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Abstract—Passive geolocaton of communication emitters pro-
vides great benefits to military and civilian surveillance and
security operations. Time Difference of Arrival (TDOA) and
Frequency Difference of Arrival (FDOA) measurement com-
bination for stationary emitters may be obtained by sensors
mounted on mobile platforms, for example on a pair of UAVs.
Complex Ambiguity Function (CAF) of received complex signals
can be efficiently calculated to provide required TDOA / FDOA
measurement combination. TDOA and FDOA measurements
are nonlinear in the sense that the emitter uncertainty given
measurements in the Cartesian domain is non-Gaussian. Multiple
non-linear measurements of emitter location need to be fused to
provide the geolocation estimates. Gaussian Mixture Measure-
ment (GMM) filter fuses nonlinear measurements as long as the
uncertainty of each measurement in the surveillance (Cartesian)
space is modeled by a Gaussian Mixture. Simulation results
confirm this approach and compare it with geolocation using
Bearings Only (BO) measurements.

Keywords: Tracking, data association, geolocation, nonlin-

ear estimation, sensor fusion, TDOA, FDOA, GMM.

I. INTRODUCTION

Emitter location, in particular location of the emitters on the

surface of the earth (geolocation), enables important applica-

tions, both military (surveillance) and civilian (localization,

law enforcement, search and rescue, ...). For deep visibility

of emitters, it is often advantageous to mount sensors on

Unmanned Aerial Vehicles (UAVs). The limited size and

weight of the hardware that can be carried by UAVs places an

inherent limit on the types of the sensors that may be used,

as well as their performance.

Emitter geolocation has two components. One is mea-

surement, or choice of sensors, and the other is estimation/

information fusion, or processing of measurements provided

by the sensors.

Passive geolocation has a long history, starting with the

bearings only emitter localization. [1] is one of the first

“modern” papers in this field.

For some time the passive geolocation using Time Dif-

ference of Arrival (TDOA) [2], [3] attracted the research

attention. Using the TDOA measurements is especially suited

to the geolocation of high-bandwidth emitters, e.g. radars.

Knowing the time difference of arrival between the emitter and

two sensors geolocalizes emitter to the points of a hyperbola.

Introducing the third sensor (second TDOA measurement), one

can geolocate the emitter at the intersection of two hyperbolae.

1This work was supported by FGAN-FKIE under contract 4500035757.

Another approach is to use two moving sensors, and non-

linear estimation [4], [5] for geolocation using multiple TDOA

measurements.

A combination of TDOA and Frequency Difference of Ar-

rival (FDOA) is attractive for geolocation for several reasons.

One is that only two sensors (two UAVs) need to be employed.

The other is that TDOA and FDOA measurements are comple-

mentary in the sense that TDOA measurements are akin to the

bearings measurements, and the FDOA measurements are akin

to the range measurements. FDOA and TDOA measurements

can be taken as the peak arguments of Complex Ambiguity

Function (CAF) of the emitter signals received by the sensors.

Efficient calculation of the CAF is presented in [6]. The

Cramer Rao bound on the TDOA and FDOA measurement

errors are frequently so small that equipment induced errors

are predominant [7]. TDOA/FDOA observation criteria are

discussed in [8].

TDOA/FDOA signals have been used for geolocation using

satellites [7], [9]. These references concentrate on the errors

obtained by a single measurement. This publication uses mul-

tiple TDOA/FDOA measurements for improved geolocation.

Furthermore, it is assumed that the sensors are mounted on

two UAVs. Geolocation results using Bearings Only (BO)

measurements from the same UAVs are used for comparison.

Nonlinear estimation (information fusion) has been accom-

plished using the Gaussian Mixture presentation of Mea-

surements (GMM) filter first published in [10]. Nonlinear

measurements are preprocessed to Gaussian Mixture form

in the observation space. Since both TDOA and FDOA (as

well as the BO) measurements have the same form after the

preprocessing, only one filter design is used to incorporate all

three types of measurements, similar to the design in [4].

This paper is organized as follows. Problem statement

is presented in Section II. TDOA and FDOA measurement

acquisition using Complex Ambiguity Function is described

in Section III. Section IV presents the GMM non-linear

fusion algorithm as well as GMM presentation of TDOA and

FDOA measurements in the observation space. The approach

is validated using Simulations in Section V followed by the

concluding remarks in Section VI.

II. PROBLEM STATEMENT

A stationary emitter on the surface of the earth needs

to be geolocated. In this paper we assume a flat earth and

furthermore assume that the sensors are located in the earth



plane. These assumptions considerably simplify the geometry,

without influencing the conclusions. The earth curvature and

geographical relief, and the height of the sensors can be

accommodated in a straightforward manner.

Emitter state consists of position and speed, denoted here

by e and ve respectively

x =
[

e ve

]T
, (1)

where ve = 0 for the stationary emitter. Emitter trajectory at

time k is modeled by

xk = Fkxk−1 + νk, (2)

where the plant noise sequence νk is assumed to be a zero

mean and white Gaussian sequence with covariance matrix

Qk, which is not correlated with any measurement noise

sequence. For stationary emitters Fk = I (identity matrix), and

Qk is a zero matrix. For filter stability reasons it is advisable

to keep matrix Q determinant slightly above zero, though.

Two moving sensors are considered here. Their trajectories

are assumed known, and are denoted here by:

xi =
[

si vi

]T
, i = 1, 2 (3)

where si and vi denote known position and speed of sensor

i respectively. Subscript k denoting time is implied and is

omitted here for reasons of clarity. The radius vector between

emitter and sensor i is given by:

ri = e − si, i = 1, 2 (4)

with the unit vector ii equal to

ii =
ri

‖ri‖
=

[

cos(αi)
sin(αi)

]

, i = 1, 2 (5)

A. Time Difference Of Arrival (TDOA)

Time Difference of Arrival measures the difference in arrival

time ∆τ1,2 from the emitter to the sensors. A typical situation

is presented in Figure 1. True time difference of arrival is

directly proportional to the difference in distance between the

emitter and the sensors:

∆τ1,2 = ∆r1,2/c = (‖r1‖ − ‖r2‖) /c, (6)

where c denotes the speed of light. The function emitter

position to time difference of arrival is of the many-to-one

type. All points on the red dashed line in Figure 1 have the

same distance difference to the two sensors, and therefore the

same true time difference of arrival. This “constant TDOA”

curve may be constructed by expressing equation (6) as a

function of x and y emitter coordinates, and solving it.

This is rather cumbersome, and in this paper we use the

parametric constant TDOA curve construction. Consider the

situation depicted on Figure 2. Assuming known angle α (the

parameter), the following

‖r1‖ − ‖r2‖ =∆r1,2

‖r2‖ sin(β) =‖r1‖ sin(α)

‖r2‖ cos(β) − ‖r1‖ cos(α) = B

(7)
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Figure 1. TDOA scenario and constant TDOA emitter location curve

Figure 2. TDOA Geometry

holds and may be solved as

‖r1(α)‖ =
B2 − (∆r1,2)

2

2(−∆r1,2 − B cos(α))
, (8)

where B denotes the baseline distance between the two

sensors. Given parameter α, we can calculate ‖r1‖ and then

the emitter location as

e(α) = s1 − ‖r1(α)‖
[

cos(α − α0)
sin(α − α0)

]

, (9)

where α0 denotes the slant angle of sensors baseline, as

depicted on Figure 2. By letting α assume values from its

range, the constant TDOA curve is constructed.

B. Frequency Difference of Arrival (FDOA)

Relative movement of sensor i to the emitter shifts the signal

received by the sensor in frequency domain (the Doppler shift).

Assuming a stationary emitter, the relative radial velocity of



the emitter and the corresponding Doppler shift are given by

vr,i = − iTi vi, i = 1, 2

∆fi = − vr,if0/c = iTi vif0/c, i = 1, 2,
(10)

where f0 denotes the carrier frequency and T denotes the

matrix transpose. Subtracting the Doppler frequency shifts

from different sensors, the Frequency Difference of Arrival

equals

∆f1,2 = ∆f1 − ∆f2 =
(

iT1 v1 − iT2 v2

)

f0/c (11)

which is directly proportional to the differences in radial

velocity

∆vr,1,2 = ∆f1,2c/f0 = iT1 v1 − iT2 v2. (12)

Assuming known angle α2, equation (12) is easily solved to

yield

iT1 v1

4
=‖v1‖cos (α1 − αv1

) = ∆vr,1,2 + iT2 v2

α1(α2) =αv1
+ arccos

∆vr,1,2 + iT2 v2

‖v1‖
,

(13)

where αv1
denotes the angle of sensor 1 velocity vector. As

the sensors positions are known, and given angles α1 and α2,

the emitter location is calculated by triangulation. In other

words, letting the angle α2 assume values from its domain,

equation (13) yields the “constant FDOA” curve. One example

of the constant FDOA curve is shown by the red dashed

curve on Figure 3, where the arrows sourced at sensors show

the velocity direction of the sensors. By comparing Figure

1 with Figure 3, in this scenario TDOA signal takes the

(approximate) role of bearings data, and the FDOA signal

takes the (approximate) role of distance measurement.

emitter

sensors

Figure 3. FDOA Scenario and constant FDOA emitter location curve

C. Deghosting

Figures 1 and 3 show that, for the sensor geometry depicted,

both TDOA and FDOA uncertainty curves are symmetrical

with respect to the sensor baseline. Therefore, a ghost target

will be detected positioned symmetrical to the true target.

This ghost target may be removed by a number of means,

including

• geometry. Often UAVs fly at the edge of the territory held

by the antagonist, where the target positions are expected,

• additional bearings only sensor which only has to dis-

criminate the ghost position,

• UAV maneuvers.

The choice of the deghosting method will, of course, depend

on the logistics of the localization situation.

III. MEASUREMENTS

TDOA and FDOA measurements may be obtained by cal-

culating the Complex Ambiguity Function (CAF). Complex

Ambiguity Function cross correlates signals s1(t) and s2(t),
received by sensors 1 and 2, parametrized by the lag τ , which

is in fact the TDOA signal, and parametrized by the relative

Doppler shift ∆f , which is in fact the FDOA signal

A (τ,∆f) =

∫ T

0

s1(t)s
∗
2(t + τ)e2πj∆ft dt, (14)

where j =
√
−1 denotes the imaginary unit. CAF is calculated

for all applicable values of τ and ∆f . TDOA and FDOA

measurements are the arguments of the maximum complex

envelope of the CAF:

{∆τm,∆fm} = argτ,∆f max (A (τ,∆f)). (15)

Equation (14) seems to have prohibitively high computational

complexity, having to calculate integrals for all applicable

values of two dimensional parameters. In fact, assuming a

communication signal being emitted as described in Section V,

[6] describes a computationally efficient procedure to calculate

CAF, which is well within current state of the art. Complex

signal samples need to be broadcast to the fusion center which

calculates CAF, for majority of communication signals the

required bandwidth is available now.

TDOA and FDOA measurements may be modeled as

∆τm =∆τ1,2 + ν∆τ

∆fm =∆f1,2 + ν∆f

(16)

where measurement error processes ν∆τ and ν∆f are assumed

to be zero mean, white and mutually uncorrelated with rms

values of σ∆τm
and σ∆fm

respectively. Multiplying the TDOA

and FDOA measurement equations (16) by c and c/f0 respec-

tively
∆rm =∆r1,2 + ν∆r

∆vm =∆vr,1,2 + ν∆v

(17)

with measurement error processes ν∆r and ν∆v assumed to be

zero mean, white and mutually uncorrelated with rms values

of σ∆r = c · σ∆τm
and σ∆v = c · σ∆fm

/f0 respectively.



Reference [6] shows that the TDOA and FDOA measure-

ments obtained by equations (14) and (15) are efficient in

the Cramer-Rao sense. Rms TDOA and FDOA measurement

errors are given by

σ−1
∆τm

=β
√

BTSi

σ−1

∆fm
=Te

√

BTSi

(18)

respectively, where B denotes the signal bandwidth, T denotes

the integration period, and Si denotes the input signal to noise

ratio. Rms bandwidth and signal duration are denoted by β and

Te and are defined by

β = 2π

√

√

√

√

∫ ∞

−∞
f2Ws(f)df

∫ ∞

−∞
Ws(f)df

Te = 2π

√

√

√

√

∫ ∞

−∞
t2|u(t)|2dt

∫ ∞

−∞
|u(t)|2dt

,

(19)

where Ws(f) denotes the signal power spectrum, and |u(t)|
denotes the signal envelope. As shown in [6] and in Section

V, the TDOA and FDOA rms errors are very small, even

in the case of modest input signal to noise ratio. Practically

achievable measurement errors also depend on the stability

of other components in the signal processing chain, which

is beyond the scope of this paper. It should be mentioned

that UAV ownship position and speed errors also increase the

measurement errors in the obvious fashion, the full analysis

of this effect is also outside the scope of this paper.

To accommodate for imperfect equipment, simulations car-

ried out in Section V assume rms measurement errors signif-

icantly above the theoretical limits defined by equation (18).

IV. NONLINEAR MEASUREMENT FUSION

Passive measurements generally have non-Gaussian uncer-

tainty in the observation space, i.e. they usually are non-

linear. In the measurement space, TDOA and FDOA true

value uncertainties, given the measurement, are Gaussian, as

per equations (16) and (17). However, the transformation into

the observation linear space, in this case the two-dimensional

Cartesian plane, results in very non-Gaussian probability den-

sity functions (pdfs), as indicated by the uncertainty curves

on Figures 1 and 3. Estimation using these measurements

becomes non-linear information fusion, which in this work is

performed using the Gaussian Measurement Mixture (GMM)

algorithm, first published in [10].

GMM filter is based on the notion that any probability

density function (pdf) may be modeled by a Gaussian mixture

[11]. Estimated pdf based on non-linear (non-Gaussian) mea-

surements is also non-Gaussian. Thus both state estimate and

the observation space measurement pdfs need to be modeled

by Gaussian mixtures. Each element of the Gaussian mixture

is termed here a “component”. State estimate here is termed

a “track”.

A. GMM filter

In this application both TDOA and FDOA measurements

arrive simultaneously at time k, as per equation (15). One way

to use both measurements is to introduce a “dummy” time k+
1, with zero seconds of physical time between time k and k+1.

First the GMM estimate based on the TDOA measurement is

updated at time k, and then the GMM prediction is applied

between time k and k+1, and finally the FDOA measurement

is applied to update the GMM state estimate at time k+1. As

the time interval between samples k and k + 1 is zero, GMM

prediction at time k + 1 is identical to GMM estimate at time

k.

Denote by zk the measurement received at time k (either

TDOA or FDOA in this case), and by Zk the set of all

measurements received up to and including the measurement

received at time k.

A posteriori track pdf at time k − 1 (after processing the

measurement zk−1) is a Gaussian mixture, given by

p
(

xk−1|Zk−1
)

=

=

Ck
∑

c=1

ξ(c)N
(

xk−1; x̂k−1|k−1(c), Pk−1|k−1(c)
) (20)

where c is the index into track components, Ck denotes

the number of track components, N (x;m,P ) denotes the

Gaussian pdf of variable x with mean value m and covariance

matrix P , and x̂k−1|k−1(c) and Pk−1|k−1(c) are the mean and

covariance of track component c, with the constraint of

Ck
∑

c=1

ξ(c) = 1; ξ(c) ≥ 0. (21)

Chapman-Kolmogoroff equation is linear, thus the track state

prediction at time k is

p
(

xk|Zk−1
)

=

Ck
∑

c=1

ξ(c)N
(

xk; x̂k|k−1(c), Pk|k−1(c)
)

(22)

where each component c is propagated in a linear manner
[

x̂k|k−1(c), Pk|k−1(c)
]

=

KFP

(

x̂k−1|k−1(c), Pk−1|k−1(c), F,Q
)

,
(23)

where KFP denotes the linear Kalman filter propagation. If

the time interval between k − 1 and k is zero, KFP becomes

the identity operation.

Measurement uncertainty in the observation space is also

represented as a Gaussian Mixture

p (yk) =

Gk
∑

g=1

γ(g)N (yk; ŷk(g), Rk(g)) (24)

where g is the index into measurement components, Gk

denotes the number of measurement components, and ŷk(g)
and Rk(g) are the mean and covariance of measurement

component g, with the constraint of

Gk
∑

g=1

γ(g) = 1; γ(g) ≥ 0 (25)



Each measurement component g uses Kalman Filter update

of each track component c to create one component of the a

posteriori track pdf. Thus the number of components in the a

posteriori track pdf at time k is Ck · Gk and the a posteriori

track state pdf is given by

p
(

xk|Zk
)

=

CkGk
∑

c+=1

ξ(c+)N
(

xk; x̂k|k(c+), Pk|k(c+)
)

(26)

where c+ ≡ {g, c} is the index into a posteriori track com-

ponents, and x̂k|k(c+) and Pk|k(c+) are the mean value and

covariance matrix of component c+ respectively, calculated as
[

x̂k|k(c+), Pk|k(c+)
]

=

KFE

(

x̂k|k−1(c), Pk|k−1(c), ŷk(g), Rk(g),H
)

,
(27)

where KFE denotes the standard linear Kalman filter estima-

tion operation. Relative probabilities ξ(c+) ≡ ξ({g, c}) satisfy

ξ(c+) ∝ ξ(c)γ(g) N (ŷk(g);Hx̂k|k−1(c), Sk(c+))
Ck
∑

c=1

Gk
∑

g=1

ξ(c+) = 1,
(28)

where

Sk(c+) = HPk|k−1(c)H
T + Rk(g) (29)

Output state estimate mean and covariance is the mean and

covariance of Gaussian mixture
[

x̂k|k, Pk|k

]

=

GM
(

[

x̂k|k(c+), Pk|k(c+), ξ(c+)
]CkGk

c+=1

)

.
(30)

Left unchecked the number of track components increases

exponentially which quickly exhausts available computational

resources. Thus track component management [12], [13] in

the form of pruning and/or merging is a prerequisite for any

GMM practical implementation.

B. TDOA/FDOA measurement GMM presentation

The same procedure is used for GMM presentation of

both TDOA and FDOA measurements. In this section TDOA

measurement symbols only are used.

The first step involves mapping the measurements into ±σ
regions in the surveillance domain. It involves drawing two

parametric uncertainty curves. The values of ∆τm±σ∆τm
are

used. The result is shown in Figure 4. TDOA ±σ region is

delimited by the blue lines, and needs to be represented by a

set of non-overlapping ellipsoids representing the 1σ footprints

of TDOA measurement components.

This procedure starts by dividing each uncertainty curve by

a set of points, where both sets have the same cardinality.

Then an ellipsis is inscribed within each quadrangle formed

by one pair of points on each uncertainty curve on Figure 4.

Assume that points x1 and x2 are on one curve, and points

x3 and x4 are on the other curve, and we want to define the

measurement component g whose footprint is the inscribed

ellipsis. The measurement component is defined by its mean

ŷk(g) and covariance Rk(g).
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Figure 4. TDOA (blue) and FDOA (red) ±σ emitter location uncertainty

The end points of one semi axis of the inscribed ellipsis are

defined by

xc1 =(x1 + x3)/2

xc2 =(x2 + x4)/2.
(31)

The length and the angle of one semi-axis of the ellipsis are

given by

∆xc =xc1 − xc2

Dc =‖∆xc‖/2

i(αc)
4
=

[

cos(αc) sin(αc)
]

= ∆xc/‖∆xc‖.
(32)

The length of the other semi axis is given by

Ds =
[

− sin(αc) cos(αc)
]

((x1 − x3)/2 + (x2 − x4)/2)/2

=i(αc + π/2)T (x1 + x2 − x3 − x4)/4.

(33)

Denote by T (α) =
[

i(α) i(α + π/2)
]

the α rotation matrix.

Then the center of the inscribed ellipsis is given by

ŷk(g) = 0.5(xc1 + xc2), (34)

which is also the mean of the measurement component

corresponding to the ellipsis. The covariance matrix of the

measurement component is given by.

Rk(g) = T (αc)

[

D2
c 0

0 D2
s

]

T (αc)
T . (35)

The end result of following this procedure to transform the

TDOA and FDOA measurement uncertainties from Figure 4

is shown on Figure 5, where each measurement component is

represented by its ellipsis footprint.

Without any prior information, the emitter position is

equally probable at any point of the observation space. There-

fore, the probability that the emitter is within the footprint of

a measurement component is proportional to the area of the

footprint:

γ(g) ∝
√

|Rk(g)|. (36)
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Figure 5. TDOA (blue) and FDOA (red) emitter location uncertainty GMM
presentation

V. SIMULATIONS

An emitter geolocation scenario using sensors mounted on

two UAVs is simulated. Figure 6 shows the position of the

sensors and the emitter as the first measurement is taken.

The stationary emitter is assumed to be on the surface of

the (flat) earth, and the UAVs are flying due east (positive

x axis direction) with the uniform speed of 100m/s, and the

initial positions of
[

0 0
]

km and
[

15 0
]

km. The two UAVs
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15000

20000

25000
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Figure 6. Geolocation scenario

measure both the bearings of the input signal and the complex

signal. The CAF of the signals collected by the two UAVs is

calculated, and the arguments of the peak of CAF are the

TDOA and FDOA measurements. The CAF integration time

of 2 seconds equals the measurement sampling time.

Input signal to noise ratio is assumed to be γi = 0dB,

its bandwidth is B = 25kHz, and effective time integration is

T = 2s per CAF measurement sample. According to equations

(18)-(19) the minimum measurement rms errors for TDOA

and FDOA are στ = 98ns and σ∆f = 1.2mHz respectively.

Assuming the carrier frequency of f0 = 100MHz, this

translates into the differential position and speed rms errors

of σ∆r = 30m and σ∆v = 3.7mm/s respectively. To ac-

count for various equipment imperfections and sensor position

uncertainties, in the simulations we anticipate measurement

rms errors much higher than the theoretical limits. One set of

measurements is generated assuming rms measurement errors

of σ∆r = 100m and σ∆v = 1m/s, and is labeled here “fine”.

The other set of measurements assumes rms measurement

errors of σ∆r = 200m and σ∆v = 4m/s, and is labeled here

“coarse”.

The accuracy of the bearings measurements depend on the

size of the antennas. Due to the small size of antennas which

may be fitted on the UAVs, the bearings rms measurement

errors are assumed to be σθ = 5◦. Significant elevation

dependent bias is also present in the BO measurements due to

the inevitable presence of UAV metal parts near the antennas,

however this issue is ignored here and the bias is assumed to

be zero. BO measurements are also processed using a GMM

filter, as described in [14].

GMM filter used both merging and pruning to control

the number of track components, which converged toward

a total of 20 track components in the case TDOA/FDOA

measurements, and toward a total of 8 track components in

the case of BO measurements.

Measurement uncertainties are modeled as Gaussian Mix-

tures. Bearings only measurements have 5 Gaussian compo-

nents each, as presented in [15]. TDOA and FDOA mea-

surements Gaussian Mixture have 20 components each. Fine

and coarse TDOA and FDOA measurement uncertainties are

depicted on Figure 7, where each Gaussian pdf component of

the mixture is represented by its footprint ellipse.

Geolocation results are presented in Figure 8 which presents

root mean square errors based on 1000 simulation runs.

Figure 8(a) shows the full scale errors, whereas Figure 8(b)

zooms in to show final details of TDOA/FDOA combination

geolocation errors. Geolocation errors based on BO measure-

ments remain too high (more than 700m) to be of practical

use. TDOA/FDOA fine and coarse measurement combinations

result in geolocation errors which are less than 50m and 200m
respectively. Furthermore, when using the fine TDOA/FDOA

measurement errors, the geolocation errors drop to less than

100m in less than 10 measurement samples, or in less than

20s.

VI. CONCLUSIONS

In this paper the GMM filter has been used as a non-linear

fusion estimator. It incorporates nonlinear measurements from

various sensor types, as long as they are represented as the

Gaussian Mixture. Of course, the observability criteria for

measurements have to be observed.

GMM has been applied to the problem of geolocation of sta-

tionary emitter of communication signals. TDOA and FDOA

measurements are assumed to be obtained using the Complex

Ambiguity Function [6] processing, and BO measurements are

assumed to measured directly.
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Figure 7. GMM conversion of the emitter location uncertainty. Blue: TDOA. Red: FDOA.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

time

r
m

s
e
r
r
o
r

 

 

fine

coarse

BO2

(a) RMS errors

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

time

r
m

s
e
r
r
o
r

 

 

fine

coarse

BO2

(b) Zoomed in RMS errors

Figure 8. RMS estimation errors.

Simulation results show the validity of this approach. Al-

though the rms measurement errors were significantly larger

than the theoretical minimum, final geolocation estimates

are reduced by an order of magnitude compared to the BO

measurements.
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