected using a key word search on

cademic papers, industry articles and books that deal with change

anagement or requirement engineering. We used the search ex-

ressions A 1 OR A 2 OR A 3 OR A 5 OR A 7 (see Table 1).

Most literature extracted in this survey mentioned/indicated the

easons for requirement changes. However, it was deemed nec-

ssary to present these findings in a form that was meaningful

ather than listing all the causes of RCs mentioned in the liter-

ture. Of the literature extracted, there were three studies that

166 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

Table 5

Comparison between classifications.

Bano et al.’s

Classification [35]

McGee and Greer’s Classification [30]

Essential External market Customer organization

Accidental Project vision Requirement specification Solution

fi

d

e

t

t

d

c

o

t

c

m

w

t

t

T

s

e

p

c

a

t

c

f

formally classify the causes of RCs. Weiss and Basili [34] divide

changes into two categories: error correction and modifications.

This classification appears to be simplistic and categorising all the

identified change causes may not create an in-depth understand-

ing. Bano et al. [35] classifies change causes also under two cat-

egories; essential and accidental. They further classify the change

causes based on their origin: within the project, from the client or-

ganization and from the business environment. McGee and Greer

[30,31] use five areas/domains to classify change causes. For this

survey, we use the classification presented by McGee and Greer as

it has a more comprehensive categorization. The five change ar-

eas are: external market, customer organization, project vision, re-

quirement specification and solution. Within the five change areas,

they distinguish between two causes of change: trigger and uncer-

tainty [30] . The difference between these two categories is that an

event can cause a change without pre- or post-uncertainty. How-

ever, uncertainty cannot cause a change to occur without an event

that is triggered to manage the risk of the uncertainty. The factors

that were identified as causes of requirements change were sorted

into five areas as follows:

(i) Change area: External market

In this category, the changes to the requirements are trig-

gered by the events and uncertainties that occur in the ex-

ternal market which also include stakeholders. These stake-

holders include parties such as customers, government bod-

ies and competitors. Therefore, events such as changes

in government policy regulations [36–38] , fluctuations in

market demands [1,37–39] and response to competitors

[15,37,40,41] can be considered. Also, uncertainties such as

the stability of the market [15,42] and the changing needs

of the customers [15] are also part of this category.

(ii) Change area: Customer organization

In this category, changes to the requirements are triggered

by the events and the uncertainties that arise from a sin-

gle customer and their organizational changes. Although

the changes occur within the customer’s organization, such

changes have a tendency to impact the needs of the cus-

tomer and as a result, impact the design and requirements

of the software project. Therefore, events such as strategic

changes within the organization [4] , restructuring of the or-

ganization [1,36,38,39,43] , changes in organizational hierar-

chy [15,37,44] and changes in software/hardware in the or-

ganization should be considered. The stability of the cus-

tomer’s business environment can create uncertainties that

may lead to changes and these are also part of this category.

(iii) Change area: Project vision

In this category, the changes to the requirements are trig-

gered by changes in the vision of the project. These changes

are in response to a better understanding of the problem

space from a customer point-of-view and the emergence

of new opportunities and challenges. Events such as im-

provements to business processes [2,37] , changes to busi-

ness cases due to return on investment [4] , overrun in

cost/schedule of the project [36,39] , identification of new

opportunities [36] and more participation from the stake-

holder [38] should be considered. Uncertainties, such as the

involvement of all stakeholders [37,43–45] , novelty of ap-

plication [37,46] , clarity in product vision [37,38,45,47] , im-

proved knowledge development team in the business area

[44,46] , identification of all stakeholders [43,45] , experi-

ence and skill of analyst [37,44,47,48] , size of the project

[2,44,49] can also cause changes under this category.

(iv) Change area: Requirement specification

In this category, changes in the requirements are trig-

gered by events and uncertainties related to requirement
specification. These trigger events are based on a devel-

oper’s point-of-view and their improved understanding of

the problem space and resolution of ambiguities related to

requirements. Events such as increased understanding of

the customer [2,36,37,49,50] , resolution of misunderstand-

ings and miscommunication [15,51,52] and resolution of in-

correct identification of requirements [1] can be consid-

ered as change triggers. Uncertainties, such as the quality

of communication within the development team [4] , insuf-

ficient sample of user representatives [4] , low staff morale

[48] , quality of communication between analyst/customer

[37,42,44,49] , logical complexity of problem [44,46,49] , tech-

niques used for analysis [2,36,37,39,48] , development teams’

knowledge of the business area [44,46] , involved customers’

experience of IT [46] , quality of requirement specification

[4] , and the stability of the development team [4] can con-

tribute towards change under this category.

(v) Change area: Solution

In this category, changes in the requirements are triggered

by events and uncertainties related to the solution of the

customer’s requirements and the techniques used to resolve

this. Events such as increased understanding of the technical

solution [4] , introduction of new tools/technology [5,15,36–

38,41,43,53] and design improvement [15,36,51] should be

are considered as change triggers. Technical uncertainty and

complexity can also be considered under this category as a

cause of change [4] .

The five change areas listed above can be mapped to the classi-

cation proposed by Bano et al. [35] . The terms essential and acci-

ental were initially introduced by Brooks [54] . According to Bano

t al. [35] , change causes under the essential category are those

hat are inherent in nature and cannot be controlled i.e. “fluc-

uating market demand” cannot be controlled or avoided by the

evelopment team or the organization. In comparison, accidental

auses can be controlled and avoided i.e. “overrun in cost/schedule

f the project” can be avoided or at least controlled by putting bet-

er techniques and mechanisms in place. Being able to categorize

hange causes under these two categories has added benefits in

anaging RCs. With essential causes, the focus should be to deal

ith their impact and therefore use techniques that will reduce

ime and effort for their management. With the accidental causes,

he focus should be to use techniques that avoid such occurrences.

able 5 shows how these five categories in McGee and Greer’s clas-

ification [30] can be mapped to Bano et al.’s classification [35] of

ssential and accidental categories.

Key findings of RQ 1

Given that RC is an inevitable occurrence in any development

roject, it is beneficial to identify which factors can cause these

hanges. The knowledge gained through such findings will enable

ll stakeholders of a project to better manage the changes when

hey occur, develop systems based on the changes, and anticipate

ertain changes. Based on the discussion formulated for RQ 1 , the

ollowing are the key findings:

1) The factors that cause RCs can be divided into two cate-

gories: change trigger events; and uncertainties.

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 167

5

c

p

a

O

5

m

w

t

h

o

t

t

c

c

t

i

a

f

m

2) In reality, it is difficult to determine whether change hap-

pens as a result of one or both. In a practical sense, it is not

important that the causes of the changes are divided into

these two categories, as long as they are identified.

3) These identified changes can be categorised into five areas:

external market; customer organization; project vision; re-

quirement specification; and solution.

4) These five areas were identified by observing the character-

istics of the change events and the uncertainties discussed

in the literature. For example, any change factor that was

part of the external environment of the organization, such

as competitors, government regulations, etc. was categorised

as the external market.

5) These five areas can be divided into two categories: essential

and accidental. Based on this division, development teams

can be proactive in managing such changes.

6) Based on the location in the life cycle of the software

project, the above information can be meaningful for antic-

ipating what factors may cause change and as a result will

lead to better planning that will ensure a better success rate

for the project.

. Results for RQ 2 : what processes are used for requirements

hange management?

In order to answer RQ 2 , the following sections discuss various

rocesses suggested for managing RC and the process models that

re dedicated for RCM. We used the search expressions A 3 OR A 4

R A 6 OR A 9 OR A 10 (see Table 1) to extract the relevant literature.

.1. Semi-formal methods available for requirements change

anagement

Change is considered to be an essential characteristic of soft-

are development and successful software has to be adapted to

he requirements of its customers and users [5,55,56] . Thus RCM

as become a significant activity, which is undertaken through-

ut the development of the software and also during the main-

enance phase. Given the significance of this activity, it is unlikely

hat change management is undertaken in an ad-hoc manner. Ac-

ording to Sommerville [2] , the process of RCM “is a workflow pro-

ess whose stages can be defined and information flow between

hese stages partially automated”. Having a proper process for RCM

s linked with both improvement in the organizational processes

nd the success of software projects [5,6,57] . We have identified

our (i–vii) academic works that refer to establishing semi-formal

ethods for managing change.

(i) Proposal: Leffingwell and Widrig [58]

This is a five-step process for managing change. The process

is as follows:

1. Recognize that change is inevitable, and plan for it.

2. Baseline the requirements.

3. Establish a single channel to control change.

4. Use a change control system to capture changes.

5. Manage change hierarchically.

The process begins with a change management plan which

recognizes that change is unavoidable. Requirements are

therefore baselined for change control and any proposed RC

is then compared with the baseline for any conflicts. In the

third step, a change authority or change decision maker is

established. For small projects, this would be a project man-

ager while for larger systems, the responsibility would be

handed to a change control board. In both cases, the de-

cision is based on impact analysis. In the decision-making

process, it is recommended that input from various stake-

holders, such as customers, end-user, developers, testers, etc.
should be taken into consideration. To be able to make an

informed decision, the impact analysis should capture the

effect of the change on cost, functionality, customers and ex-

ternal stakeholders. Also to be considered is the destabiliza-

tion of the system, which can occur due to the implemen-

tation of the change. The decision which is taken should be

communicated to all the concerned parties. The fourth step

refers to establishing a system that can be used to capture

the changes effectively. This could be either paper-based or

electronic. The ripple effects of the change are to be man-

aged in a top-down order.

Limitations of the proposal:

According to Leffingwell and Widrig [58] , this process should

enable software practitioners to identify changes that are

“both necessary and acceptable”. However, it is not men-

tioned in this work what steps are to be taken to decide if

a particular change is both necessary and acceptable. Simi-

larly, no specific details are given as to how to calculate the

impact on cost, functionality, customers and external stake-

holders. In this sense, these steps only form a basic under-

standing of what needs to occur in handling a change.

(ii) Proposal: El Emam et al. [57]

This process focuses on the preliminary analysis of change

management. Two inputs are considered in order to con-

duct this process, the technical baseline and any comments

made by stakeholders, such as customers, end-users, the de-

velopment team, etc. The decision-making process involves a

change control board as this change management process is

prescribed for large systems. The technical baseline is essen-

tially the system requirement specification document. The

change management process has the following four phases:

1. Initial issue evaluation

2. Preliminary analysis

3. Detailed change analysis

4. Implementation

In the first step, the comments gathered from the stake-

holders are validated and entered into a database as change

requests. If a change request addresses a problem that is

within the scope of the technical baseline, and has not been

addressed before, a change proposal will be generated. In

the second step, an analysis plan is formulated which de-

scribes the problem of the change proposal in detail. If this

plan is approved by a change control board, then many po-

tential solutions will be developed, from which one will be

selected for implementation. This solution then needs to un-

dergo further approval. In the third step, the solution ap-

proved by the preliminary analysis report is further anal-

ysed against the technical baseline to determine the impact

on the system in detail and the changes required. In the

last step, the technical baseline is modified according to the

change proposal and the change request is closed.

Limitations in the proposal:

The use of these steps is limited to large projects. Further-

more, it is not clear on what basis the different alterna-

tive solutions are assessed and what exactly is the decision-

making process in the second step. Given that this process

is conducted at an initial stage of the development process,

there is no access to the code. Therefore, a possibility exists

that these changes may cause issues at a code level.

(iii) Proposal: Kotonya and Sommerville [59]

The authors emphasize the importance of having a formal

process for change management to ensure the proposed

changes continue to support the fundamental business goals.

They [59] indicate that such a process ensures that similar

information is collected for each proposed change and that

overall judgements are made about the costs and benefits of

168 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

such changes. A three-step change management process is

proposed in [59] as follows:

1. Problem analysis and change specification

2. Change analysis and costing

3. Change implementation

In the first step, a problem related to a requirement or a set

of requirements is identified. These requirements are then

analysed using the problem information and as a result, re-

quirements changes are proposed. In the second step, the

proposed changes are analysed to determine the impact on

the requirements as well as a rough estimation of the cost

in terms of money and time that is required to make the

changes. Finally, once the change is implemented, the re-

quirement document should be amended to reflect these

changes and should be validated using a quality checking

procedure.

Limitations in the proposal:

The cost estimation carried out in the second step has a

component of seeking customer approval. The information

which is lacking at this stage is the decision factors that are

considered by the software practitioners and the customers

in order to approve or disapprove a proposed change. The

negotiation process with customers in relation to accepting

or rejecting a proposed change as indicated in [59] is based

on cost and there is no indication that the risks associated

with implementing the change were considered.

(iv) Proposal: Strens and Sugden [7]

The change analysis process introduced in [7] is based on

two analysis methods, namely sensitivity analysis and im-

pact analysis. According to Strens and Sugden [7] , sensitivity

analysis is used to predict which requirements and design

areas have the highest sensitivity to changes in requirements

while impact analysis is used to predict the consequences

of these changes on the system. The main outcome of this

analysis is to reduce the associated risks in accepting and

implementing RCs. The process is as follows:

1. Identify the factors which are the cause of change.

2. Identify those requirements which are highly affected by

the change (this information is acquired from the previ-

ous history of requirements or intuition).

3. Identify the consequences of these changes - impact

analysis

4. Undertake change analysis on other requirements, design,

cost, schedule, safety, performance, reliability, maintain-

ability, adoptability, size and human factors.

5. Decide on and manage changes.

Limitations in the proposal:

It is important to perform change analysis, however there is

no clear explanation as to how the impact analysis is to be

carried out for the elements mentioned in step four and how

these factors will be "equated". It is also difficult to deter-

mine the ripple effect of the changes, given that there is no

identification of the implementation part and the test docu-

ments to be modified.

(v) Proposal: Pandey et al. [60]

The authors propose a model for software development and

requirements managements. There are four phases in this

process model: requirement elicitation and development,

documentation of requirements, validation and verification

of requirements and requirements management and plan-

ning [60] . The management of RCs are controlled by the re-

quirement management and planning phase. However, ac-

cording to the full process model, the activities of this phase

are interrelated with the other phases. The process is as fol-

lows:

1. Track the changes of the agreed requirements.
2. Identify the relationship between the changing require-

ments with respect to the rest of the systems.

3. Identify the dependencies between the requirements

document and other documents of the system.

4. Decision on the acceptance of the change(s).

5. Validation of change request.

6. Maintain an audit trail of changes.

Limitations in the proposal:

Although a comprehensive set of steps is described, the pa-

per does not discuss specific schematics in executing these

steps. Dependencies are considered but there is no indica-

tion of further impact analysis. It is not clear how decisions

will be made in terms of accepting or rejecting a change as

the impact analysis phase is not clearly discussed. There is

also no indication of consideration of the cost or risks asso-

ciated with implementing the change.

(vi) Proposal: Tomyim and Pohthong [8]

The method introduced by Tomyim and Pohthong [8] for

RCM usesUML for object-oriented development. The authors

justify the use of UML due to the complexity of the many

views and diagrams it produces, thereby adding more com-

plexity in managing change. Therefore, a need arises for a

process to manage the changes better using UML. The busi-

ness model used in this method consists of two procedures:

systems procedure (SP) and work instructions (WI). The SP

explains the business operation from the beginning of a task

until the end of the business process. The WI explain the

way to operate any single task step by step. The method

comprises the following steps:

1. Identify the change request.

2. Identify the related SP and WI.

3. Analyse the impact on the system and report on the im-

pacted artefacts.

4. Make a decision based on the impact.

Limitations in the proposal:

The paper provides several sets of diagrams that represent

the activities carried out but does not provide details of the

execution of the steps. A decision on the implementation of

the change is solely based on the impact analysis. This may

be problematic if change priorities and costs/effort elements

are not taken into consideration.

(vii) Proposal: Hussain et al. [61]

The method proposed by Hussain et al. [61] is based on

the need to manage informal requirements changes. Such

requirements are internally focused, potentially subversive

to the development process and therefore harder to man-

age [61] . According to the authors, there are many reasons

for informal changes, some of which are: prematurely end-

ing requirement engineering activities [62] ; attempting a re-

quirements ‘freeze’ earlier than usual in a project [58] ; as

a consequence of work hidden by managers to get some-

thing developed by making ad hoc decisions and bypassing

time consuming formalities [63] ; additions made without

the consideration of delay in the schedule and project cost

[64] ; and failure to create a practical process to help man-

age changes [58] . Therefore, the authors suggest that there

is as much a need for a method for managing informal re-

quirement changes as for formal requirement changes. The

method comprises the following steps:

1. Identify informal requirement change.

2. Analyse the impact of change.

3. Negotiate the change with stakeholders.

4. If accepted, decide on whether to include in current

phase or next.

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 169

5

m

m

T

m

a

[

a

fi

p

r

t

b

s

T

a

a

o

m

s

m

c

a

a

5

c

v

s

i

B

d

r

g

m

s

e

R

a

d

p

s

Limitations in the proposal:

The process is not very different from formal change man-

agement techniques. The negotiation component after the

impact analysis is a slight variation from the norm, how-

ever it does not explicitly explain how the negotiation is

done. The main component considered for negotiation is the

impact analysis. However, the proposed method does not

disclose how the impact analysis is conducted and what is

considered for the impact analysis i.e. affected components,

cost, effort, etc.

.2. Formal process models available for requirements change

anagement

The processes introduced above are not formalized models for

anaging RC. This section introduces several RCM process models.

hese models facilitate communication, understanding, improve-

ent and management of RCs. Typically, a process model includes

ctivities, who is involved (roles) and what artefacts are to be used

9,65] .

The activities of a change management process model are the

ctions performed during the RCM process that have a clearly de-

ned objective, such as determining the change type which is a

art of change identification [2,66,67] . The identification of the

oles in these process models define the responsibilities attached

o each role. For example, if the role of the customer is defined

y the process model, this means the responsibilities need to be

hared with the customer’s organization and its representatives.

he artefacts are documents and parts of the product created, used

nd/or modified during the process [2,66,67] . By identifying these

rtefacts as part of the RCM process, this makes the management

f change more efficient due to the early detection of what docu-

entation is going to be affected by the change.

Based on the information given in [16] and by individually

tudying several change management process models, ten such

odels [10,19,58,68–72] were selected from the literature. Table 6

ompares these models based on their activities, roles and the

rtefacts used. There are certain limitations to these models, which

re detailed in Table 7 .

.3. Agile methods available for requirements change management

One of the most important aspects of agile methods is that

hange is a built-in aspect of the process [73] . Since software de-

elopment is done in small releases, agile methods tend to ab-

orb RCM into these small iterations. The processes for manag-

ng change can neither be categorised as semi-formal nor formal.

ecause of the frequent face-to-face communication between the

evelopment team and the client, the main reported changes in

equirements are to add or to drop features [74,75] . The clarity

ained by clients helps development teams to refine their require-

ents, which results in less need for rework and fewer changes in

ubsequent stages [75] . There are several agile development mod-

ls used, the most popular being Extreme Programming, Scrum,

UP, Lean, Plan-driven methods, Iterative and Incremental model

nd the General Agile model [76] . Regardless of the agile style of

evelopment used, the underlying processes have an inbuilt ca-

acity to manage requirement change. We were able to extract 10

uch processes that deal with RCM as follows:

1. Face-to-face communication [74,75,77–79] :

This is a frequent characteristic activity between the client

and the development team [74,77,78] . There is minimal docu-

mentation using user stories which does not require long and

complex specification documents. The frequency of this activ-

ity helps clients to steer the project in their own direction as
the understanding of needs tend to develop and requirements

evolve [75,79] . Therefore, the possibility of dramatic and con-

stant changes is reduced and the changes that do arise are eas-

ily communicated due to the frequent communication between

all the stakeholders.

2. Customer involvement and interaction [73–75,78,80] :

In relation to some of the change cause factors listed in RQ1,

there are several elements to the involvement of the customer

organization. In agile methods, there is a need to identify cus-

tomers or representatives from the client organization for fre-

quent collaboration to ensure that requirements are appropri-

ately defined [78,80] . As discussed above, this leads to a better

understanding of the system requirements and makes the in-

clusion of changes less complicated.

3. Iterative requirements [74,78,79] :

Unlike traditional software development, requirements are

identified over time through frequent interactions with the

stakeholders (face-to-face communication) [78] . The frequent

interactions make this an iterative process. This allows the

requirements to evolve over time with less volatility [74] .

This gradual growth of requirements leads to less requirement

changes and far less time spent managing such changes.

4. Requirement prioritisation [75,78–80] :

This is a part of each iteration in agile methods [75] . In each

iteration, requirements are prioritised by customers who focus

on business value or on risk [78,80] . In comparison, traditional

requirements engineering is performed once before develop-

ment commences. Iterative requirement prioritisation helps in

RCM by comparing the need for the change with the existing

requirements and then placing it an appropriate priority loca-

tion for implementation. As this is done frequently, understand-

ing the need for the change and its priority becomes a much

easier process.

5. Prototyping [74,78,81] :

This is a simple and straightforward way to review the require-

ments specification with clients, so that timely feedback is ob-

tained before moving to subsequent iterations [81] . This assists

in RCM by identifying what new additions are required and

what existing requirements are to be changed or removed. This

reduces complex and/or frequent RCs in subsequent iterations.

6. Requirements modelling [82,83] :

One technique used in requirement modelling in agile methods

is goal-sketching, which provides goal graphs that are easy to

understand [83] . This activity is also iterative and the goals are

refined during each iteration [82] . This helps in RCM by creat-

ing unambiguous requirements that have a clear purpose, re-

ducing the need for change during subsequent iterations.

7. Review meetings and acceptance tests [78,84] :

During review meetings, the developed requirements and prod-

uct backlogs are reviewed to ensure user stories are completed.

Acceptance tests are similar to a unit test, resulting in a “pass”

or a “fail” for a user story. These tests increase the collaboration

of all the stakeholders as well as reduce the severity of defects.

One of the reasons for RC is defects in the end product. This

practice effectively reduces the need for changes due to such

defects.

8. Code refactoring [85] :

This process is used for revisiting developed code structures

and modifying them to improve structure and to accommo-

date change [86] . This practice deals with requirement volatil-

ity in subsequent stages of agile development [85] . Therefore,

in terms of RCM, the method allows flexibility in handling dy-

namically changing requirements.

9. Retrospective [78,79,87] :

This process comprises meetings which are held after the com-

pletion of an iteration [87] . These meetings often review the

17
0

S.
 Ja

ya
tillek

e,
 R

.
 La

i
 /
 In

fo
rm

a
tio

n
 a

n
d
 So

ftw
a

re
 Tech

n
o

lo
g

y
 9

3
 (2

0
18

)
 16

3
–

18
5

Table 6

Comparison of RCM process models.

Areas of change

management

Model elements Process models

Activities Leffingwell and

Widrig [58]

Olsen [68] V-Like [69] Ince’s [69] Spiral [69] NRM [10] Bohner [72] CHAM [70] Ajila

[71]

Lock and

Kotonya [19]

Change

identification

Plan of change Y Y

Problem understanding Y Y Y

Determine type of

change

Y

Change analysis Change impact on

functionality

Y Y Y Y

Manage change

hierarchy

Y

Solution analysis Y Y Y Y

Change effort

estimation

Change impact on cost Y Y Y

Estimate effort Y

Cost benefit analysis Y

Other Negotiation process Y Y Y

Update document Y Y Y

Change implementation Y Y Y Y Y Y Y

Verification Y Y Y Y

Validation Y Y Y Y Y

Document impact, cost

and decisions

Y

Artefacts Baseline, Vision

document, Use

case model,

software

requirement

specification

N/A Modification

report,

Problem

statement

Problem

statement,

Change

authorization

note, Test

record

Implementation

plan, Release

plan

N/A N/A N/A N/A Vision

document,

Use case

model,

software

requirement

specification,

problem

statement,

change

request form

Roles Customer,

developer, end

user, change

control board

N/A Maintenance

organization

Customer,

Developer,

Change

control

board

N/A N/A N/A Customer,

Devel-

oper,

End user

N/A Customer,

Developer,

End user

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 171

Table 7

Limitations of RCM process models.

Model Limitations

Leffingwell and Widrig [58] Implementation of change is missing. Verification is not available and therefore not able to ensure the stability of the system

post-change. Documentation in the form of change requests and decisions are also missing which contributes to poor management

and future decision making.

Olsen [68] Does not explicitly mention if there is any update to documents to keep track of the changes and also, there is no indication of the

artefacts used and who is involved in the management process.

V-Like [69] Two key elements are missing, cost estimation and impact analysis.

Ince’s [69] The decision-making process is unclear. Verification is not done.

Spiral [69] Similar to Ince’s model, there is a lack of decision making and no verification. Does not mention who needs to be involved in this

process.

NRM [10] Activities are at a very abstract level. Given that no artefacts and roles are mentioned, it is difficult to make use of this model in

practice.

Bohner [72] A key element that is missing is the analysis of impact, which is a major part of the decision-making process.

CHAM [70] Although cost and effort is estimated, there is no analysis of impact on functionality which is an important factor for decision making.

The artefacts to be used are also not mentioned.

Ajila [71] There is no estimation of cost or effort. artefacts and roles are also not mentioned.

Lock and Kotonya [19] No aspect of change identification, which is critical in understanding the change.

Table 8

Challenges in traditional RCM resolved by Agile approaches.

Challenges in traditional RCM approaches Solutions provided by Agile approaches

Communication gaps and lack of customer involvement causing ambiguous

requirements

Frequent face-to-face communication, customer involvement, and iterative

requirements

Changes that occur due to over scoping which is a result of communication

gaps and changes after finalizing project scope

Continuous customer involvement, iterative requirements, and prototyping

Change validations Requirement prioritisation through iterative processes, prototyping, and review

meetings and acceptance tests

Table 9

Challenges in Agile RCM.

Agile technique Challenges

Face-to-face communication The frequency of the communication depends on the availability and willingness of the team members. Customers may not be

familiar with this agile technique and could be wary of it.

Customer involvement Failure to identify needed/correct customer representatives can lead to disagreements and changing viewpoints.

Requirement prioritisation A focus only on business value when prioritising requirements/changes can be problematic as there can be other factors to consider.

Prototyping Problems may occur if there a high influx in client requirements at a particular iteration.

Code refactoring Can generate code wastage, which increases the project cost.

User stories and product

backlog

This is the only documentation used in agile methods as minimal documentation is a characteristic. This becomes a problem when

there is a communication lapse or project representatives are unavailable. It is also problematic when requirements must be

communicated to stakeholders in distributed geographical locations.

Budget and schedule

estimation

Due to the nature of incorporating RCs in subsequent iterations, it is not possible to make upfront estimations, which can result in

budget and schedule overruns.

1

m

n

b

m

h

t

i

e

p

c

c

t

s

fi

work completed so far and determine future steps and re-

work. In terms of RCM, this provides an opportunity to identify

changes.

0. Continuous planning [79]

This is a routine task for agile teams where the team never

adheres to fixed plans but rather adapts to upcoming changes

from customers. In RCM, this facilitates changing requirements

in the later stages of the project.

Agile development, different to traditional software develop-

ent encourages change in every iteration. The iterative and dy-

amic nature of this development method promotes constant feed-

ack and communication between the stakeholders. Therefore, the

anagement of changes is continuous during the iterations. We

ave identified some of the challenges that are inherent in tradi-

ional methods of RCM that can be resolved by agile methods. This

s discussed in Table 8 . Whilst agile methods seem to have a very

fficient way of managing change, we were able to identify some

ractical challenges in some of the techniques discussed above. The

hallenges are presented in Table 9 .

Key findings of RQ 2

Similar to any other activity in the software development pro-

ess, RCM has also been described in related work as an activity

hat needs to be carried out in defined steps. Based on the discus-
ion that formulates the answer for RQ2, the following are the key

ndings:

1) Academic work has identified that it is important to estab-

lish a process for managing change where establishing and

practicing a defined process for RCM is attached with ben-

efits, such as the improvement of organizational processes

and an increase in the predictability of projects.

2) In terms of traditional software development, two different

approaches were investigated, namely: 1) recommendations

for semi-formal methods of managing change; and 2) the

formal process models available for RCM.

3) With semi-formal methods, it became evident that different

academic work took different approaches and elements, and

recommended different steps for managing change, which

resulted in no consensus on the elements.

4) However, based on the activities on which the elements fo-

cused, we were able to identify three areas of management:

change identification; change analysis; and change effort es-

timation.

5) These three areas were then applied to the ten formal pro-

cess models of RCM found in the literature. Using this classi-

fication, we were able to identify certain commonalities be-

tween the process models, as illustrated in Table 6 .

172 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

Stakeholders
Vola�le requirements

Change Iden�fica�on
• Elicita�on
• Representa�on

Change Analysis
• Impact
• Priority

Change Cost/Effort Es�ma�on
• Cost
• Time

Verifica�on

UpdateVerifica�on

Verifica�on

Verifica�on
Update

Verifica�on

Verifica�on

Update

Fig. 1. Change management process.

i

t

r

t

t

e

6

6) The formal process models have three distinct sections: ac-

tivities – the actions/steps taken in managing change; roles

– the stakeholders involved in carrying out the activities;

and artefacts – the documents needed in some of the ac-

tivities (see Table 6).

7) We were also able to identify the limitations in both the

semi-formal methods as well as the formal models.

8) Given the popularity of agile development in the recent past

and present, several processes were identified that deal with

RCM. Through this identification, we were able to discuss

how agile methods can address some challenges in tradi-

tional RCM and also the challenges in agile RCM.

6. Results for RQ 3 : what techniques are used for requirements

change management?

The information gathered in RQ 2 will be used to formulate a

framework to answer this question. Examining the processes in-

troduced in RQ 2 as a whole, we have identified three key areas

of a practical approach to managing change. Fig. 1 illustrates these

areas i.e. change identification, change analysis and change cost es-

timation. It is important to understand how these areas can be

practically implemented and what best practices are available in

an organizational setting. As shown in Fig. 1 , none of these ar-

eas are standalone. They need to communicate with each other in

terms of updates and verifications. The reason for this is that each

area has the ability to feed information to another area. For exam-

ple, although change analysis can be undertaken once the change

has been identified, the cost estimation may provide additional in-

formation for the analysis step that may not have been identified

previously. A good RCM process does not have steps that are stand

alone, rather they are interconnected with information following to

and fro from the steps. We used the search expressions A 4 OR A 5

OR A 6 OR A 7 OR A 8 OR A 9 OR A 10 OR A 11 (see Table 1) to extract

relevant literature.

6.1. Change identification

Change identification stems from several processes identified in

RQ 2 [57–59] . This step is important for the rest of the management

process as the steps to follow will be based on the correct identi-

fication of the problem space as well as the change requirement.

According to Fig. 1 , the change management process starts with

change identification. Within this identification, there are two ma-

jor activities, i.e. change elicitation and change representation. In

order to ensure the correct elicitation of changes, the change re-

quirements need to be identified.

The correct elicitation should then lead to identifying further

details of the change and if possible, where in the system the

change has to be made. This signifies the representation part of

the identification step. In most situations, the personnel involved
n this step will need to have continuous communication with

he stakeholders in order to verify that identification is done cor-

ectly, as illustrated in Fig. 1 . Through the literature, we identified

wo methods of change identification: taxonomies and classifica-

ion. The following sections describe these two methods and sev-

ral other methods that do not fall under these categories.

.1.1. Through taxonomies

1) Research analysing change uses a plethora of techniques in

order to build a taxonomy that can be used to identify

changes as well as their impact. One such mechanism is the

use of requirement engineering artefacts, such as use cases.

The research done by Basirati et al. [88] establishes a tax-

onomy of common changes based on their observation of

changing use cases that can then be used in other projects

to predict and understand RCs. They also contribute to this

research space by identifying which parts of use cases are

prone to change as well as what changes would create diffi-

culty in application, contributing also to the impact analysis

of change.

2) The taxonomy developed by Buckley et al. [89] proposes

a software change taxonomy based on characterizing the

mechanisms of change and the factors that influence soft-

ware change. This research emphasizes the underlying

mechanism of change by focusing on the technical aspects

(i.e. how, when, what and where) rather than the purpose

of change (i.e. the why) or the stakeholders of change (i.e.

who) as other taxonomies have done. This taxonomy pro-

vides assistance in selecting tools for change management

that assist in identifying the changes correctly.

3) McGee and Greer [4] developed a taxonomy based on the

source of RC and their classification according to the change

source domain. The taxonomy allows software practition-

ers to make distinctions between factors that contribute

to requirements uncertainty, leading to the better visibility

of change identification. This taxonomy also facilitates bet-

ter recording of change data which can be used in future

projects or the maintenance phase of the existing project to

anticipate the future volatility of requirements.

4) Gosh et al. [11] emphasize the importance of having the

ability to proactively identify potentially volatile require-

ments and being able to estimate their impact at an early

stage is useful in minimizing the risks and cost overruns.

To this effect, they developed a taxonomy that is based on

four RC attributes i.e. phases (design, development and test-

ing), actions (add, modify and delete), sources (emergent,

consequential, adaptive and organizational) and categories of

requirements (functional, non-functional, user interface and

deliverable).

5) The taxonomy established by Briand et al. [90] is the ini-

tial step in a full-scale change management process of UML

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 173

Table 10

Direction is change classification.

Direction Parameters Comment

Type [11,92–97] Add, Delete, Modify The most common way of classifying change.

Origin [11,38,98] Mutable, Emergent, Consequential, Adaptive, Migration Derived from the places where the changes originated from.

Reason [92,93,99] Defect fixing, Missing requirements, Functionality enhancement, Product

strategy, Design improvement, Scope reduction, Redundant functionality,

Obsolete functionality, Erroneous requirements, Resolving conflicts,

Clarifying requirements, Improve, Maintain, Cease, Extend, Introduce

Helps determine the causes of change and understand change

process and related activities.

Drivers [100] Environmental change, RC, Viewpoint change, Design change Helps change estimation and reuse of requirements.

6

e

i

b

d

s

6

6

w

d

p

p

R

t

(

6

y

f

i

s

r

s

w

a

i

e

c

y

c

a

d

r

t

6

t

y

t

o

f

s

r

t

d

s

s

o

t

s

n

s

l

6

i

s

the change
models. In their research, they establish that change identifi-

cation is the first step in the better management of RCs. The

classification of the change taxonomy is based on the types

of changes that occur in UML models. They then use this

taxonomy to identify changes between two different ver-

sions of UML models and finally to determine the impact of

such changes.

.1.2. Through classification

There are many benefits of using a classification, the main ben-

fits being to manage change to enable change implementers to

dentify and understand the requirements of change without am-

iguity [91,92] . The classification of RC has been studied in various

irections. Table 10 lists the different directions that have been the

ubject of academic studies.

.1.3. Other change identification methods

1) Kobayashi and Maekawa [10] proposed a model that defines

the change requirements using the aspects where, who, why

and what. This allows the system analyst to identify the

change in more detail, resulting in better impact identifica-

tion as well as risk and effort estimation. This method con-

sists of verification and validation and can be used to ob-

serve the RCs throughout the whole lifecycle of the system.

2) The change identification method usually has a pre-

established base upon which its semantics are built. Eck-

lund’s [101] approach to change management is a good

example of this. The approach utilizes use cases (change

cases) to specify and predict future changes to a system. The

methodology attempts to identify and incorporate the antici-

pated future changes into a system design in order to ensure

the consistency of the design.

.1.4. Change identification through agile methods

Unlike traditional requirement engineering methods, agile soft-

are development welcomes changes in various stages [75] . As

iscussed in RQ2, changes can be identified in several different

hases of the development process. Table 11 presents the different

hases of agile development that contribute to the identification of

Cs, the challenges faced and solutions suggested by literature. The

echniques given in the table have been described in detail in RQ2

see Section 5.3).

.2. Change analysis

Once a change has been identified, it needs to be further anal-

sed to understand its impact on the software system so that in-

ormed decisions can be made. One of the key issues is that seem-

ngly small changes can ripple throughout the system and cause

ubstantial impact elsewhere [104] . As stated in the literature, the

eason for such a significant impact is that the requirements of a

ystem have very complex relationships [105–109] . Therefore, the

ay to realise this is to undertake change impact analysis, which

ccording to Bohner [110] is defined as “the activity of identify-

ng the potential consequences, including side effects and ripple
ffects, of a change, or estimating what needs to be modified to ac-

omplish a change before it has been made”. Change impact anal-

sis provides visibility into the potential effects of the proposed

hanges before the actual changes are implemented [104,110] . The

bility to identify the change impact or potential effect will help

ecision makers to determine the appropriate actions to take with

espect to change decisions, schedule plans, cost and resource es-

imates.

.2.1. Traceability issues and solutions

Given that the complex relationships between requirements are

he key reason for impact analysis, most methods for impact anal-

sis use requirement traceability as their focal point. Requirement

raceability is defined as “the ability to describe and follow the life

f a requirement in both a forward and backward direction (i.e.

rom its origins, through its development and specification to its

ubsequent deployment and use, and through periods of ongoing

efinement and iteration in any of these phases)" [111] . Although

raceability has been defined by many scholarly articles, the above

efinition was selected as the most comprehensive because it de-

cribes both pre- and post-traceability and is used by many other

cholarly articles [112–121] for the same purpose.

Although traceability is one of the best ways to track the impact

f RCs, many scholarly works discuss the challenges in maintaining

raceability. Tables 6 and 7 detail the issues in traceability and the

olutions that have been provided. The solutions in Table 12 have

ot been verified by industry while the solutions in Table 13 have.

It is important to note that the solutions proposed might not be

uitable for all types of organisations, however, some basic guide-

ines can be outlined.

i. The identified issues can act as a guideline to understand

the challenges that might arise when creating and maintain-

ing traceability and therefore improve the predictability of the

traceability issues.

ii. The cost of traceability for a specific project will be concen-

trated on that project whilst its benefits (value) will span over

and beyond the said project. The downside of this outcome is

that it may hinder the motivation of a project team to work

with traceability as the benefits are not realized immediately

and therefore could be the cause of many of the challenges

identified in Tables 6 and 7 .

.2.2. Use of traceability and other methods for impact analysis

According to Fig. 2 , there are three sets of objects that can be

mpacted by a change: starting impact set (SIS), estimated impact

et (EIS) and actual impact set (AIS).

• SIS is the set of objects that are thought to be initially impacted

by the change

• EIS is the set of objects estimated to be impacted after further

analysis

• AIS is the set of objects that are actually modified as a result of

174 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

Table 11

Change identification through agile methods.

Agile technique Challenge(s) Solutions

Face-to-face communication

[74,75,77–79]

The success rate of the change identification at this stage is dependent

on customer availability. However, this dependency is often

unrealistic and a challenge as confirmed by studies [78,102]

In practice, teams have surrogates or proxy customers to

play the role of real customers [80] or use the “onsite

developer” by moving a developer representative to the

customer site [103] .

Iterative requirements

[74,78,79]

Can create budget and schedule overruns as initial estimations will

always change when requirements are added or removed during the

iterations [78] .

Inayat et al. [75] suggest frequent communication to

identify as many requirements as possible at early

iterations to keep these overruns to a minimum.

Prototyping [74,78,81] Given that this is a review phase of development, the client may have

a large number of changes to be included based on the prototype.

This can create schedule overruns [75] .

This can be mitigated somewhat, through frequent

communication and high customer involvement and

interaction in stages prior to prototyping [75] .

Review meetings and

acceptance tests [78,84]

Similar to the challenges of prototyping where there could be an influx

of changes [84] . Also, if the product backlog is not maintained in

detail, finding information related to changes made during the

iterations will also be challenging.

Denva et al. [80] suggest maintaining a detailed artefact

called delivery stories, in addition to user stories. These

help developers make the right implementation choices

in the coding stage of a sprint.

Retrospective [78,79,84] If there are many changes identified in completed user story at this

stage, there will be a considerable amount of rework to be done,

causing budget and schedule overruns [75] .

Increased customer involvement and interaction in the

stages prior to completion of a user stories is essential

[75] .

Table 12

Traceability issues and their solutions (not verified).

Scholarly work Issues in traceability Solution (not verified by industry)

Arkley and Riddle [122] Requirement traceability does not offer immediate benefit to the development

process.

Traceable development contract.

Cleland-Huang et al. [123] Informal development methods, insufficient resources, time and cost for

traceability, lack of coordination between people and failure to follow

standards.

Event-based traceability

Cleland-Huang et al. [124] Lack of coordination between team members. Developers think that

traceability costs more than it delivers. Excessive use of traceability

generates more links which are not easy to manage.

Traceability for complex systems frameworks.

Cleland-Huang et al. [125] Manual construction of a requirement traceability matrix is costly. Dynamic retrieval methods are used to

automate the generation of traceability links

Gotel and Morris [126] Requirements change by user. Less appropriate information is available for

making decision with requirements.

Media recording framework.

Ravichandar et al. [119] Problems associated with tracing back to their sources. Pre-requirements traceability technique.

Table 13

Traceability issues and their solutions (verified).

Scholarly work Issues in traceability Solution (verified by industry)

Blaauboer et al. [127] Adopting requirement traceability into projects. Increase awareness and adapt

organizations to include requirement

traceability.

Cleland-Huang [128] Failure to trace non-functional requirements e.g. security, performance and usability Goal centric traceability evaluated by

an experiment

Gotel and Finkelstein [111] Some problematic questions are identified as challenges: Who identifies a requirement

and how? Who was responsible for the requirement to start with and who is

currently responsible? Who is responsible for change(s) in requirements? What will

be the effect on the project in terms of knowledge loss if key employees quit?

Framework of contribution structure.

Heindl and Biffl [116] Cost related to requirement traceability. Value-based requirements tracing

tested through a case study.

Ramesh [129] Organizational, environmental and technical factors. Best practice given.

Verhanneman et al. [121] Requirement management challenges in industry projects e.g. inadequate impact

analysis and lack of information transfer.

Requirement management tools like

DOORS and RequisitePro.

Change Impact

Starting Impact
Set (SIS)

Estimated Impact
Set (EIS)

Actual Impact
Set (AIS)

Fig. 2. Change impact object sets.

i

T

l

o

u

l

6

e

c

i

t

s

T
This is a concept introduced by Arnold and Bohner [130] . We

identified in the literature several impact analysis techniques that

use traceability and non-traceability methods. These methods were

subject to the concept introduced by Arnold and Bohner [130] to
dentify which set of objects are analysed and are detailed in

ables 14 and 15 . This finding benefits software practitioners in se-

ecting a potential method for change analysis based on the set of

bjects on which they want to focus. Table 14 details solutions that

se traceability techniques to analyse RC while Table 15 details so-

utions that use other techniques.

.2.3. Predicting requirements changes

Another aspect of analysing change is to proceed beyond the

xisting change impact and to use historical data, design diagrams,

odes, etc. to predict where change may occur and identify their

mpact. Based on this concept, we were able to extract literature

hat discusses the prediction of RCs, their possible impact on the

ystems and how the change may propagate through the system.

hese findings are important in order for development teams to

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 175

Table 14

Techniques used for impact analysis – traceability methods.

Scholarly work Title of work Solution (using traceability) Impacted

objects

Antoniol et al. [131] Identifying the impact set of a

maintenance request

The tracing is done at a coding level where the text in the

maintenance request is mapped to development code components

corresponding to the change request.

SIS

Li et al. [132] Requirements-centric

traceability for change

impact analysis

The method uses an interdependency graph and traceability matrix to

assess the impact at a requirement specification level.

SIS, EIS and AIS

Ibrahim et al. [133] Integrating software traceability

for change impact analysis

The method provides a holistic traceability solution that involves both

high level and low level software models ranging from requirements

to code.

AIS

Göknil et al. [134] Change impact analysis based

on formalization of trace

relations for requirements

The method deals with a requirements metamodel with well-defined

types of requirements relations, which are used to define change

impact rules for requirements. These rules help identify the

impacted requirements.

EIS and AIS

Von Knethen [135] Change-oriented requirements

traceability. Support for

evolution of embedded

systems

The approach consists of three parts, a conceptual trace model for

embedded systems, rules to establish traces and analyse impact and

a tool for semi-automatic impact analysis and consistency checking.

SIS and AIS

Table 15

Techniques used for impact analysis – non-traceability methods.

Scholarly work Title of work Solution (using non-traceability methods) Impacted

objects

Kobayashi and

Maekawa [10]

Need-based requirements

change management

The method captures RC using the 4Ws: where, who, why and

what. The solution mainly consists of verification and validation

activities.

SIS

Ali and Lai [136] A method of requirements

change management for

global software development

The method consists of three stages: understanding change,

analysing these changes and finally making decisions regarding

the change based on the analysis.

SIS

Hassine et al. [137] Change impact analysis for

requirements evolution

using use case maps

Method uses slicing and dependency analysis at the use case map

specification level to identify the potential impact of RCs on the

overall system.

SIS

Briand et al. [90] Impact analysis and change

management of UML models

The method uses a UML model-based approach where the UML

diagrams are first checked for consistency. The impact analysis

is carried out using a change taxonomy and model elements

that are directly or indirectly impacted by the changes.

SIS and EIS

Hewitt and Rilling

[138]

A light-weight proactive

software change impact

analysis using use case maps

The method seeks to predict impact of changes at a specification

level. The method focus on extracting information from Use

Case Maps (UMC) that can be used for proactive change impact

analysis at the specification level.

SIS

f

t

a

6

e

t

d

a

t

u

(

i

w

f

c

c

t

p

a

a

t

t

d

c

6

o

[

r

E

t

p

t

t

t

i

c

r

c

t

p

t

s

m

oresee how to be prepared for RCs, make better decisions and bet-

er implement such changes. We present the prediction methods

nd their limitations in Table 16 .

.2.4. Change analysis using agile techniques

In agile development, requirement engineering activities are not

xplicit. Partially, this is due to the fact that there are less dis-

inct boundaries in agile development than in traditional software

evelopment [145] . Therefore, similar to change identification, the

nalysis of RCs in agile development is not restricted to a par-

icular phase of the development but a mixture of techniques is

sed that occur iteratively. The agile techniques discussed in RQ2

 Section 5.3) are detailed in Table 17 to show how change analysis

s carried out in agile development.

Two of the documents used in agile development that are

orth mentioning are user stories and product backlog, which

orm a critical part of the change analysis process. User stories are

reated as the specification of the customer requirements. They fa-

ilitate better communication and unambiguous understanding be-

ween all stakeholders [80] . User stories are made up of three com-

onents: a written description, conversations, and tests [148] . They

re meant to reduce the need for constant requirement change and

lso act as a reference point to check if changes are implemented

o satisfy the client requirements. Product backlog keeps track of

he details of all the developed requirements. This is one of the
ocuments that can be used to keep track of all the requirements

hanges [78] .

.3. Change cost/effort estimation

Software cost/effort estimation is referred to as the process

f predicting the effort required to develop a software system

149,150] . It is noteworthy that although effort and cost are closely

elated, they are not a simple transformation of each other [149] .

ffort is often measured in person-months of the development

eam whilst cost (dollars) can be estimated by calculating payment

er unit time for the required staff and then multiplying this by

he estimated effort [149] . Cost estimation is usually carried out at

he beginning of a project but as we have demonstrated, changes

o the system can occur at any stage of the project. Therefore, there

s a need to estimate the additional cost for implementation of the

hange.

There are some basic factors to be considered when estimating,

egardless as to whether it is for the entire project or just for a

hange. The first step in cost/effort calculation is the calculation of

he size of the software, which is considered to be the most im-

ortant factor affecting estimation [149] . Therefore, it is essential

o understand the popular software sizing methods used and their

uitability for estimating the cost/effort of implementing require-

ents changes, as shown in Table 18 .

176 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

Table 16

Methods of predicting requirements changes.

Title Solution Limitations

1. Learning from Evolution

History to Predict Future

Requirement Changes [139]

Method uses historic information to develop a metrics that measures the

evolution history of a requirement. Based on the metrics, the method

proposes to reduce the impact of requirements evolution by attempting to

predict requirements that are prone to change in the future.

Can only be applied to projects that have

historic data. Some important requirements

changes may be neglected by the prediction

method.

2. Managing Changing

Compliance Requirements by

Predicting Regulatory

Evolution [140]

Method uses an adaptability framework which helps requirements engineers to

identify: why requirements change (rationale); how requirements change

(classifications); and which portions of a proposed rule are most likely to

change when the final rule is issued (heuristics). The framework allows

engineers to focus primarily on analysing and specifying compliance

requirements from the more stable areas of the laws, while the less stable

areas of the laws are clarified during the final rulemaking.

The study uses two case studies from the

healthcare industry and therefore the

findings and applicability remain limited to

the healthcare industry.

3. Mining the Impact of

Object-Oriented Metrics for

Change Prediction using

Machine Learning (ML) and

Search-based Techniques

(SBT) [141]

This method is used to identify the probability of classes that would change

(change proneness of a class) in the subsequent release of software. The

study develops a relationship between Object- Oriented metrics and the

change proneness of a class. The method evaluates the effectiveness of six

SBT, four ML techniques and the statistical technique - Logistic Regression

(LR) on change proneness prediction data and compares their results.

Findings and applicability limited to

object-oriented environments.

4. Using Early Stage Project

Data to Predict

Change-Proneness [142]

This paper presents a feasibility study undertaken to test the validity of a

hypothesis that data from requirements and design activities may also prove

to be useful in predicting change proneness. A metrics is developed for

quantifying requirements and design activities. Next, values are generated

for these metrics from a real-world case study and finally a comparison is

made with the actual number of changes detected.

Method can only be applied if the project has

requirements and/or design information

available. Clearly, this creates a limitation for

approaches such as agile methods that have

limited documentation.

5. Predicting the Probability of

Change in Object-Oriented

Systems [143]

This is a probabilistic approach to estimate the change proneness of an

object-oriented design by evaluating the probability that each class of the

system will be affected when new functionality is added or when existing

functionality is modified. The goal is to assess the probability of how each

class will change in a future generation.

Previous versions of a system must be analysed

to acquire internal probability values

creating scalability problems for large

systems. Cannot be applied in the initial

stages of the development process (e.g. at

the design level).

6. Using Bayesian Belief

Networks to Predict Change

Propagation in Software

Systems [144]

The approach seeks to predict the possible affected system modules, given a

change in the system. The method is composed of two steps: extracting

information and predicting changes. In the first step, the authors extract the

system elements’ dependencies and change history. In the second step, the

Bayesian Belief Networks are built using the extracted information and then

predictions are produced using probabilistic inference.

Can only be applied to methods that have

historic data and documentation.

Table 17

Change analysis using agile methods.

Agile technique How change analysis is done

Iterative requirements [74,78,79] The requirements related to a user story are not identified at the beginning of a project. Requirements are

built on iterations which allow stakeholders to gain a better understanding of what is required and

therefore analyse and understand the need for changes.

Requirement prioritisation [75,78–80] In each of the iteration, the identified requirements are prioritised. This means that any changes that occur

during the iterations will be compared to existing requirements and will be assigned a place in the

hierarchy of implementation. The iterative nature of this activity ensures the priority of requirements

remain current.

Prototyping [74,78,81] This allows the agile team to review the requirement specifications with clients to obtain feedback. The

process will highlight issues with the changes identified so far and will prompt the development team to

find better solutions.

Testing before coding [74,78,79,146] The development team writes tests prior to writing functional codes for requirements. This promotes

identification test failure which can be a form of validation of the changes that have been applied during

the iterations.

Requirement modelling [82,83] A technique used in modelling in agile approaches is goal-sketching [83] . The outcome is an easy-to-read goal

graph which allows all stakeholders to refine the goals, making them well defined. Changes that are

introduced in the iterations can be mapped to goals and this can help with decision making in the

implementation of changes.

Review meetings and acceptance tests [78,84] The developed requirements and product backlogs are reviewed to identify if user stories have been

completed. In terms of change analysis, this evaluates if changes have been implemented correctly and

satisfy the end goal.

Regression testing [147] Regression testing is done in agile methods to make sure that the newly incorporated changes do not have

side effects on the existing functionalities and thereby finds the other related bugs. This is a form of change

validation in terms of change analysis.

m

c

p

m

t

f

There are many methods described in the literature that

are popular techniques for estimating cost/effort. As presented

in Fig. 3 , we considered the more frequently used estimation

methods in traditional software development and they can be

classified into two categories: algorithmic and non-algorithmic

[149,157] . Algorithmic models can be quite diverse in the mathe-

matical expressions used. It is important to remember that these

algorithmic models need to be adjusted to suit the local environ-
ent. Regardless of the technique used, none of the methods dis-

ussed in this section can be used off-the-shelf.

One of the key findings in this section is to identify the appro-

riateness of these methods for estimating the cost/effort of imple-

enting RCs. Tables 19 and 20 describe several popular estimation

echniques that belong to these two categories and their suitability

or change cost estimation.

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 177

Table 18

Popular software sizing techniques.

Sizing technique Feature Suitability for change cost/effort calculation

Line of Code (LOC) [149,151] Based on the number of lines of the delivered

source code of software. Programming

language dependent. Widely used sizing

method.

Exact LOC can only be obtained after the completion of the project and is

therefore not suitable for changes at the early stage of the design. Also

depends on expert judgement and can compromise reliability. Can be used

for changes that occur towards the latter part of the development process.

Software science [152] Based on code length and volume metrics.

Code length is the measurement of the

source code program length and volume is

the amount of storage space required.

There have been disagreements over the underlying theory and therefore

reliability is questionable [153,154] . Not suitable for changes in the early

phase (reason as above). Possibility of using this in the latter stages, yet the

measure has received decreasing support [149] .

Function points [155] Working from the specification, systems

functions are counted (inputs, outputs, files,

inquiries, interfaces) These points are then

multiplied by their degree of complexity.

Use of the specification makes it suitable to analyse changes in the early phase

of development. Equally suitable for changes in the latter stages.

Feature point [156] Extension of function points to include

algorithms as a new class.

Similar usability as function points and suitable systems with little

input/output and high algorithmic complexity.

Table 19

Popular estimating techniques – non-algorithmic.

Category Non-algorithmic

Technique Features Challenges Suitability for change cost/effort estimation

Expert judgment Based on one or more experts using their

experience and techniques such as PERT

or Delphi for estimation.

Dependency on experts, where human

error is a major risk and there can be

bias.

Can be suitable since the method is fast and can

easily adapt to diverse circumstances. But the

limitation carries a lot of risk.

Parkinson Cost is determined (not estimated) by the

available resources rather than an

assessment of the entire situation.

Can provide unrealistic estimations and

does not promote good software

engineering practice.

Given the limitations far exceed its functionality, it

cannot be recommended.

Price to win Estimated to be the best price to win a

project. Estimate is based on customer

budget.

Not good software practice as software

functionality is not considered. Can

produce large overruns.

Software functionality is a key factor in change

cost estimation and therefore is not suitable.

Bottom-up Each component of the system is estimated

separately and the result is combined to

produce the overall estimate. Based on

initial design.

Requires more effort and can be time

consuming.

Can be suitable for changes in the latter phase. Not

suitable for changes in the early phases as it

requires detailed system information.

Top-down The opposite of the bottom-up approach.

This is an overall estimation based on

global properties. Total cost can be split

among the various components.

Less stable as the estimation does not

consider different components.

Useful for changes in the early stages. Changes in

the latter phases require more detailed costing

and therefore it is not suitable.

Table 20

Popular estimating techniques – algorithmic.

Category Algorithmic

Technique Features Challenges Suitability for change cost/effort estimation

COCOMO Uses power function models where

E f f ort = a × S b S is the code size and a, b

are functions of other cost factors.

Not suitable for small systems. Exact code size can only be obtained at the

completion of a project and therefore may

not be suitable for changes at early stages.

Putnam’s model and SLIM Equation used S = E × (E f f ort) 1 / 3 t d
4 / 3 where

S is LOC, t d is delivery time, E is

environment factor (based on historical data)

Based on information from past

projects and may not be

suitable for the current

environment.

Although generally suitable for changes in cost

estimation, dependency on historical data

can make the accuracy questionable.

Price-S This is a proprietary estimation model. Uses an

estimate of project size, type and difficulty

and computes cost and schedule.

Because it is company specific,

it may not suitable for all

environments.

Not suitable for change cost estimations due to

limitations.

r

d

t

T

f

v

d

t

Effort estimation is more challenging in the agile context as

equirement changes are embraced through multiple iterations of

evelopment. In line with the previous two sections, we consider

he techniques used in agile development for effort estimation.

able 21 details the techniques, the challenges and the suitability

or change cost/effort estimation.

Key findings of RQ 3

The majority of the academic work on RC is focused on de-

ising solutions for the different areas of RCM. Based on the

iscussion that formulated the answer for RQ 3 , the following are

he key findings:

1) Change identification methods do not seem to have much

consensus on how the identification should be done nor are

many of the methods formal.
2) Most change identification methods found are based on two

techniques: through taxonomies and through classifications.

3) The change taxonomies tend to be based on larger concepts

such as use cases and UML models whilst change classifica-

tions use more simplified mechanisms such as change direc-

tions and parameters.

4) Change identification usually leads to understanding of the

need for the change, which also relates to further analysis of

the change.

5) Traceability techniques have been the more popular choice

when analysing change as requirement traceability facilitates

the identification of the impact of change more efficiently.

However, this seems to be a theoretical concept as require-

ment traceability has many limitations.

178 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

Table 21

Popular estimating techniques – agile.

Category Agile

Technique Features Challenges Suitability for change cost/effort estimation

Expert judgment

[158,159]

Developers look to past projects or iterations,

and draw on their own experiences to

produce estimates for the user stories.

Dependency on experts, where human

error is a major risk and there can be

bias.

Can be suitable since the method is fast

and can easily adapt to diverse

circumstances. But the limitation carries

a lot of risk.

Planning poker

[160,161]

Once the user stories have been understood, all

the team members of the agile team make

independent estimates and reveal their

estimates simultaneously. The lowest and

highest estimates need to be justified by

their estimator. The group continues the

discussion in order to decide on a collective

estimate, possibly by conducting one or

more additional rounds of individual

estimating.

If the estimation process is unstructured,

factors such as company politics, group

pressure, anchoring, and dominant

personalities, may reduce estimation

performance.

Similar suitability as expert judgment but

is still dependent on the skill and

experience of the team members.

Use Case Points

(UCP) [162,163]

Once the use cases are identified based on the

user stories, UCPs are calculated based on

the number and complexity of use cases and

actors of the system, non-functional

requirements and characteristics of the

development environment. The UCP for a

project can then be used to calculate the

estimated effort for a project.

UCP method can be used only when the

design is done using UML or RUP.

Can be suitable for an early stage change

estimation of the development process.

Changes in the latter phases require

more detailed costing and therefore it is

not suitable.

Story points

[164–166]

Story point is a measure for relatively

expressing the overall size of a user story or

a feature. A point is assigned to each user

story. The value of the story point is

dependent on development complexity, the

effort involved, the inherent risk and so on.

Story points create lots of vagueness to the

agile process. For every team, story size

could mean different things, depending

on what baseline they chose. If two

teams are given the same stories, one

team can say their velocity is 46 and the

other can say 14, depending on what

numbers they chose. Story points do not

relate to hours.

May only be suitable for teams that are

collocated, based on the challenges of

the method. Also, it may not be suitable

for effort calculation in hours as it will

take additional calculations to convert

story points to hours.

Estimation
Technique

Algorithmic Non-Algorithmic

COCOMO

Putnam’s model
and SLIM

Price S

Expert Judgement

Parkinson

Price to win

Bottom-up

Top-down

Fig. 3. Costing techniques.

6) The main idea of change analysis is to identify how the re-

quested change impacts the existing design or system. To

this effect, methods of change impact analysis found in lit-

erature can be grouped based on objects that are impacted:

starting impact set, estimated impact set and actual impact

set.
7) In terms of the agile context, changes in requirements are

expected and welcome aspects of development. As we dis-

covered in the literature, change identification and analysis

tend to happen at almost all parts of the iterative process in

development.

8) Due to the change-susceptive nature of agile development,

unlike traditional development, in most cases change identi-

fication and analysis does not require special processes but

are embedded into the processes that are part of the devel-

opment cycle.

9) Costing techniques dedicated for estimating the cost of RC

seem to be rare. In most cases, existing costing techniques

such as COCOMO, expert judgement, etc. are used for this

purpose.

10) It is possible to divide existing costing techniques into two

categories: algorithmic and non-algorithmic.

11) Depending on which point of the lifecycle the software

project is and what artefacts are used for the cost estima-

tion, each estimation can be judged for suitability to be used

for cost estimation of RCs.

12) Some methods can be used but with many risks (i.e. ex-

pert judgement), some methods can be used for changes

introduced in the latter phase of the project life cycle (i.e.

bottom-up, COCOMO, etc.), some methods can be used for

changes introduced in the early phase of the project life cy-

cle (i.e. top-down) and some other methods are not suitable

for change cost estimation (i.e. price to win, Price-S, etc.).

13) Unlike change identification and analysis, cost/effort estima-

tion in agile development requires special attention. The na-

ture of agile development tends to discover requirements

through several iterations and therefore, any estimations at

the beginning of a project change significantly along the de-

velopment cycle. Given this criterion, special techniques are

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 179

Change Identification

Business
Organization

Business
Organization

IT
Organization

IT
Organization

Analysis
Plan

Analysis
Plan

Analysis
Plan

Analysis
Plan

Solution
Strategy
Solution
Strategy

Solution
Strategy
Solution
Strategy

Align End
Goal

Align End
Goal

Communication

Analysis Plan
at Department Level

Analysis Plan
at Department Level

Business Solution
Strategy

Business Solution
Strategy

IT Solution
Strategy

IT Solution
Strategy

lign End
Goal

Align End
Goal

Business Action
Plan

Business Action
Plan

T Action
Plan

IT Action
Plan

Align End
Goal

Align End
Goal

New
Process

New
Process

Redevelopment
Process

Redevelopment
Process

Existing
Process
Existing
Process

Change in
Process

Change in
Process

Executive
Level

Tactical
Level

Operational
Level

Fig. 4. RCM with respect to organization level.

7

r

a

i

m

o

a

m

t

o

n

g

t

r

7

m

t

t

t

t

c

c

t

p

t

h

t

a

u

[

7

m

o

s

w

c

b

t

g

i

p

t
required for the estimation of cost and effort, which, we dis-

covered in the literature, are mostly dependent on expert

judgement and team collaboration.

. Results for RQ 4 : how do organizations make decisions

egarding requirements changes?

An organization has a harmonious existence when coordination

nd integration between business objectives and IT services and

nfrastructure in realizing the common business goals are in align-

ent [167–169] . However, when managing RCs of system software

r software projects, stakeholders may perceive different end goals

t different levels of the organization [170] . In other words, change

anagement and analysis plans and strategies vary with organisa-

ional level, where each strategy tends to have different goals and

bjectives. An organization can be categorized into two parts: busi-

ess organization and IT organization and each of these two cate-

ories can be split into three levels, as illustrated in Fig. 4 . We used

he search expressions A 3 OR A 6 OR A 8 (see Table 1) to extract the

elevant literature.

.1. Executive level

Once the need for a change in a software process or require-

ent arises, the top level management (CEO, CIO, etc.), which is

he executive level, formulates very broad strategies for managing

he said change. The tendency to create broad plans is usually due
o the responsibilities of the top level executives in terms of what

he organization as a whole stands to gain by implementing these

hanges [170] . In some instances, business and IT tend to have a

ontradictory understanding of the need for change. Decisions by

he IT side for obtaining new technology that is required for im-

lementation of the change may not always be agreed upon by

he business counterparts of an executive level [59,170] . Research

as demonstrated that when business and IT top management fail

o understand the need for the change and the IT capabilities that

re required for its realization, these software projects tend to have

nsatisfactory outcomes in the form of cost overruns and failure

18,168,170,171] .

.2. Tactical level

The tactical level in Fig. 2 corresponds to the change manage-

ent plans and strategies formulated by the middle management

f an organization. These strategies can be referred to as functional

trategies. The main concern at this level is to assess the change

ith respect to cost and benefits and find ways to introduce the

hange without adversely affecting the project [2,20,59,170] . The

road strategies at an executive level may not always match with

he strategies formulated at a tactical level. For example, the end

oal of a change at an executive level could be to improve qual-

ty while at a tactical level, the goal would be to complete the

roject successfully and therefore, may consider the change in-

rusive [59,170] . It is also noteworthy that the notion of business

180 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

c

m

i

d

p

l

g

A

c

s

r

g

w

h

f

d

s

e

a

8

i

p

A

h

c

c

a

v

c

u

p

i

a

f

m

vs. IT mindset exists at this level too. One of the key barriers in

creating a cohesive change strategy between business and IT at

this level is due to interpretation and communication barriers that

stem from the lack of a common change specification technique

[38,99,172,173] .

7.3. Operational level

As the strategies flow down the organizational structure, they

tend to become less complicated and less abstract. At this stage,

it becomes a process of understanding the strategies laid down

by the tactical level and formulate plans as to how to best im-

plement them. The goals at this level are more short-term due to

the fact that development teams are dealing with simpler strate-

gies. Provided that business and IT change strategies at this level

are aligned, the combination of such short term strategies could

be linked back to the business objectives set at the executive level

[174] . Moreover, it is essential at this level that development teams

are able to cope with the changes in the business strategies origi-

nating at a higher level. Therefore, strategies formulated at an op-

erational level should incorporate a mechanism to deal with such

changes that will ensure the final product is what is expected by

the executive level.

7.4. Different viewpoints based on structure

Change analysis can be observed from two main viewpoints:

one from a developer point of view at a code level and the sec-

ond from a decision-maker’s point of view at a higher abstraction

level. The executive and the tactical levels can be considered as

the decision-maker point of view while the operational level rep-

resents the developer point of view. There has been debate over

which of these levels is more important in change management.

Some of the literature emphasizes the importance of managing

change at a program modification level where such analysis would

be helpful to a programmer to effectively implement the change

[175–177] . In support of a higher level of decision making to ef-

fectively manage change, many studies argue that it is inaccurate

to realize change at the code level, where in fact the source of the

change is at a requirement level and therefore should be managed

at a higher abstraction level [132,136,137] .

7.5. Decision making and organizational culture in agile development

The primary goal of all agile methods is to deliver software

products quickly, and to adapt to changes in the process, product,

environment, or other project contingencies [178] . While evidence

suggests that agile methods have been adopted in a wide variety

of organizational settings [179–181] , such methods are assumed to

be more suited to certain organizational environments than oth-

ers. According to Nerur et al. [179] , Karesma [180] , Reifer et al.

[181] and Pino et al. [182] , agile development is more suited to

smaller organizations as development is carried out in small teams.

There are scalability issues when it comes to large organizations or

large projects [180,181] . In smaller organizations, there is a strong

positive correlation in some aspects of organizational culture with

that of agile development; the organization values feedback and

learning; social interaction in the organization is trustful, collab-

orative, and competent; the project manager acts as a facilitator;

the management style is that of leadership and collaboration; the

organization values teamwork, is flexible and participative and en-

courages social interaction; the organization enables the empower-

ment of people; the organization is results-oriented; leadership in

the organization is entrepreneurial, innovative, and risk taking; and

the organization is based on loyalty and mutual trust and commit-

ment [183] .
There are certain characteristics of agile development, such as

ross-functional teams and customer involvement that create har-

onious interaction between various levels of the organization

n decision making. Cross-functional teams include members from

ifferent functional groups who have similar goals [75,184] . Such a

ractice combined with customer involvement helps reduce chal-

enges such as over scoping of requirements and communication

aps, which are some of the key causes of requirement change.

ccording to these studies, agile development has the ability to

reate harmony within the organizational culture and within the

tructure of the organization that will positively contribute to the

eduction of the number of changes required and will be able to

ain better clarity in decision making and the development of soft-

are projects.

Key findings of RQ 4

Not many studies in the literature used for this survey discuss

ow decision making at various levels of the organization may dif-

er. We feel that this is an important concept to investigate as such

ifferences in decisions can create difficulties in coming to a con-

ensus on accepting the change and also moving forward by ex-

cuting the change. Based on the discussion that formulated the

nswer for RQ 4 , the key findings are as follows:

1) It is important to realize that based on the level of the or-

ganizational structure, decision-making concepts differ and

this can be detrimental to the success of a project when

dealing with RCs.

2) An organization can be divided into two parts i.e. the busi-

ness organization and the IT organization.

3) Each of these two parts can then be divided into three levels

of structure: Executive, Tactical and Operational. The differ-

ing levels of decision making between these structural levels

have been identified to be a challenging factor in RCM.

4) Not only can decision making be contradictory at each

level, it can also cause a contradictory understanding of the

change between the business and IT counterparts.

5) There are also two viewpoints to consider: the developer

and the decision maker. The literature seems to be divided

on which viewpoint is more important, providing cause and

effect for merit for both viewpoints.

6) Agile techniques tend to be a better way of development

when it comes to creating better harmony within the orga-

nizational culture and decision making. However, this comes

with the constraints of scalability and therefore is better

recommended for development using smaller teams or for

smaller organizations.

. Comparison with related work

There is a plethora of work which has been evaluated in var-

ous areas of RCM, such as change impact analysis, change com-

lexity analysis, change decision support, change identification, etc.

 number of literature reviews related to change management

ave been conducted on research topics such as identifying change

auses [35] , change taxonomies [31] and requirement change pro-

ess models [16] . These reviews deal with only one aspect of RCM,

s detailed in Table 22 .

In comparison, the work presented in our systematic re-

iew investigates the causes of requirement change and the pro-

esses/models used for RCM, it explores in-depth the techniques

sed in RCM and the decision making in managing change and

rovides a critical analysis of the methods extracted by identify-

ng research gaps. The methods extracted comprise both traditional

nd agile techniques in RCM. In summary, this review provides in-

ormation related to many aspects of RCM in more detail, giving a

ore holistic view for its readers.

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 181

Table 22

Comparison with related work.

Research work Findings and contributions

Towards an understanding of the causes and effects of

software requirements change: two case studies [31]

The study identifies various causes of requirement change and uses a simple taxonomy to group

these causes for better understanding and future identification.

Causes of requirement change-a systematic literature

review [35]

Similar to the previous study, identifies the causes of requirement change and groups these cause

into two categories; essential and accidental. The main difference from [31] is that the study is

done as a systematic review.

Requirement change management process models:

Activities, artefacts and roles [16]

The study brings together various requirement management models, identifying their key features.

9

t

1

r

o

m

u

c

a

t

a

T

n

m

s

b

q

t

w

e

i

i

i

h

o

o

c

e

t

b

c

a

a

f

n

w

fi

r

1

d

c

i

t

s

s

. Threats to validity

The findings presented in this review study have the following

hreats to validity.

(i) Construct validity: this is primarily related to obtaining the

right information by defining the right scope. At this stage,

the biggest challenge is to decide what should be included

in the review. To address this issue, we considered all the

studies which provided empirical, case study, experimental,

industrial and survey-related information about RCM.

(ii) External validity: the findings of this review cannot be gen-

eralized because the results are based on a specific set of

keywords and the research repositories that have been used

for the data collection. Therefore, our results could be lim-

ited and cannot be applied to every organizational setup.

(iii) Results validity: the concept of RCM has a very long history

dating back to the early 1980s. The area is still evolving and

a large set of keywords are available which can be used to

represent the concept of RCM. In this review, we considered

12 different keywords which are mostly used in the con-

text of RCM in software development, and used six research

repositories to conduct an initial search in the study selec-

tion process. Thus, our findings are only based on the se-

lected set of keywords and from six research repositories.

(iv) Internal validity: this is mainly related to the capability of

replicating similar findings. We addressed this aspect by

defining and later following the systematic review proce-

dure, described in Section 3 . Two researchers were involved

in the review process, who, over a period of time, worked

together to avoid duplications and achieved consensus in the

acceptance of the identified studies. However, it could be

possible that if this study is replicated by other researchers,

minor variations in the identified studies will be observed

due to differences in personal aptitude and thinking. Regard-

less of this fact, the findings presented in this review will

enable readers to obtain a clear picture of RCM.

(v) Conclusion validity: The number of research articles pre-

sented in this study does not indicate the actual number of

RCM practices being undertaken in reality. Thus, the number

could only be used to make inferences as to how practical

and applicable RCM methods are.

0. Conclusions and future work

It is evident that changes in requirements occur for many

easons and can be caused by multiple stakeholders. Regardless

f who or what cause these changes, the need for appropriate

anagement is great due to the undesirable consequences if left

nattended. However, through this review, it was discovered that

hange management is an elusive target to achieve and that there

re many ways to tackle it. The main objective of this review was

o collate information and techniques related to RCM and critically

nalyse the functionality of such techniques in managing change.

his also led to identifying strengths and limitations of these tech-
iques, which signifies the need to enhance the existing change

anagement approaches. This review is also a guide for future re-

earchers on change management in terms of what major work has

een undertaken thus far.

In the review, the section on factors that cause change in re-

uirements provides an understanding on how vast and constant

hese changes can be. There is no one root cause for changes

hich makes change management a challenging task. Therefore,

ven with an abundance of research on change management, there

s still room for improvement. Given the complexity of changes, it

s important to identify the processes in place to manage them. It

s clear from the available literature that there is no consensus on

ow to manage change. In some instances, it is based on the type

f organization and the environment and in many cases, it is based

n the type of changes. Through the available process steps, three

ommon processes were identified; identification, analysis and cost

stimation of change. Significant work has been done in each of

hese areas and several models that encompass these steps have

een developed in an effort to provide a full-scale solution for

hange management. It is also important to understand that the

pproaches vary depending on the level of the organisation man-

ging the change.

When identifying future work in RCM, we deemed it useful to

ocus on the three areas of RQ 3 where the majority of the tech-

iques have been discussed. We do not directly suggest future

ork but identify the research gaps in the areas of change identi-

cation, analysis and cost estimation where the possibility for new

esearch lies.

0.1. Research gaps in change identification

Accurate change identification not only leads to a better un-

erstanding of the required change but also the impact it can

ause on the entire system and project. The techniques discussed

n change identification can be divided into two categories: change

axonomies and change classification as discussed in the previous

ection. Given the existence of these methods, their still remains

everal major gaps that need to be addressed:

1) The parties involved in the elicitation and identification pro-

cess of changes are from a variety of backgrounds and ex-

perience levels. Common knowledge for one group may be

completely foreign for another. This is especially true in the

case of communication between the analyst and the stake-

holder(s).

2) The language and terminology used to communicate the

changes to and from the stakeholder to the analyst and then

to software practitioners (designers, developers, testers, etc.)

may be either too formal or informal to meet the needs of

each party involved.

3) There will be a large amount of information gathered that is

part of one single change. Not having a common structure

to categorize this information may lead to misinterpretation

of the need for the change and the change itself.

182 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

w

c

t

h

n

c

i

R

4) Information gathered at one level of the organization could

be biased based on the parties involved if one form of struc-

ture is not used to capture the changes at all levels.

5) The methods already in existence provide minimal guidance

in terms of applying them to identify changes.

10.2. Research gaps in change analysis

As seen in the previous section on change analysis, it is clear

that traceability is one of the most popular techniques to analyse

the impact of changes on a system, either in existence or in the

design phase. Several other non-conventional methods were also

identified that contribute to change analysis. Through these meth-

ods and the existing knowledge on the volatility of requirements,

several gaps in the research are identified:

1) Although traceability is a common method of identifying im-

pact, it can be costly and time consuming, and in most cases,

the benefits (of traceability) are realized immediately. This

gives rise to a need for another method that addresses these

limitations.

2) In most existing methods of change impact analysis, the pri-

ority of changes is not established. Understanding priority

benefits the decision-making process by allowing software

practitioners to establish which change to implement first

and also how critical the change is to the existing system

and hence, resources can be allocated accordingly.

3) The existing literature is unclear on ways to identify the dif-

ficulty of implementing a change in an early phase of the

change request process. Understanding the difficulty associ-

ated with a change leads to better decision making in two

ways: firstly, if the difficulty of implementing the change is

too high and the delivery of the product is time sensitive,

the change could be held back for a consecutive version;

secondly, the difficulty can be used as a gauge of the effort

required to implement the change.

10.3. Research gaps in change cost estimation

The cost estimation methods discussed in the previous section

were not explicit for the estimation of implementing changes. In

practice, these methods can still be applied for this purpose yet

there is still much room for improvement. Based on the informa-

tion discussed earlier and in the other related literature, several

gaps in the research were identified:

1) No significant work in the existing literature caters explic-

itly for estimating the cost of implementing RCs. As demon-

strated in the previous sections, changes occur for a plethora

of reasons and can occur during any phase of the software

development life cycle. Therefore, it would be beneficial if

there was a dedicated method by which to estimate the cost

of such changes as the implication of these changes based

on the project’s timeline results in different outcomes.

2) Estimation done at an early stage of the development pro-

cess is usually based on expert judgement with less precise

input and less detailed design specification. In some cases,

this may result in effort estimation which is too low which

leads to issues such as delayed delivery, budget overrun and

poor quality while high estimates may lead to loss of busi-

ness opportunities and the inefficient use of resources.

3) Estimating the cost in the early stages of development de-

pends on expert judgment and historical data which can be

biased and inconsistent. There needs to be ways to eliminate

these ambiguities in change cost estimation.

The research gaps identified indicate the importance of having a

full- scale model that increases the efficiency of managing change
ith better accuracy. The review highlights that although the con-

ept of change management has been in existence for many years,

he applicability of the available methods has many limitations and

as room for improvement. With challenges such as poor commu-

ication, impact identification issues and no dedicated method for

hange cost calculation, the avenues for future research is promis-

ng.

eferences

[1] N. Nurmuliani , D. Zowghi , S. Powell , Analysis of requirements volatility during

software development life cycle, in: Software Engineering Conference, 2004.
Proceedings. 2004 Australian, IEEE, 2004, pp. 28–37 .

[2] I. Sommerville , Software Engineering. International Computer Science Series,
Addison Wesley, 2004 .

[3] N. Nurmuliani , D. Zowghi , S.P. Williams , Requirements volatility and its im-
pact on change effort: evidence-based research in software development

projects, in: Proceedings of the Eleventh Australian Workshop on Require-

ments Engineering, 2006 .
[4] S. McGee , D. Greer , A software requirements change source taxonomy, in:

Software Engineering Advances, 2009. ICSEA’09. Fourth International Confer-
ence on, IEEE, 2009, pp. 51–58 .

[5] S. Ramzan and N. Ikram, “Making decision in requirement change manage-
ment,” in 2005 International Conference on Information and Communication

Technologies, 2005, pp. 309–312: IEEE.

[6] W. Lam , V. Shankararaman , Requirements change: a dissection of manage-
ment issues, in: EUROMICRO Conference, 1999. Proceedings. 25th, vol. 2, IEEE,

1999, pp. 244–251 .
[7] M. Strens , R. Sugden , Change analysis: a step towards meeting the challenge

of changing requirements, in: Engineering of Computer-Based Systems, 1996.
Proceedings., IEEE Symposium and Workshop on, IEEE, 1996, pp. 278–283 .

[8] J. Tomyim , A. Pohthong , Requirements change management based on objec-
t-oriented software engineering with unified modeling language, in: Software

Engineering and Service Science (ICSESS), 2016 7th IEEE International Confer-

ence on, IEEE, 2016, pp. 7–10 .
[9] L. Lavazza , G. Valetto , Enhancing requirements and change management

through process modelling and measurement, in: Requirements Engineering,
20 0 0. Proceedings. 4th International Conference on, IEEE, 20 0 0, pp. 106–115 .

[10] A. Kobayashi , M. Maekawa , Need-based requirements change management,
in: Engineering of Computer Based Systems, 2001. ECBS 2001. Proceedings.

Eighth Annual IEEE International Conference and Workshop on the, IEEE,

2001, pp. 171–178 .
[11] S. Ghosh , S. Ramaswamy , R.P. Jetley , Towards requirements change decision

support, in: 2013 20th Asia-Pacific Software Engineering Conference (APSEC),
vol. 1, IEEE, 2013, pp. 148–155 .

[12] B. Nuseibeh , S. Easterbrook , Requirements engineering: a roadmap, in: Pro-
ceedings of the Conference on the Future of Software Engineering, ACM,

20 0 0, pp. 35–46 .

[13] N. Ikram , The Management of Risk in Information Systems Development,
20 0 0 .

[14] B.R. Butler , et al. , The Challenges of Complex IT Projects, Royal Academy of
Engineering. e British Computer Society, 2004 Relatório Técnico .

[15] B. Curtis , H. Krasner , N. Iscoe , A field study of the software design process for
large systems, Commun. ACM 31 (11) (1988) 1268–1287 .

[16] S. Ramzan , N. Ikram , Requirement change management process models: ac-

tivities, artifacts and roles, in: 2006 IEEE International Multitopic Conference,
IEEE, 2006, pp. 219–223 .

[17] B.W. Boehm , Understanding and controlling software costs, J. Parametrics 8
(1) (1988) 32–68 .

[18] D. Firesmith , Common requirements problems, their negative consequences,
and the industry best practices to help solve them, J. Object Technol. 6 (1)

(2007) 17–33 .

[19] S. Lock , G. Kotonya , An Integrated Framework for Requirement Change Impact
Analysis, 1999 .

[20] I. Sommerville , P. Sawyer , Requirements Engineering: A Good Practice Guide,
John Wiley & Sons, Inc., 1997 .

[21] A. Taylor , IT projects: sink or swim, Comput. Bull. 42 (1) (20 0 0) 24–26 .
[22] E. Oz , When professional standards are lax: the CONFIRM failure and its

lessons, Commun. ACM 37 (10) (1994) 29–43 .

[23] S. Lock and G. Kotonya, “Requirement level change management and impact
analysis,” 1998.

[24] B. Kitchenham , Procedures for Performing Systematic Reviews, in: Procedures
for Performing Systematic Reviews, vol. 33 (2004), Keele University, Keele,

UK, 2004, pp. 1–26 .
[25] B. Kitchenham , O.P. Brereton , D. Budgen , M. Turner , J. Bailey , S. Linkman , Sys-

tematic literature reviews in software engineering–a systematic literature re-
view, Inf. Softw. Technol. 51 (1) (2009) 7–15 .

[26] A. Ullah , R. Lai , A systematic review of business and information technology

alignment, ACM Trans. Manage. Inf. Syst. 4 (1) (2013) 4 .
[27] D. Wickramaarachchi , R. Lai , Effort estimation in global software development

- a systematic review, Comput. Sci. Inf. Syst. 14 (2) (2017) 393–421 .
[28] M.B. Miles , A.M. Huberman , Qualitative Data Analysis: An expanded Source-

book, SAGE, 1994 .

http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0026

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 183

[29] B.J. Williams , J. Carver , R.B. Vaughn , Change risk assessment: understanding
risks involved in changing software requirements, in: Software Engineering

Research and Practice, Citeseer, 2006, pp. 966–971 .
[30] S. McGee , D. Greer , Software requirements change taxonomy: evaluation by

case study, in: Requirements Engineering Conference (RE), 2011 19th IEEE In-
ternational, IEEE, 2011, pp. 25–34 .

[31] S. McGee , D. Greer , Towards an understanding of the causes and effects of
software requirements change: two case studies, Requirements Eng. 17 (2)

(2012) 133–155 .

[32] B. Boehm , Industrial software metrics top 10 list, IEEE Softw. 4 (5) (1987) .
[33] S.L. Pfleeger , Software metrics: progress after 25 years? IEEE Softw. 25 (6)

(2008) 32 .
[34] D.M. Weiss , V.R. Basili , Evaluating software development by analysis of

changes: some data from the software engineering laboratory, IEEE Trans.
Softw. Eng. (2) (1985) 157–168 .

[35] M. Bano , S. Imtiaz , N. Ikram , M. Niazi , M. Usman , Causes of requirement

change-a systematic literature review, in: Evaluation & Assessment in Soft-
ware Engineering (EASE 2012), 16th International Conference on, IET, 2012,

pp. 22–31 .
[36] A. Van Lamsweerde , Requirements Engineering: From System Goals to UML

Models to Software Specifications, Wiley Publishing, 2009 .
[37] K. Wiegers , J. Beatty , Software Requirements, Pearson Education, 2013 .

[38] S.D. Harker , K.D. Eason , J.E. Dobson , The change and evolution of require-

ments as a challenge to the practice of software engineering, in: Require-
ments Engineering, 1993., Proceedings of IEEE International Symposium on,

IEEE, 1993, pp. 266–272 .
[39] R.S. Pressman , Software Engineering: A Practitioner’s Approach, Palgrave

Macmillan, 2005 .
[40] C. Rolland , C. Salinesi , A. Etien , Eliciting gaps in requirements change, Re-

quirements Eng. 9 (1) (2004) 1–15 .

[41] E. Fricke , B. Gebhard , H. Negele , E. Igenbergs , Coping with changes: causes,
findings, and strategies, Syst. Eng. 3 (4) (20 0 0) 169–179 .

[42] A.M. Davis , K.V. Nori , Requirements, Plato’s cave, and perceptions of reality,
in: Computer Software and Applications Conference, 2007. COMPSAC 2007.

31st Annual International, vol. 2, IEEE, 2007, pp. 4 87–4 92 .
[43] B. Boehm , Requirements that handle IKIWISI, COTS, and rapid change, Com-

puter 33 (7) (20 0 0) 99–102 .

[44] M.G. Christel and K.C. Kang, "Issues in Requirements Elicitation," DTIC Docu-
ment1992.

[45] C. Ebert , J. De Man , Requirements uncertainty: influencing factors and con-
crete improvements, in: Proceedings of the 27th International Conference on

Software Engineering, ACM, 2005, pp. 553–560 .
[46] T. Moynihan , How experienced project managers assess risk, IEEE Softw. 14

(3) (1997) 35–41 .

[47] T. Moynihan , Requirements-uncertainty’: should it be a latent, aggregate or
profile construct? in: Software Engineering Conference, 20 0 0. Proceedings.

20 0 0 Australian, IEEE, 20 0 0, pp. 181–188 .
[48] S. Ferreira , J. Collofello , D. Shunk , G. Mackulak , P. Wolfe , Utilization of pro-

cess modeling and simulation in understanding the effects of requirements
volatility in software development, International Workshop on Software Pro-

cess Simulation and Modeling, 2003 .
[49] L. Mathiassen , T. Saarinen , T. Tuunanen , M. Rossi , in: Managing Require-

ments Engineering Risks: An Analysis and Synthesis of the Literature, Helsinki

School of Economics, 2004, p. 63 .
[50] C. Jones , Strategies for managing requirements creep, Computer 29 (6) (1996)

92–94 .
[51] N. Nurmuliani , D. Zowghi , S.P. Williams , Using card sorting technique to clas-

sify requirements change, in: Requirements Engineering Conference, 2004.
Proceedings. 12th IEEE International, IEEE, 2004, pp. 240–248 .

[52] S. Jayatilleke , R. Lai , A method of specifying and classifying requirements

change, in: Software Engineering Conference (ASWEC), 2013 22nd Australian,
2013, pp. 175–180 .

[53] J. Kramer , J. Magee , The evolving philosophers problem: dynamic change
management, IEEE Trans. Softw. Eng. 16 (11) (1990) 1293–1306 .

[54] F.P. Brooks Jr. , No silver bullet essence and accidents of software engineering,
Computer (4) (1987) 10–19 .

[55] J.S. O’Neal , Analyzing the Impact of Changing Software Requirements: A

Traceability-Based Methodology, Clemson University, 2003 .
[56] S. Lock , G. Kotonya , Tool support for requirement level change management

and impact analysis, in: Doctoral Symposium Proceedings, Citeseer, 1998 .
[57] K. El Emam , D. Holtje , N.H. Madhavji , Causal analysis of the requirements

change process for a large system, in: Software Maintenance, 1997. Proceed-
ings., International Conference on, IEEE, 1997, pp. 214–221 .

[58] D. Leffingwell , D. Widrig , Managing Software Requirements: A Unified Ap-

proach, Addison-Wesley Professional, 20 0 0 .
[59] G. Kotonya , I. Sommerville , Requirements Engineering: Processes and Tech-

niques, Wiley Publishing, 1998 .
[60] D. Pandey , U. Suman , A.K. Ramani , An effective requirement engineering pro-

cess model for software development and requirements management, in:
2010 International Conference on Advances in Recent Technologies in Com-

munication and Computing, 2010, pp. 287–291 .

[61] W. Hussain , D. Zowghi , T. Clear , S. MacDonell , K. Blincoe , Managing require-
ments change the informal way: when saying ‘No’is not an option, in: Re-

quirements Engineering Conference (RE), 2016 IEEE 24th International, IEEE,
2016, pp. 126–135 .
[62] D.M. Berry , K. Czarnecki , M. Antkiewicz , M. AbdElRazik , Requirements deter-
mination is unstoppable: an experience report, in: Requirements Engineering

Conference (RE), 2010 18th IEEE International, IEEE, 2010, pp. 311–316 .
[63] M. Bommer , R. DeLaPorte , J. Higgins , Skunkworks approach to project man-

agement, J. Manage. Eng. 18 (1) (2002) 21–28 .
[64] K. Skytte , Engineering a small system, IEEE Spectr. 31 (3) (1994) 63–65 .

[65] B. Curtis , M.I. Kellner , J. Over , Process modeling, Commun. ACM 35 (9) (1992)
75–90 .

[66] S.T. Acuña , X. Ferré, Software process modelling, in: ISAS-SCI (1), 2001,

pp. 237–242 .
[67] J. Lonchamp , A structured conceptual and terminological framework for soft-

ware process engineering, in: Software Process, 1993. Continuous Software
Process Improvement, Second International Conference on the, IEEE, 1993,

pp. 41–53 .
[68] N.C. Olsen , The software rush hour (software engineering), IEEE Softw. 10 (5)

(1993) 29–37 .

[69] M. Makarainen , in: Software Change Management Processes in the Develop-
ment of Embedded Software, vol. 4 (1), VTT Publications, 20 0 0, p. 6 .

[70] W. Lam , V. Shankararaman , S. Jones , J. Hewitt , C. Britton , Change analysis
and management: a process model and its application within a commercial

setting, in: Application-Specific Software Engineering Technology, 1998. AS-
SET-98. Proceedings. 1998 IEEE Workshop on, IEEE, 1998, pp. 34–39 .

[71] S.A. Ajila , Change management: modeling software product lines evolution,

in: Proc. of the 6th World Multiconference on Systemics, Cybernetics and In-
formatics, Orlando, Florida, 2002, pp. 4 92–4 97 .

[72] S.A. Bohner , Impact analysis in the software change process: a year 20 0 0 per-
spective, in: ICSM, vol. 96, 1996, pp. 42–51 .

[73] A. Eberlein , J. Leite , Agile requirements definition: a view from requirements
engineering, in: Proceedings of the International Workshop on Time-Con-

strained Requirements Engineering (TCRE’02), 2002, pp. 4–8 .

[74] L. Cao , B. Ramesh , Agile requirements engineering practices: an empirical
study, IEEE Softw. 25 (1) (2008) .

[75] I. Inayat , S.S. Salim , S. Marczak , M. Daneva , S. Shamshirband , A systematic
literature review on agile requirements engineering practices and challenges,

Comput. Hum. Behav. 51 (2015) 915–929 .
[76] S. Bilgaiyan , S. Mishra , M. Das , A review of software cost estimation in ag-

ile software development using soft computing techniques, in: Computational

Intelligence and Networks (CINE), 2016 2nd International Conference on, IEEE,
2016, pp. 112–117 .

[77] Y. Zhu , Requirements engineering in an agile environment. Uppsala University
J. Inayat et al., Comput. Hum. Behav. 30 (2014) (2009) .

[78] B. Ramesh , L. Cao , R. Baskerville , Agile requirements engineering practices
and challenges: an empirical study, Inf. Syst. J. 20 (5) (2010) 44 9–4 80 .

[79] L. Jun , W. Qiuzhen , G. Lin , Application of agile requirement engineering in

modest-sized information systems development, in: Software Engineering
(WCSE), 2010 Second World Congress on, vol. 2, IEEE, 2010, pp. 207–210 .

[80] M. Daneva , et al. , Agile requirements prioritization in large-scale outsourced
system projects: an empirical study, J. Syst. Softw. 86 (5) (2013) 1333–1353 .

[81] A. De Lucia , A. Qusef , Requirements engineering in agile software develop-
ment, J. Emerging Technol. Web Intell. 2 (3) (2010) 212–220 .

[82] N.A . Ernst , A . Borgida , I.J. Jureta , J. Mylopoulos , Agile requirements engineer-
ing via paraconsistent reasoning, Inf. Syst. 43 (2014) 100–116 .

[83] K. Boness , R. Harrison , Goal sketching: towards agile requirements engineer-

ing, in: Software Engineering Advances, 20 07. ICSEA 20 07. International Con-
ference on, IEEE, 2007, p. 71 .

[84] D. Carlson , P. Matuzic , Practical agile requirements engineering, in: Proceed-
ings of the 13th Annual Systems Engineering Conference, 2010 .

[85] D.M. Berry, “The inevitable pain of software development, including of ex-
treme programming, caused by requirements volatility,” Eberlein and Leite,

2002.

[86] M. Fowler, “Refactoring: Improving the Design of Existing Code. 20 0 0,” http:
//www.martinfowler.com/books.html/refactoring , 2003.

[87] R. Carlson , P. Matuzic , R. Simons , Applying Scrum to Stabilize Systems Engi-
neering Execution (2012) 1–6 .

[88] M.R. Basirati , H. Femmer , S. Eder , M. Fritzsche , A. Widera , Understanding
changes in use cases: a case study, in: Requirements Engineering, 2015., Pro-

ceedings of IEEE International Symposium on, 2015 .

[89] J. Buckley , T. Mens , M. Zenger , A. Rashid , G. Kniesel , Towards a taxonomy of
software change, J. Softw. Maint. Evol. 17 (5) (2005) 309–332 .

[90] L.C. Briand , Y. Labiche , L. Sullivan , Impact analysis and change management
of UML models, in: Software Maintenance, 2003. ICSM 2003. Proceedings. In-

ternational Conference on, IEEE, 2003, pp. 256–265 .
[91] S.D.P. Harker , K.D. Eason , J.E. Dobson , The change and evolution of require-

ments as a challenge to the practice of software engineering, IEEE Interna-

tional Symposium on Requirements Engineering, 1993 .
[92] N. Nurmuliani , D. Zowghi , S. Fowell , Analysis of requirements volatility during

software development life cycle, in: Australian Software Engineering Confer-
ence, 2004, p. 28 .

[93] N. Nurmuliani , D. Zowghi , S.P. Williams , Using card sorting technique to clas-
sify requirements change, in: Requirements Engineering Conference, 2004,

pp. 240–248 .

[94] X. Hua , Q. Jin , Z. Ying , Supporting change impact analysis for service oriented
business applications, in: Systems Development in SOA Environments, 2007.

SDSOA ’07: ICSE Workshops 2007, 2007, p. 6 .
[95] C. Gupta , Y. Singh , D. Chauhan , A dynamic approach to estimate change im-

pact using type of change propagation, J. Inf. Process. 6 (4) (2010) .

http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0061
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0061
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0081
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0081
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0081
http://www.martinfowler.com/books.html/refactoring
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0089
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0089
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0089
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0089
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0090

184 S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185

[96] G.E. Stark , P. Oman , A. Skillicorn , A. Ameele , An examination of the effects of
requirements changes on software maintenance releases, J. Softw. Maint. 11

(5) (1999) 293–309 .
[97] C. Gupta , Y. Singh , D.S. Chauhan , A dynamic approach to estimate change im-

pact using type of change propagation, JIPS 6 (4) (2010) 597–608 .
[98] B. Nuseibeh , S. Easterbrook , Requirements engineering: a roadmap, in: pre-

sented at the Proceedings of the Conference on The Future of Software Engi-
neering, Limerick, Ireland, 20 0 0 .

[99] S. Nurcan , J. Barrios , G. Grosz , C. Rolland , Change process modelling using the

EKD-change management method, in: European Conference on Information
Systems, 1999, pp. 513–529 .

[100] W. Lam , M. Loomes , Requirements evolution in the midst of environmental
change: a managed approach, in: Proceedings of the Second Euromicro Con-

ference on Software Maintenance and Reengineering, 1998, pp. 121–127 .
[101] E.F. Ecklund Jr. , L.M. Delcambre , M.J. Freiling , Change cases: use cases that

identify future requirements, ACM SIGPLAN Not. 31 (10) (1996) 342–358 ACM .

[102] M. Pichler , H. Rumetshofer , W. Wahler , Agile requirements engineering for
a social insurance for occupational risks organization: a case study, in:

Requirements Engineering, 14th IEEE International Conference, IEEE, 2006,
pp. 251–256 .

[103] Z. Racheva , M. Daneva , A. Herrmann , A conceptual model of client-driven ag-
ile requirements prioritization: results of a case study, in: Proceedings of the

2010 ACM-IEEE International Symposium on Empirical Software Engineering

and Measurement, ACM, 2010, p. 39 .
[104] S. Ibrahim , N.B. Idris , M. Munro , A. Deraman , A requirements traceability to

support change impact analysis, Asian J. Inf. Technol. 4 (4) (2005) 345–355 .
[105] Å . Dahlstedt , A . Persson , Requirements interdependencies: state of the art and

future challenges, in: A. Aurum, C. Wohlin (Eds.), Engineering and Managing
Software Requirements, Springer Berlin Heidelberg, 2005, pp. 95–116 .

[106] P. Carlshamre , K. Sandahl , M. Lindvall , B. Regnell , J. Natt och Dag , An indus-

trial survey of requirements interdependencies in software product release
planning, in: Requirements Engineering, 2001. Proceedings. Fifth IEEE Inter-

national Symposium on, 2001, pp. 84–91 .
[107] B. Regnell, B. Paech, A. Aurum, C. Wohlin, A. Dutoit, and J. Natt och Dag, "Re-

quirements Mean Decisions! - Research issues for understanding and sup-
porting decision-making in Requirements Engineering," 2001.

[108] I. Sommerville , G. Kotonya , in: Requirements Engineering: Processes and

Techniques, John Wiley & Sons, Inc., 1998, p. 282 .
[109] K. Pohl , in: Process-Centered Requirements Engineering, John Wiley & Sons,

Inc., 1996, p. 342 .
[110] S.A. Bohner , Software Change Impact Analysis, 1996 .

[111] O. Gotel , A. Finkelstein , Extended requirements traceability: results of an in-
dustrial case study, in: Requirements Engineering, 1997., Proceedings of the

Third IEEE International Symposium on, IEEE, 1997, pp. 169–178 .

[112] M.F. Bashir , M.A. Qadir , Traceability techniques: a critical study, in: 2006 IEEE
International Multitopic Conference, IEEE, 2006, pp. 265–268 .

[113] F. Bouquet , E. Jaffuel , B. Legeard , F. Peureux , M. Utting , Requirements trace-
ability in automated test generation: application to smart card software vali-

dation, ACM SIGSOFT Softw. Eng. Notes 30 (4) (2005) 1–7 ACM .
[114] J. Dick , Design traceability, IEEE Softw. 22 (6) (2005) 14–16 .

[115] A. Egyed , P. Grunbacher , Automating requirements traceability: beyond the
record & replay paradigm, in: Automated Software Engineering, 2002. Pro-

ceedings. ASE 2002. 17th IEEE International Conference on, IEEE, 2002,

pp. 163–171 .
[116] M. Heindl , S. Biffl, A case study on value-based requirements tracing, in: Pro-

ceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, ACM, 2005, pp. 60–69 .
[117] M. Jarke , Requirements tracing, Commun. ACM 41 (12) (1998) 32–36 .

[118] B. Ramesh , M. Jarke , Toward reference models for requirements traceability,

IEEE Trans. Softw. Eng. 27 (1) (2001) 58–93 .
[119] R. Ravichandar, J.D. Arthur, and M. Pérez-Quiñones, "Pre-requirement speci-

fication traceability: bridging the complexity gap through capabilities," arXiv
preprint cs/0703012 , 2007.

[120] S. Rochimah , W.M. Wan-Kadir , A.H. Abdullah , An evaluation of traceability
approaches to support software evolution, in: ICSEA, 2007, p. 19 .

[121] T. Verhanneman , F. Piessens , B. De Win , W. Joosen , Requirements traceability

to support evolution of access control, ACM SIGSOFT Softw. Eng. Notes 30 (4)
(2005) 1–7 ACM .

[122] P. Arkley , S. Riddle , Overcoming the traceability benefit problem, in: 13th IEEE
International Conference on Requirements Engineering (RE’05), IEEE, 2005,

pp. 385–389 .
[123] J. Cleland-Huang , C.K. Chang , M. Christensen , Event-based traceability for

managing evolutionary change, Softw. Eng. IEEE Trans. 29 (9) (2003) 796–810 .

[124] J. Cleland-Huang , G. Zemont , W. Lukasik , A heterogeneous solution for im-
proving the return on investment of requirements traceability, in: Require-

ments Engineering Conference, 2004. Proceedings. 12th IEEE International,
IEEE, 2004, pp. 230–239 .

[125] J. Cleland-Huang , R. Settimi , C. Duan , X. Zou , Utilizing supporting evidence
to improve dynamic requirements traceability, in: Requirements Engineer-

ing, 2005. Proceedings. 13th IEEE International Conference on, IEEE, 2005,

pp. 135–144 .
[126] O. Gotel , S. Morris , Crafting the requirements record with the informed use

of media, in: Proceedings of the First International Workshop on Multimedia
Requirements Engineering (MeRE’06), Citeseer, 2006 .
[127] F. Blaauboer , K. Sikkel , M.N. Aydin , Deciding to adopt requirements traceabil-
ity in practice, in: International Conference on Advanced Information Systems

Engineering, Springer, 2007, pp. 294–308 .
[128] J. Cleland-Huang , Toward improved traceability of non-functional require-

ments, in: Proceedings of the 3rd International Workshop on Traceability in
Emerging Forms of Software Engineering, ACM, 2005, pp. 14–19 .

[129] B. Ramesh , Factors influencing requirements traceability practice, Commun.
ACM 41 (12) (1998) 37–44 .

[130] R.S. Arnold , S.A. Bohner , Impact analysis-towards a framework for compari-

son, in: ICSM, vol. 93, 1993, pp. 292–301 .
[131] G. Antoniol , G. Canfora , G. Casazza , A.D. Lucia , Identifying the starting im-

pact set of a maintenance request: a case study, in: Software Maintenance
and Reengineering, 20 0 0. Proceedings of the Fourth European, IEEE, 20 0 0,

pp. 227–230 .
[132] Y. Li , J. Li , Y. Yang , M. Li , Requirement-centric traceability for change impact

analysis: a case study, in: Making Globally Distributed Software Development

a Success Story, Springer, 2008, pp. 100–111 .
[133] S. Ibrahim , N.B. Idris , M. Munro , A. Deraman , Integrating software traceability

for change impact analysis, Int. Arab J. Inf. Technol. 2 (4) (2005) 301–308 .
[134] A. Göknil , I. Kurtev , K. van den Berg , Change impact analysis based on formal-

ization of trace relations for requirements, presented at the ECMDA Traceabil-
ity Workshop (ECMDA-TW), Berlin, Germany, 12 June 2008, 2008 .

[135] A. Von Knethen , Change-oriented requirements traceability. Support for evo-

lution of embedded systems, in: Software Maintenance, 2002. Proceedings.
International Conference on, IEEE, 2002, pp. 4 82–4 85 .

[136] N. Ali , R. Lai , A method of requirements change management for global soft-
ware development, Inf. Softw. Technol. 70 (2016) 49–67 .

[137] J. Hassine , J. Rilling , J. Hewitt , R. Dssouli , Change impact analysis for require-
ment evolution using use case maps, in: Principles of Software Evolution,

Eighth International Workshop on, IEEE, 2005, pp. 81–90 .

[138] J. Hewitt , J. Rilling , A light-weight proactive software change impact analy-
sis using use case maps, in: Software Evolvability, 2005. IEEE International

Workshop on, IEEE, 2005, pp. 41–46 .
[139] L. Shi , Q. Wang , M. Li , Learning from evolution history to predict future re-

quirement changes, in: Requirements Engineering Conference (RE), 2013 21st
IEEE International, IEEE, 2013, pp. 135–144 .

[140] J.C. Maxwell , A.I. Antón , P. Swire , Managing changing compliance require-

ments by predicting regulatory evolution, in: Requirements Engineering Con-
ference (RE), 2012 20th IEEE International, IEEE, 2012, pp. 101–110 .

[141] R. Malhotra , M. Khanna , Mining the impact of object oriented metrics for
change prediction using machine learning and search-based techniques, in:

Advances in Computing, Communications and Informatics (ICACCI), 2015 In-
ternational Conference on, IEEE, 2015, pp. 228–234 .

[142] C. Ingram , S. Riddle , Using early stage project data to predict change-prone-

ness, in: Proceedings of the 3rd International Workshop on Emerging Trends
in Software Metrics, IEEE Press, 2012, pp. 42–48 .

[143] N. Tsantalis , A. Chatzigeorgiou , G. Stephanides , Predicting the probability of
change in object-oriented systems, IEEE Trans. Softw. Eng. 31 (7) (2005)

601–614 .
[144] S. Mirarab , A. Hassouna , L. Tahvildari , Using Bayesian belief networks to pre-

dict change propagation in software systems, in: Program Comprehension,
2007. ICPC’07. 15th IEEE International Conference on, IEEE, 2007, pp. 177–188 .

[145] N.N.B. Abdullah , S. Honiden , H. Sharp , B. Nuseibeh , D. Notkin , Communication

patterns of agile requirements engineering, in: Proceedings of the 1st Work-
shop on Agile Requirements Engineering, ACM, 2011, p. 1 .

[146] B. Haugset , T. Stalhane , Automated acceptance testing as an agile require-
ments engineering practice, in: System Science (HICSS), 2012 45th Hawaii In-

ternational Conference on, IEEE, 2012, pp. 5289–5298 .
[147] R. Popli , P. Malhotra , N. Chauhan , Estimating regression effort in agile envi-

ronment, Int. J. Comput. Sci. Commun. 5 (2014) 23–28 .

[148] M. Cohn , User Stories Applied: For Agile Software Development, Addis-
on-Wesley Professional, 2004 .

[149] H. Leung , Z. Fan , Software cost estimation, in: Handbook of Software Engi-
neering, Hong Kong Polytechnic University, 2002, pp. 1–14 .

[150] S. Rajper , Z.A. Shaikh , Software development cost estimation: a survey, Indian
J. Sci. Technol. 9 (31) (2016) .

[151] N. Fenton , J. Bieman , Software Metrics: A Rigorous and Practical Approach,

CRC Press, 2014 .
[152] M.H. Halstead , Elements of Software Science, Elsevier, New York, 1977 .

[153] P.G. Hamer , G.D. Frewin , MH Halstead’s software science-a critical examina-
tion, in: Proceedings of the 6th International Conference on Software Engi-

neering, IEEE Computer Society Press, 1982, pp. 197–206 .
[154] V.Y. Shen , S.D. Conte , H.E. Dunsmore , Software science revisited: a critical

analysis of the theory and its empirical support, IEEE Trans. Softw. Eng. (2)

(1983) 155–165 .
[155] A.J. Albrecht , J.E. Gaffney , Software function, source lines of code, and de-

velopment effort prediction: a software science validation, IEEE Trans. Softw.
Eng. (6) (1983) 639–648 .

[156] C. Jones , Applied Software Measurement: Assuring Productivity and Quality ,
1997 .

[157] S. Kumari , S. Pushkar , Performance analysis of the software cost estimation

methods: a review, Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3 (7) (2013) .
[158] P. Abrahamsson , I. Fronza , R. Moser , J. Vlasenko , W. Pedrycz , Predicting devel-

opment effort from user stories, in: Empirical Software Engineering and Mea-
surement (ESEM), 2011 International Symposium on, IEEE, 2011, pp. 400–403 .

http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0093
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0093
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0093
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0095
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0095
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0095
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0097
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0097
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0097
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0097
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0100
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0100
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0100
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0101
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0101
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0101
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0101
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0101
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0101
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0103
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0103
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0104
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0104
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0106
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0106
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0106
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0108
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0108
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0109
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0109
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0109
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0110
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0110
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0110
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0111
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0111
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0112
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0112
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0112
http://arxiv.org/abs/cs/0703012
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0113
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0113
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0113
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0113
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0114
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0114
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0114
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0114
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0114
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0115
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0115
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0115
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0116
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0116
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0116
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0116
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0117
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0117
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0117
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0117
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0118
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0118
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0118
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0118
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0118
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0119
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0119
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0119
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0120
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0120
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0120
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0120
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0121
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0121
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0122
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0122
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0123
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0123
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0123
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0124
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0124
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0124
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0124
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0124
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0125
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0125
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0125
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0125
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0125
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0126
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0126
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0126
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0126
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0126
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0127
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0127
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0127
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0127
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0128
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0128
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0129
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0129
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0129
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0130
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0130
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0130
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0130
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0130
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0131
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0131
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0131
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0132
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0132
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0132
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0132
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0133
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0133
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0133
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0133
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0134
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0134
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0134
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0135
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0135
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0135
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0136
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0136
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0136
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0136
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0137
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0137
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0137
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0137
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0138
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0138
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0138
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0138
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0138
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0138
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0139
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0139
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0139
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0140
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0140
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0140
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0140
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0141
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0141
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0142
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0142
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0142
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0143
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0143
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0143
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0144
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0144
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0144
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0145
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0145
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0146
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0146
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0146
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0147
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0147
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0147
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0147
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0148
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0148
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0148
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0149
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0149
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0150
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0150
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0150
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0151
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0151
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0151
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0151
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0151
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0151

S. Jayatilleke, R. Lai / Information and Software Technology 93 (2018) 163–185 185

[

[

[

[159] M. Ceschi , A. Sillitti , G. Succi , S. De Panfilis , Project management in
plan-based and agile companies, IEEE Softw. 22 (3) (2005) 21–27 .

[160] N.C. Haugen, An empirical study of using planning poker for user story esti-
mation, in: Agile Conference, 2006, IEEE, 2006, pp. 9–34, doi: 10.1109/AGILE.

2006.16 .
[161] V. Mahni ̌c , T. Hovelja , On using planning poker for estimating user stories, J.

Syst. Softw. 85 (9) (2012) 2086–2095 .
[162] S.K. Khatri , S. Malhotra , P. Johri , Use case point estimation technique in soft-

ware development, in: Reliability, Infocom Technologies and Optimization

(Trends and Future Directions)(ICRITO), 2016 5th International Conference on,
IEEE, 2016, pp. 123–128 .

[163] N. Nunes , L. Constantine , R. Kazman , IUCP: estimating interactive-software
project size with enhanced use-case points, IEEE Softw. 28 (4) (2011) 64–73 .

164] E. Coelho , A. Basu , Effort estimation in agile software development using
story points, Int. J. Appl. Inf. Syst. 3 (7) (2012) .

[165] P.R. Hill , Practical Project Estimation: A Toolkit for Estimating Software Devel-

opment Effort and Duration, International Software Benchmarking Standards
Group, 2010 .

166] A. Panda , S.M. Satapathy , S.K. Rath , Empirical validation of neural network
models for agile software effort estimation based on story points, Procedia

Comput. Sci. 57 (2015) 772–781 .
[167] A.G. Silvius , Business & IT alignment in theory and practice, System Sciences,

20 07. HICSS 20 07. 40th Annual Hawaii International Conference on, IEEE,

2007 211b-211b .
168] B. Campbell , Alignment: resolving ambiguity within bounded choices, in:

PACIS 2005 Proceedings, 2005, p. 54 .
[169] P. Tallon , K.L. Kraemer , A Process-Oriented Assessment of the Alignment

of Information Systems and Business Strategy: Implications for IT Business
Value, Center for Research on Information Technology and Organizations,

1999 .

[170] A. Fuggetta , A.L. Wolf , Software Process, John Wiley & Sons, Inc., 1996 .
[171] E.J. Barry , T. Mukhopadhyay , S.A. Slaughter , Software project duration and ef-

fort: an empirical study, Inf. Technol. Manage. 3 (1-2) (2002) 113–136 .
[172] S. Bohner , Impact analysis in the software change process: a year 20 0 0 per-
spective, in: Software Maintenance 1996, Proceedings., International Confer-

ence on, IEEE, 1996, pp. 42–51 .
[173] R. Chitchyan , A. Rashid , P. Rayson , R. Waters , Semantics-based composition

for aspect-oriented requirements engineering, in: Proceedings of the 6th
International Conference on Aspect-Oriented Software Development, ACM,

2007, pp. 36–48 .
[174] V. Basili , et al. , Bridging the gap between business strategy and software de-

velopment, in: ICIS 2007 Proceedings, 2007, p. 25 .

[175] T. Goradia , Dynamic impact analysis: a cost-effective technique to enforce er-
ror-propagation, ACM SIGSOFT Softw. Eng. Notes 18 (3) (1993) 171–181 ACM .

[176] J. Law , G. Rothermel , Whole program path-based dynamic impact analysis,
in: Software Engineering, 2003. Proceedings. 25th International Conference

on, IEEE, 2003, pp. 308–318 .
[177] P. Tonella , Using a concept lattice of decomposition slices for program under-

standing and impact analysis, Softw. Eng. IEEE Trans. 29 (6) (2003) 495–509 .

[178] M. Aoyama , Agile software process and its experience, in: Software Engineer-
ing, 1998. Proceedings of the 1998 International Conference on, IEEE, 1998,

pp. 3–12 .
[179] S. Nerur , R. Mahapatra , G. Mangalaraj , Challenges of migrating to agile

methodologies, Commun. ACM 48 (5) (2005) 72–78 .
[180] P. Karesma , Scaling Agile Methods, 2016 .

[181] D.J. Reifer , F. Maurer , H. Erdogmus , Scaling agile methods, IEEE Softw. 20 (4)

(2003) 12–14 .
[182] F.J. Pino , O. Pedreira , F. García , M.R. Luaces , M. Piattini , Using scrum to guide

the execution of software process improvement in small organizations, J. Syst.
Softw. 83 (10) (2010) 1662–1677 .

[183] D.E. Strode , S.L. Huff, A. Tretiakov , The impact of organizational culture on
agile method use, in: System Sciences, 2009. HICSS’09. 42nd Hawaii Interna-

tional Conference on, IEEE, 2009, pp. 1–9 .

[184] E. Bjarnason , K. Wnuk , B. Regnell , A case study on benefits and side-effects
of agile practices in large-scale requirements engineering, in: Proceedings of

the 1st Workshop on Agile Requirements Engineering, ACM, 2011, p. 3 .

http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0152
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0152
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0152
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0152
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0152
http://dx.doi.org/10.1109/AGILE.2006.16
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0154
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0154
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0154
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0155
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0155
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0155
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0155
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0156
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0156
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0156
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0156
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0157
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0157
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0157
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0158
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0158
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0159
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0159
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0159
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0159
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0160
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0160
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0161
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0161
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0162
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0162
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0162
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0163
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0163
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0163
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0164
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0164
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0164
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0164
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0165
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0165
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0166
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0166
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0166
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0166
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0166
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0167
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0167
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0167
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0168
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0168
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0169
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0169
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0169
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0170
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0170
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0171
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0171
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0172
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0172
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0172
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0172
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0173
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0173
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0174
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0174
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0174
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0174
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0175
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0175
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0175
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0175
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0175
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0175
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0176
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0176
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0176
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0176
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0177
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0177
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0177
http://refhub.elsevier.com/S0950-5849(17)30466-4/sbref0177

	A systematic review of requirements change management
	1 Introduction
	2 Research questions
	3 Review approach
	3.1 Study objectives
	3.2 Selected sources
	3.3 Selected language
	3.4 Data search
	3.5 Study selection (Inclusion and exclusion of studies)
	3.6 Data extraction
	3.7 Data synthesis

	4 Results for RQ1: what are the causes of requirements changes?
	5 Results for RQ2: what processes are used for requirements change management?
	5.1 Semi-formal methods available for requirements change management
	5.2 Formal process models available for requirements change management
	5.3 Agile methods available for requirements change management

	6 Results for RQ3: what techniques are used for requirements change management?
	6.1 Change identification
	6.1.1 Through taxonomies
	6.1.2 Through classification
	6.1.3 Other change identification methods
	6.1.4 Change identification through agile methods

	6.2 Change analysis
	6.2.1 Traceability issues and solutions
	6.2.2 Use of traceability and other methods for impact analysis
	6.2.3 Predicting requirements changes
	6.2.4 Change analysis using agile techniques

	6.3 Change cost/effort estimation

	7 Results for RQ4: how do organizations make decisions regarding requirements changes?
	7.1 Executive level
	7.2 Tactical level
	7.3 Operational level
	7.4 Different viewpoints based on structure
	7.5 Decision making and organizational culture in agile development

	8 Comparison with related work
	9 Threats to validity
	10 Conclusions and future work
	10.1 Research gaps in change identification
	10.2 Research gaps in change analysis
	10.3 Research gaps in change cost estimation

	 References

