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Notch is a well-conserved signaling pathway all through

evolution that is crucial to specify different cell fates. Although

there is a strong context dependent component in each

decision, the basic mechanisms that originate from the

interplay among ligands and receptors is greatly preserved. In

this review we will cover the latest findings on the different

mechanisms for Notch activation and signaling. The regulation

of this pathway is essential to understand development, cell

differentiation and disease.
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Introduction
Notch signals are key players in cell fate decisions that

involve cell–cell interactions. The Notch system is a

widely used mechanism to generate cell diversity and

maintain tissue integrity [1]. Through the expression

levels of ligands and receptors present in nearby equipo-

tent cells, Notch response is able to provide directional

signals into one of the cells that affect the outcome of that

cell and its neighbors. This is important for tissue pat-

terning and can be induced by upregulation of a particular

Notch ligand in one or a group of cells, thus creating a

cascade of signals in adjacent cells. Lateral inhibition and

lateral induction are the most common models that have

been proposed to explain how Notch signals are propa-

gated in nearby cells. Since Notch pathway is highly

conserved all along the evolution, invertebrate model

organisms such as Caenorhabditis elegans and Drosophila
have been used to study the mechanism underlying

Notch regulation and function.
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Under physiological conditions, Notch signaling is work-

ing essentially in all different tissues both during embry-

onic development and in the adulthood. The versatility of

this pathway is what provides the enormous diversity of

outcomes that are required to generate cell and organisms

diversification during evolutionary adaptation. However,

uncontrolled Notch regulation can also result in unde-

sired life-threatening effects, including different types of

cancer.

In this review, we will summarize the most recent data on

the mechanisms used by the Notch pathway to regulate

cell decisions, tissue homeostasis and cancer. We will also

discuss the therapeutic options that are currently being

exploited in this field.

Recent discoveries about Notch signaling
Genetic screenings in Drosophila carried by Morgan and

colleagues at the beginning of the twentieth century

identified a genetic alteration that induced notches in

the wing margin. This particular Notch phenotype is what

gave name to all Notch receptors and the whole signaling

pathway. Years later, Notch, the gene responsible for this

phenotype, was cloned in Drosophila, followed by the

identification of its orthologue genes in different types of

vertebrate organisms including humans. The high con-

servation of this family of receptors all through evolution

rapidly suggested the relevance of their function.

The Notch protein is a cell receptor that suffers several

modifications before it is presented in the cellular mem-

brane in its functional conformation. In its mature form,

Notch contains an extracellular domain, a single trans-

membrane domain and an intracellular domain. Receptor

activation takes place by interaction of the extracellular

domain of Notch with ligands of either the Jagged/Serrate

or Delta family that are present in the neighboring cells.

This interaction results in Notch cleavage at several sites

by the action of different enzymatic activities, leading to

the release of the intracellular Notch (NIC) fragment and

subsequent translocation into the nucleus. Once in the

nucleus, NIC participates in gene transcription in associ-

ation with its DNA binding partner CSL/RBPj. Despite

the great variety of Notch targets, the more common and

best characterized are the Hes/Enhancer of Split family of

transcriptional repressors.

The elements described above are considered the core of

the Notch signaling cascade and have been investigated

and revised for many years. However, new ideas are
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2 Differentiation and disease
originating from crystallographic studies, which will be

covered in this review, together with other aspects of

Notch signaling that are receiving most attention in the

last years (Figure 1).
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Notch response depends on the type of receptor–ligand interaction.

(a) Ligand in a neighbouring cell activates the receptor in the adjacent

cell. Instead, a ligand presented in the same cell as the receptor will

prevent the receptor to respond to other ligands in trans and avoid

signaling. (b) The absence of fringe modification in the Notch receptor

favors Jagged interaction while the presence of fringe favors the

interaction with Delta ligands. (c) Ligands induce specific intensity and

duration of Notch signaling mainly due to the capacity of aggregation

and recruitment of receptor molecules. Dll1 is described as an inducer

of pulsatile signal, while Dll4 aggregates and induces the activation of

several Notch molecules.
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Notch molecules and ligands: lessons from
crystallography
It was in 2006 when the crystal structure of the Notch1

activating complex with CSL/RBPj and Mastermind

(Mam) was reported [2,3]. These studies were critical

to understand how Notch works at the chromatin level,

and how we can interfere with its function if required. In

brief, the NIC domain contains several functional ele-

ments including seven ankyrin repeats that are crucial for

the interaction with other intracellular and nuclear ele-

ments. The interaction domain of NIC with CSL/RBPj

expands from repeats two to seven, being the seventh

repeat specifically responsible for the interaction with the

Notch co-activator Mam. Recruitment of the acetyl trans-

ferase p300 is indirect and requires de presence of Mam.

The detailed structural characterization of the Notch

transcriptional complex led to the development of spe-

cific Mam peptides that act as Notch inhibitors by binding

to the interaction site of NIC and Mam. Using these

peptides, it was demonstrated that Notch inhibition is a

plausible strategy to combat T-cell acute lymphoblastic

leukemia (T-ALL) [4].

The structural characterization of the Notch ligands

interaction with the extracellular domain of Notch has

been harder to obtain, and only recently Notch1–Dll4 and

Notch1–Jag1 crystal structures have been published. The

Garcia’s lab developed a strategy to select for mutant

ligands with higher affinity for Notch1, thus allowing the

crystallization of a more stable complex that permitted

the analysis. From these studies, we learnt that Delta-like

4 binds a glycosylated Notch1 receptor with O-glucose

and O-fucose modifications of EGF repeats 11–13 acting

as surrogate aminoacids [5]. These modifications would

likely interfere with specific antibodies targeting this

particular Notch interaction sites, thus suggesting that

other molecules that bind either Jag or Dll ligands with

high affinity (thus competing Notch binding) may be a

better therapeutic strategy. Antibodies targeting Dll4

have indeed shown to be efficient in specifically inhibit-

ing Dll4-delivered signals [6] and are promising tools for

angiogenesis-based anticancer therapy. Several antibo-

dies targeting Jag1 have also been developed and are

currently being tested for their therapeutic applications

[7,8�]. Instead, specific Notch blocking antibodies are

directed to the negative regulatory region (NRR) of

the receptor, the exposure of which is required for the

S2 cleavage accomplished by the ADAM10 metallopro-

tease [9].

Recently, the crystal structure of the Notch1–Jagged1

complex was also resolved [10�] showing that Jagged1

binds to Notch1 receptor when specifically fucosylated on

the EGF repeats 8 and 12. Association between Jagged1

and Notch exhibits a catch bond behavior that prolongs

their interactions in the range of cellular forces. As a

result, higher tension is required to dissociate Notch from
www.sciencedirect.com
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Jagged1 than from Delta-like 4, thus providing an addi-

tional mechanism to discriminate between signals

derived from different Notch ligands (Figure 1).

Fringe modifications and other
posttranscriptional modifications of Notch
receptor
As mentioned in the previous section, modifications of

Notch imposed by specific glycosyltransferases are at the

base of its selective activation by Jagged or Delta ligands.

In addition to the sugar moieties that pofut (O-fucose)

and poglut (O-Glucose) enzymes deliver, the fringe gly-

cosyltransferases are responsible to elongate the O-fucose

residues by adding N-acetylglucosamine (GlcNAc) to the

EGF repeats of Notch. There are three fringe proteins in

mammals: Lunatic, Manic and Radical that display dif-

ferent enzymatic and functional properties. Although

Lunatic and Manic primarily inhibit Notch1 activation

by Jagged1 and enhance activation by Delta, Radical

fringe enhances activation by both ligands. Only recently,

the specific modifications imposed by particular fringe

proteins on the Notch1 receptor have been reported. By

mass spectrometry analysis, it was found that Lunatic and

Manic, but not Radical fringe, induce similar modifica-

tions of Notch1 at the EGF repeats 6 and 3, thus inhibit-

ing Notch1 activation by Jagged1 [11�]. It can easily be

anticipated that the functional consequences and thera-

peutic implications of Fringe-mediated modifications are

enormous, as they will determine the capacity of Notch to

respond to specific ligands under particular scenarios

including cancer. Other post-translational modifications

of either Notch or associated factors have also been shown

to regulate Notch signaling. This is the case of Notch

SUMOylation that attenuates its activity [12�], Notch

acetylation leading to stabilization of the NIC fragment

in endothelial cells lacking SIRT1 [13] GSK3-mediated

Notch2 phosphorylation in hematopoietic progenitor

cells [14] or acetylation of Maml1 by p300 that is required

for initiating Notch-driven transcription [15].

Functional implications of endocytosis in
Notch regulation
Endocytosis is an important regulatory mechanism of the

Notch pathway. Ligands and receptors are both suscepti-

ble of being internalized in different types of endocytic

vesicles thus adjusting the amount of ligand and receptors

that are available in the cell membrane. As a result, the

strength and nature of ligand/receptor interactions that in

turn translates into the amount of NIC that is produced

and enters the nucleus to activate transcription (Figure 2).

It is not only the amount of ligands and receptors what is

regulated by this process, but once Notch is present at the

cellular membrane and after ligand binding endocytosis of

the latter in the sending cell exerts a pulling force on the

extracellular part of the receptor. In particular, this force is

responsible for disruption of the NRR leading to exposure
www.sciencedirect.com 
of the domain containing the S2 cleavage site and the

subsequent conformational change that will allow the

processing of the intracellular domain by the g-secretase/
presenilin complex in S3 site (reviewed in [16]).

The endocytic machinery required for a proper Notch

function shares some elements with the general endocytic

pathway. However some elements are quite specific

although not exclusive. For example, the E-Ring ubiqui-

tin ligases Neuralized and Mindbomb are key regulators

of Notch ligands ubiquitination, which eventually deter-

mines their functionality [17]. Recently, it was demon-

strated that the Epsin adaptor protein is essential to

facilitate ligand endocytosis by the signal-sending cell

after Notch cleavage thus providing the sufficient pulling

force required for S2 exposure and Notch signaling.

Otherwise, ligand is transendocytosed by the Notch-

expressing cell and the Notch signal is aborted [18].

The proper control of the endocytic machinery is also

responsible for delivering polarized/unequal Notch sig-

nals at a single cell level, thus providing the base for

asymmetric cell division (reviewed by [19]).

Non-conventional mechanisms for Notch
signal regulation
The canonical mechanism that leads to Notch pathway

activation is based on the interactions of Notch receptor

with its ligand presented in a neighboring cell, cleavage of

the Notch receptor in two different sites (S2 and S3)

resulting in NIC release, NIC nuclear translocation and

activation of specific gene transcription. Although most of

our understanding of Notch functions is related to this

type of activation, there are multiple exceptions to this

linear regulation of the receptor. For example, Drosophila
Deltex was found to promote ligand independent activa-

tion of Notch in the endosomal compartment of the cells

in a presenilin-dependent manner [20]. In the same

animal model, the group of González-Gaitán proposed

a mechanism in which ligand–receptor binding takes

place within multivesicular endosomes of single cells,

which express the Sara protein, and drive directional

Notch activation during asymmetric cell division [21].

This binding occurs in an anti-parallel configuration (the

same that is found in the canonical trans-interaction), as

opposed to the parallel binding that is commonly associ-

ated to cis-interactions (between receptors and ligands

present in the membrane of the same cell) that are

believed to prevent signaling (known as cis-inhibition).

Interestingly, differential inheritance of the Sara endo-

somes in the intestinal stem cell compartment leading to

asymmetric cell division compartment is required to

maintain the homeostasis of the intestinal lineages in

Drosophila [22] (Figure 2).

As suggested from structural studies, different levels of

Notch activation may depend on the pulling force that is
Current Opinion in Cell Biology 2018, 55:1–7
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Figure 2
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Endosomal regulation of Notch signaling. (a) Ubiquitination of the ligand and the presence of Epsin and clathrin endocytic vesicles will produce a

pulling force that will activate the Notch receptor when they bind. Instead the absence of the clathrin and Epsin endosomes will result in the

endocytosis of the receptor with the bound ligand in the receiving cell. The absence of pulling will block the activation of the receptor and the

signal will be aborted and the molecules will degrade. Alternatively, the ubiquitination of the receptor may lead to recycling to the membrane. (b)

Asymmetric cell division will produce asymmetric Notch signal by the inheritance of SARA endosomes with Notch and ligand that will allow the

activation of Notch within the endosome. If the cell that inherits the SARA endosomes has Numb and Neuralized, the endosomes will be

degraded.
provided from the ligand. In a recent study, the Ellowitz

lab shed some light into the question of how different is

Notch signaling depending on the ligand involved. In

particular, they demonstrated that Notch signal activa-

tion is pulsatile and sustained depending on the type of

ligand and the way it aggregates in the cell membrane

[23��]. By measuring Hes1 transcriptional activity as a

surrogate for Notch activation, the authors demonstrate

that pulsatile signaling involves clustering of Dll1 while

sustained signaling imposed by Dll4 is ligand clustering-

independent. Thus, a general conclusion would be that

different levels and amplitude of Notch signal, which are

achieved by the combinatory effect of ligand and recep-

tor availability, Fringe-mediated modifications leading

to ligand discrimination, differences in the endocytic

pathway, cis-inhibition or trans-inhibition and intracel-

lular signaling, can provide a comprehensive explanation

to most of the reported observations on the diverse role

of Notch in cell fate decisions such as those involved in

hematopoietic stem cell determination [24�], tissue and

stem cell homeostasis [25] and oncogenic transformation

[26].

Apart from its intracellular function as transcription factor

in association with CSL/RBPj and Mam, several reports
Current Opinion in Cell Biology 2018, 55:1–7 
have described interactions with other transcription fac-

tors and regulators. Thus, Notch can interact with the

IKK kinases to regulate transcription in cervical cancer

cells [27] and T-ALL [28]. In endothelial cells, shear

stress is sufficient to promote Dll4-dependent Notch

cleavage to expose the Notch1 transmembrane domain,

which mediates the establishment of the endothelial

barrier in a transcriptional-independent manner [29].

Notch in cancer
Notch activity has been extensively linked to cancer

where it can exert both tumor suppressor and promoter

activity depending on the cellular context. One of the

best-characterized roles of Notch as tumor suppressor was

found in the mouse skin. In particular, Notch activity is

required in keratinocytes to maintain the skin barrier

integrity. In the absence of epidermal Notch, an inflam-

matory response is initiated leading to induction of thy-

mic stromal lymphopoietin (TSLP) that acts as a tumor

suppressor. Loss of TSLP receptor in the context of

Notch deficient skin results in skin carcinogenesis

[30,31]. By contrast intestinal Notch1 acts as tumor pro-

moter [26,32] by blocking differentiation of adenoma

cells into the secretory pathway [33]. Interestingly

enough, in APC-mutated adenoma cells, activation of
www.sciencedirect.com
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Notch is dependent on the signal provided by Jagged1

that is transcriptionally induced downstream of beta-

catenin [26], one of the main tumor promoters in the

intestine.

Notch1 activation is also a pivotal tumor driver in human T-

ALL. Therefore, 50% of these tumors carry mutations in

either the Notch molecule itself [34] or in elements of the

Notch pathway leading to aberrant activation of the path-

way [35]. Interestingly, Notch activation in transformed T

cells directly impacts in another relevant cancer drivers

such as NF-kB pathway [36]. Since T-ALL has been an

important disease model to study Notch regulations, many

interactors have been identified in these leukemic cells.

For example Vav1 regulation of Notch stability [37��] and

b-catenin collaboration in transcriptional activity [38],

among others. Mutations in Notch1, Notch2 and Fbw7

have also been found in chronic lymphocytic leukemia

(CLL) [39] and in diffuse large B-cell lymphoma [40].

Activation of different Notch homologues was also found

associated with malignancy in multiple solid cancer types

such as squamous cell carcinoma [41], thyroid carcinoma

[42], melanoma [43], cutaneous T-cell lymphoma and

mycosis fungoides [44] but the molecular mechanisms

underlying this association are not well-established.

Directly related with breast cancer therapy, it was found

that Jagged1 is induced by chemotherapy in the osteoblast

thus promoting bone metastasis of breast cancer cells

through Notch activation. In this system, combination ther-

apy involving anti-Jagged1 blocking antibodies prevented

tumor metastasis and reduced already established lesions

[45��]. Recently, activated Notch3 was also found to be

particularly relevant in several types of cancer including

livercancer [46],basalbreastcancer [47] andmelanoma [48].

Concluding remarks
The Notch signaling pathway is a robust cell fate regulator,

crucial to generate cellular diversification during morpho-

genesis and essential in the adulthood for stem cell and

tissue maintenance. Toaccomplish this essential mission in

multiple cell types and tissues, Notch activation displays

exquisite ligand selectivity that is particularly relevant

when it discriminates between physiologic and pathologic

conditions. Thus, much work should be done to better

understand the mechanisms underlying ligand-dependent

Notch activation and the downstream elements that are

responsible for the plethora of outcomes that Notch accom-

plishes. Dissecting the mechanisms leading to Notch func-

tion selectivity will offer a unique possibility to manipulate

the pathway for therapeutic purposes.
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