
In recent years, our view of RNA has markedly changed 
— from regarding these molecules solely as interme-
diates of genetic information to appreciating their 
variety of functions that are independent of their protein- 
coding potential1–7. One of the best-characterized  
non-coding RNAs (ncRNAs) that mediate gene regula-
tion is X-inactive specific transcript (XIST), which has 
a key role in mammalian X chromosome inactivation2. 
More recently, the development of high-throughput 
approaches has revealed pervasive transcription in all 
genomes that have been investigated so far. This phenom-
enon produces numerous types of previously unknown 
ncRNAs and challenges our traditional definitions of 
genes and functional regions of the genome8–11. Some 
classes of short ncRNAs (<200 nucleotides in length) are 
already accepted as fundamental players in gene regu-
lation; these include small interfering RNAs (siRNAs), 
microRNAs (miRNAs) and PIWI-interacting RNAs 
(piRNAs) (reviewed in REF. 12). However, we have only 
begun to understand the functions of the vast majority of 
long ncRNAs (>200 nucleotides in length)10,11,13,14.

In this Review, we focus on antisense transcripts, 
which is a class of long ncRNAs. Antisense tran-
scripts are transcribed from the strand opposite to that  
of the sense transcript of either protein-coding or non-
protein-coding genes. Here, we refer to the originally 
annotated transcript as the sense transcript and the 
more recently identified one on the opposite strand as 
the antisense transcript. The study of gene regulation 
by antisense transcription is particularly intriguing, as 
their genomic arrangement immediately indicates that 
they may act on each other. Antisense transcripts have 

previously been reviewed for bacteria15,16, plants17 and 
humans18. Therefore, we go beyond particular species 
or taxonomic groups to discuss the diverse biological 
roles of antisense transcription, as well as its implications 
on gene regulation, genome architecture and evolution.

We begin by discussing the characteristics of anti-
sense transcripts and how they can be identified, and 
review the advances and challenges in the genome-wide 
characterization and functional annotation of these tran-
scripts. We then describe different mechanisms of gene 
regulation by antisense transcription and the biological 
effects of such regulation. We discuss how antisense 
RNAs may have advantages over other gene regulators 
(such as transcription factors) for integrating multiple 
kinds of regulatory signals, establishing on–off (that is, 
bistable) switches and even ‘rewiring’ gene regulatory 
networks. We end by discussing the evolutionary impli-
cations of antisense transcription and its consequences 
for genome organization.

Characteristics and expression
Antisense transcripts were initially discovered in bacte-
ria more than 30 years ago19; soon after this, examples 
were found in eukaryotes20. Only with the introduc-
tion of genomic approaches less than 10 years ago did 
it become apparent that antisense transcripts are wide-
spread throughout the genomes of a range of species21–23. 
Notably, more than 30% of annotated transcripts in 
humans have antisense transcription24. However, anti-
sense transcripts are generally low in abundance and are, 
on average, more than 10-fold lower in abundance than 
sense expression24. 
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Abstract | Antisense transcription, which was initially considered by many as 
transcriptional noise, is increasingly being recognized as an important regulator of gene 
expression. It is widespread among all kingdoms of life and has been shown to influence — 
either through the act of transcription or through the non-coding RNA that is produced — 
almost all stages of gene expression, from transcription and translation to RNA 
degradation. Antisense transcription can function as a fast evolving regulatory switch and 
a modular scaffold for protein complexes, and it can ‘rewire’ regulatory networks. The 
genomic arrangement of antisense RNAs opposite sense genes indicates that they might 
be part of self-regulatory circuits that allow genes to regulate their own expression.
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Transcriptional noise
Random fluctuations that are 
intrinsic to the gene expression 
process and that cause 
differences in the levels of 
specific RNAs among cells  
in a clonal population.

Cryptic promoters
Weak promoters, the use of 
which is associated with 
disruption of chromatin 
structure. Transcripts produced 
from such promoters often 
have unknown functions.

Head-to-head
Pertaining to two transcripts 
that are divergently oriented 
and have overlapping  
5′ regions.

Tail-to-tail
Pertaining to two transcripts 
that are convergently  
oriented and have  
overlapping 3′ regions.

In contrast to protein-coding mRNAs, which accu-
mulate in the cytoplasm25, antisense transcripts pref-
erentially accumulate in the nucleus26. However, some 
antisense transcripts have been found to be associated 
with chromatin27,28 and in a range of distinct locations, 
including the mitochondria and the cytoplasm25.

The expression of some antisense transcripts is 
linked to the activity of neighbouring genes29,30, whereas 
many others have distinct expression patterns during 
different processes, such as cellular differentiation and 
cancer progression31, in different environmental condi-
tions or on different genetic backgrounds29. Although 
the apparently low fidelity of transcription initiation 
suggests that some antisense transcripts arise from  
transcriptional noise32, it is clear that many others carry 
out specific functions2–7,33. Before discussing the func-
tional potential of antisense transcripts, it is necessary 
to understand how they are generated and their intrinsic  
characteristics.

Expression of antisense transcripts. Antisense transcripts 
arise from promoters, and their expression is often  
subject to similar regulation as for other genes. They can 
arise from independent promoters, bidirectional pro-
moters of divergent transcription units30,34–37 or cryptic 
promoters38–41 (BOX 1). In gene-dense regions, promoter 
bidirectionality can give rise to a large proportion of 
antisense transcripts; for example, in yeast, most anti-
sense transcripts seem to originate from bidirectional 
promoters34,35. Promoter bidirectionality, which, until 
recently, was considered exceptional, has been found 
to be widespread in species that range from yeast34,35 to 
humans30,36,37, although the degree of bidirectionality is 
species-dependent; for example, low levels of bidirec-
tionality are observed in Drosophila melanogaster42. The 
bidirectional activity of each promoter is influenced by 
other factors such as the three-dimensional organiza-
tion of chromatin43 and the density of polyadenylation 
signals that surround the promoter44,45. Finally, some 

Box 1 | Classification of antisense transcripts

Antisense transcripts can be classified according to different criteria, such as their origin, genomic orientation, 
mode of action, length, stability and even the species in which they are expressed. These transcripts have been 
found to originate from independent promoters, shared bidirectional promoters or cryptic promoters that are 
situated within genes (see the figure). According to their orientation with respect to sense genes, they can be 
further classified as head‑to‑head, tail‑to‑tail or internal (that is, when they are fully covered by the sense transcripts). 
Antisense transcripts can exert their function locally, distally, in cis or in trans, and they can also function in multiple 
subcellular compartments. Cis-acting mechanisms of these transcripts can act either locally (for example, in 
promoter–gene interactions) or distally (for example, in enhancer–gene interactions). Trans-acting mechanisms can 
also act either locally (for example, antisense transcripts affecting the allele from which they originated and/or any 
additional allele) or distally (for example, antisense transcripts affecting other genes). Moreover, antisense 
transcripts can be classified into short (<200 nucleotides) and long (>200 nucleotides) non-coding RNAs (ncRNAs), 
and stable or unstable RNAs.

Short ncRNAs are accepted as fundamental players in gene regulation. Although they are widespread among 
eukaryotes, relevant differences exist among species; for example, PIWI-interacting RNAs (piRNAs) are found in 
animals but not in plants or fungi (reviewed in REF. 12). In this Review, we focus on the much less studied long 
antisense ncRNAs. Species-specific differences in mechanisms of action might be expected when these mechanisms 
depend on an accessory machinery, such as the RNA interference machinery, that is not present in all species. As an 
example, the pairing of sense–antisense transcripts and their consequent degradation by RNase III in Gram-positive 
bacteria are not seen in Gram-negative bacteria, which suggests a different processing pattern of double-stranded 
RNAs108. Similarly, any effect of an antisense transcript that is mediated by DNA methylation75,76 is not expected to 
function in Saccharomyces cerevisiae, in which the appropriate DNA methylation machinery is lacking125. However, 
mechanisms of action that are based on the general and highly conserved transcription machinery — for example, 
transcriptional interference by chromatin modifications — are more likely to be conserved across species. TABLE 1 
provides several examples of antisense transcripts with mechanisms that are found in multiple species. So far, few 
direct comparative studies have been done. It would be interesting to carry out systematic comparative studies that 
focus on the commonalities and differences of each particular mechanism between species.
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antisense transcripts originate from cryptic promoters 
that are situated within the transcribed region of their 
sense gene38–40 or even from the termination region of 
the sense gene46.

The expression of antisense transcripts is also subject 
to regulation at the level of RNA stability; for example, 
many antisense transcripts in budding yeast are cryptic 
unstable transcripts, which are targeted for early degra-
dation by the nuclear exosome34,35. This control is used 
in meiosis in budding yeast during which the nuclear 
exosome is downregulated47. Other degradation path-
ways also affect antisense expression; for example, one 
class of antisense ncRNAs called XRN1-sensitive unsta-
ble transcripts (XUTs) are specific targets of the XRN1 
cytoplasmic 5ʹ→3′ RNA exonuclease48, whereas other 
long ncRNAs are controlled by 5′ decapping activity49.

In addition to the generation of antisense transcripts 
by RNA polymerases using DNA as a template, they can 
also originate from RNA-dependent RNA polymerase 
(RdRP) activity50,51. Specifically, it has been proposed 
that, in humans, some antisense transcripts that contain 
non-genomically encoded polyuracil stretches are gen-
erated using mRNAs as templates52. However, further 
research is needed to determine the extent and relevance 
of RdRP activity in vivo and to understand the biological 
implications of such RNAs.

Structure of antisense transcripts. Aside from their 
antisense orientation, antisense transcripts do not 
have unique biochemical features. In general, they lack  
protein-coding potential, as their sequence is con-
strained by the overlapping sense transcript. However, 
there are many examples of pairs of sense and antisense 
transcripts that only partially overlap and that are both 
functional mRNAs with protein-coding activity53–55. 
In general, the untranslated regions (UTRs) of these 
mRNAs, which are devoid of coding potential, overlap 
with neighbouring genes to mediate functions that are 
similar to those of other ncRNAs11,16,53. Such antisense 
transcripts are especially common in organisms that 
have compact genomes16,54,55; for example, in budding 
yeast, up to 40% of genes have antisense transcripts that 
terminate within their 3′ UTRs54.

Independent of protein-coding activity, antisense 
transcripts are similar to other long ncRNAs in that they  
can contain specific domains that interact with DNA, 
RNA or proteins10,11. The intrinsic flexibility of RNA 
molecules to evolutionarily rearrange their sequence 
has led to the suggestion that antisense transcripts, and 
long ncRNAs in general, can form flexible modular scaf-
folds in which different domains that interact with DNA, 
RNA or proteins are combined to form specific func-
tional complexes10,11,56. For example, antisense transcripts 
can recognize their reverse-complementary sequence 
in RNA or DNA and can also carry protein-binding 
domains to modulate gene expression2,3,57.

Identification and functional analyses
High-throughput approaches have become instrumen-
tal for both the identification and the functional char-
acterization of antisense transcripts. Nonetheless, these 

approaches are limited by the overlap of antisense tran-
scripts with the sense gene, the low expression levels of 
these transcripts24,25,29,35 and their limited evolutionary 
conservation58–63.

Identification of antisense transcripts. The initial discov-
ery of pervasive antisense transcription21–23 was met with 
justifiable scepticism64. The identification of such tran-
scripts is technically challenging, as it requires strand-
specific approaches65,66 (BOX 2). Therefore, many studies 
initially mistakenly identified antisense transcripts as 
sense transcripts. Antisense transcripts and their struc-
ture can be directly studied either using strand-specific 
quantification of RNA abundance29,35,48,54,55,65,66 or by 
capturing the process of active transcription using tech-
niques such as global run-on sequencing (GRO-seq)37 
and native elongating transcript sequencing (NET-seq)67 
(BOX 2). Antisense expression can also be indirectly 
detected through its consequences on chromatin modi-
fication states. These indirect measures are independent 
of the stability or the abundance of antisense transcripts, 
as they measure the effects of the process of antisense 
transcription rather than the transcripts themselves. The 
analyses of chromatin signatures have been powerful for 
detecting long intergenic ncRNAs68, but for antisense 
transcripts, the effectiveness of this approach is limited 
by the lack of strand specificity of chromatin modifi-
cation and the generally higher expression levels of the 
sense transcript.

Functional analyses of antisense transcripts. The func-
tion of an antisense transcript can be mediated by 
either the transcript itself or the act of its transcription. 
Additionally, it is possible to distinguish between func-
tional effects that are exerted by antisense expression in 
cis (that is, those that affect alleles on the DNA strand 
from which they are produced, usually locally) and 
those that are exerted in trans (that is, those that affect  
alleles on different DNA strands) (BOX 1). In cases of 
antisense effects in trans, the interpretation is usually 
that antisense transcription exerts its effects through the 
RNA molecules that are transcribed. By contrast, anti-
sense effects in cis are often assumed to be due to the act 
of antisense transcription. However, neither assumption 
is strictly correct. Regions of antisense transcription can 
interact with other loci through the three-dimensional 
organization of chromatin, which can mediate trans 
effects; similarly, antisense transcripts can remain at 
the locations of their synthesis (such as through stalled 
polymerases, R-loops or triple helices), which allows 
the RNA to exert its function in cis. Although many 
examples of trans-acting antisense transcripts have been 
described3,4,69,70, the fact that both antisense and sense 
transcripts are transcribed from the same region suggests 
that antisense transcripts function more frequently in cis 
than other ncRNAs that commonly function in trans10.

A classic approach to determine the function of a 
gene is to perturb its expression, followed by pheno-
typic analysis. However, the genomic arrangement of 
antisense transcripts makes it difficult to perturb anti-
sense expression without also affecting sense expression, 
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CpG islands
Genomic regions that contain  
a high frequency of CG 
dinucleotides; they are often 
associated with mammalian 
promoters and are targets  
of cytosine methylation.

Gene imprinting
An epigenetic process by which 
the expression of each allele of 
a gene depends on its parent 
of origin; for example, on 
whether it is the paternal  
or maternal allele.

and this approach has only succeeded in isolated exam-
ples29,69. The fact that most antisense transcripts func-
tion in cis also makes it difficult to use genome-wide 
approaches, such as systematic knockdown56 and 
overexpression, to identify putative functions of these 
transcripts. Approaches that are based on guilt-by- 
association, in which transcripts are linked to specific 
biological processes on the basis of common expression 
patterns across cell types and tissues10,68, are difficult to 
apply to antisense transcripts because their expression 
can be affected by the sense transcript29. To attempt to 
disentangle the causes and consequences of antisense 
transcription, the dynamic analysis of transcription 

following environmental perturbations has proven 
promising38,71. These studies involve measuring genome-
wide gene expression levels at different time points and 
comparing the transcriptional responses of cells with 
and without the key components that are involved in 
gene regulation by antisense transcription (for example, 
the histone methyltransferases SET1 (REF. 71) and SET3 
(REF. 38); see below) to determine the function of these 
key components. Another interesting approach is to use 
allele-specific measurement of gene expression to deter-
mine whether an antisense transcript can function in 
trans to affect a distant sense allele72. At the moment, 
however, the detailed molecular dissection of specific 
cases has been the most fruitful way of understand-
ing the functional consequences of gene regulation by  
antisense transcription.

Mechanisms of gene regulation
The orientation, stability, subcellular localization and 
inherent features, such as sequence or secondary struc-
ture, of antisense transcripts can all affect their mecha-
nisms of action. Antisense transcripts, or the act of their 
transcription, can affect almost all stages of the gene 
expression process. Here, we discuss the different steps 
of gene expression that antisense expression affects, 
including transcriptional initiation, co-transcriptional 
processes and post-transcriptional processes (TABLE 1). 
In addition, it should be noted that, similarly to how  
siRNAs repress gene expression in both the nucleus and 
the cytoplasm (reviewed in REFS 9,12), antisense tran-
scripts can also simultaneously function at different 
stages of the gene expression process. For example, the 
antisense transcript to the Ty1 retrotransposon in bud-
ding yeast silences Ty1 transcription in trans through 
chromatin modification70 and simultaneously controls 
its retrotransposition post-transcriptionally73.

Effects on transcription initiation. Antisense expression 
can affect transcription initiation through transcrip-
tional interference, in which one act of transcription 
negatively affects a second one in cis74. This has been 
shown to occur by promoter competition (that is, when 
the assembly of the transcription machinery at one 
promoter physically prevents the assembly at the sec-
ond one), by occlusion of binding sites due to the pas-
sage of RNA polymerase or even by chromatin or DNA 
modifications74.

In particular, antisense expression has been shown 
to regulate transcription initiation by affecting DNA 
methylation — the process by which specific cytosines 
are methylated, for example, at CpG islands in mam-
malian promoters, which usually leads to their long-
term repression75. One example is the repression of the  
haemoglobin α1 gene (HBA1) in patients with a class of 
α-thalassemia76. In this case, an aberrant LUC7L (puta-
tive RNA-binding protein Luc7-like) transcript runs 
antisense into the HBA1 locus and methylates its pro-
moter CpG island, which silences HBA1 expression and 
consequently causes disease (FIG. 1a). Antisense transcrip-
tion has also been implicated in gene imprinting in mice77, 
in which the transcription of an antisense transcript 

Box 2 | Genomic techniques for studying antisense expression

Since the discovery of the widespread transcription of non-coding RNAs (ncRNAs), 
there has been much debate about how much of this transcription is real and how  
much is simply a result of experimental artefacts64. Initial studies had difficulty in 
distinguishing between bona fide antisense transcripts and artefacts that are derived 
from their overlapping sense transcripts, which are usually expressed at higher levels.  
In recent years, several approaches have been developed to measure strand-specific 
transcription and to minimize experimental artefacts. Furthermore, new genome-wide 
techniques are delivering promising insights into RNA localization, single-cell 
expression and chromatin binding.

Transcript abundance
Most techniques that are used for measuring RNA abundance (for example, 
quantitative PCR or RNA sequencing) require the production of cDNA molecules by 
reverse transcription as their first step. However, the inherent ability of reverse 
transcriptase to use either RNA or DNA as a template can result in the production of 
artefactual double-stranded cDNA, leading to false-positive identification of antisense 
transcripts. This can be solved by adding actinomycin D65, a drug that specifically 
inhibits the DNA-dependent DNA polymerase activity of reverse transcriptase. Many 
strand-specific protocols that minimize the false-positive identification of antisense 
transcripts have been developed65,66. In the future, the direct sequencing of RNA 
molecules24 promises to solve problems that are derived from sample preparation by 
eliminating the need to produce cDNA.

Strand-specific measurements of RNA polymerases
Chromatin immunoprecipitation is a tool that is commonly used to study the 
transcription machinery, but as it enriches for double-stranded DNA fragments that 
are associated with proteins, it lacks strand-specificity. Alternative methodologies can 
be used to map both the position and the orientation of RNA polymerase. Global 
run-on sequencing (GRO-seq)37 measures the presence and orientation of active 
polymerases that are capable of run-on elongation, whereas native elongating 
transcript sequencing (NET-seq)67 allows the measurement of nascent transcripts from 
engaged RNA polymerases and is independent of their ability to elongate. In both 
approaches, the RNAs produced by these polymerases are sequenced, thereby 
achieving strand-specificity.

Subcellular localization
The application of strand-specific techniques to RNAs that are derived from different 
subcellular compartments25 (for example, the cytoplasm and the nucleus) helps to 
define different subpopulations of antisense transcripts, and thereby provides clues 
about their potential mechanisms of action (for example, those affecting translation 
are expected to be present in the cytoplasm).

Single-cell studies
Single-molecule fluorescence in situ hybridization approaches115 allow individual RNA 
molecules to be measured. As these methods are applied to single cells, they are also 
informative about transcriptional noise. Analyses of transcriptional noise will be further 
supported by the refinement of single-cell transcriptomics approaches.

Chromatin binding of ncRNAs
Genome-wide mapping of chromatin-binding sites of ncRNA molecules27,28 will help to 
expand the identification of their targets and to characterize their modes of action.
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Airn (antisense to insulin-like growth factor 2 receptor 
(Igf2r)), and not the Airn transcript itself, represses Igf2r 
by both transcriptional interference and DNA methyla-
tion78. However, antisense transcription can also have 
activating effects by protecting promoters from de novo 
methylation18 through R-loop formation, which involves 
DNA–RNA hybrids, during transcription79.

Antisense expression can also control transcription 
initiation by affecting histone modifications. A classic 
example is mammalian X chromosome inactivation, in 
which the long ncRNA XIST spreads over one copy of 
the X chromosome and recruits repressive chromatin- 
remodelling complexes, such as Polycomb repres-
sive complex 2 (PRC2). In mice, the action of Xist 
is antagonized in cis by its own antisense transcript 
— X (inactive)-specific transcript, opposite strand 
(Tsix)2. Whereas XIST and TSIX affect the whole 

chromosome, other antisense transcripts silence spe-
cific loci. For example, ANRIL (antisense ncRNA in the 
INK4 locus; also known as CDKN2B‑AS1), the expres-
sion of which is increased in prostate cancer, mediates 
the specific repression of the tumour suppressor locus 
CDKN2B–CDKN2A57, which encodes p15 (also known 
as INK4B), p14 (also known as ARF) and p16 (also 
known as INK4A). Specifically, the nascent antisense 
transcript recruits PRC2 in cis, which induces histone 
H3 lysine 27 methylation (H3K27me) and thus represses 
transcription from this locus57 (FIG. 1b). Interestingly, 
heterochromatin formation that is induced by ANRIL 
also leads to promoter DNA methylation after cellular  
differentiation80. The specific inhibition of cis-repressing 
antisense transcripts also holds promise as a therapeutic 
tool to increase the expression of specific target genes81,82. 
Specifically, it has been shown in mammals that the 

Table 1 | Examples of functional antisense transcription across all kingdoms of life

Mechanism 
of action

Antisense 
locus

Effects Species Refs

DNA 
methylation

LUC7L Methylates HBA1 promoter CpG island, which represses its 
expression

Humans 76

Airn Regulates Igf2r imprinting by DNA methylation Mice 77,78

Chromatin 
modifications

XIST and 
TSIX

Inactivates X chromosome gene expression Mammals 2

ANRIL Represses the tumour suppressor locus CDKN2B–CDKN2A 
by both histone H3 lysine 27 (H3K27) methylation and DNA 
methylation

Humans 57, 
80

BDNF‑AS Represses BDNF by histone modification Mammals 81

HOTAIR Silences the HOXD locus in trans by the recruitment of 
Polycomb proteins

Humans 3

COOLAIR Represses FLC sense gene by H3K4 demethylation and recruits 
Polycomb proteins, which increase H3K27me3 levels

Plants 85, 
86

COLDAIR Antisense to COOLAIR; represses FLC sense gene by the 
recruitment of Polycomb proteins

Plants 88

AS to 
PHO84

Represses PHO84 by histone deacetylation both in cis and  
in trans

S. cerevisiae 4,69

RTL Silences transcription of the Ty1 retrotransposon in trans 
through chromatin modification and post-transcriptionally 
controls its retrotransposition

S. cerevisiae 70, 
73

Transcriptional 
interference

RME2 Represses IME4 by transcriptional interference in cis and 
functions after transcription initiation of IME4

S. cerevisiae 5,99

Isoform 
variation

ZEB2‑AS Induces exon skipping in ZEB2, which produces an alternative 
isoform that has increased translation efficiency

Humans 7

Translation 
efficiency

AS to Uchl1 Increases translation efficiency of Uchl1 using a SINEB2 domain Mice 33

SymR Decreases translation efficiency of SymE by competing with 
binding of the 30S ribosome

Enterobacteria 6

RNA stability BACE1‑AS Increases stability of BACE1 by masking an microRNA-binding 
site

Humans 105, 
106

WDR83 
and DHPS

Increase their mutual stability by forming a duplex within their 
3′ untranslated regions

Humans 53

Airn, antisense Igf2r RNA; ANRIL, antisense non-coding RNA in the INK4 locus; AS, antisense; BACE1, β‑site APP‑cleaving enzyme 1; 
BDNF, brain-derived neurotrophic factor; COLDAIR, COLD‑ASSISTED INTRONIC NON‑CODING RNA; COOLAIR, COLD‑INDUCED 
LONG ANTISENSE INTRAGENIC RNA; DHPS, deoxyhypusine synthase; FLC, FLOWERING LOCUS C; HBA1, haemoglobin α1; HOTAIR, 
HOX transcript antisense RNA; HOXD, homeobox D; Igf2r, insulin-like growth factor 2 receptor; IME4, inducer of meiosis; LUC7L, 
Putative RNA‑binding protein Luc7‑like 1; PHO84, phosphate metabolism; RME2, regulator of meiosis 2; RTL, antisense to LTR (long 
terminal repeat); S. cerevisiae, Saccharomyces cerevisiae; SymE, SOS-induced yjiW gene with similarity to MazE; TSIX, XIST antisense 
RNA; Uchl1, ubiquitin carboxy-terminal hydrolase L1; WDR83, WD repeat domain 83; XIST, X inactive-specific transcript; ZEB2, 
zinc-finger E-box-binding homeobox 2.
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Nascent transcript
An RNA molecule that results 
from ongoing transcription  
and that is still associated  
with DNA through the RNA 
polymerase.

targeted degradation of BDNF‑AS — the antisense tran-
script of brain-derived neurotrophic factor (BDNF) — 
increases BDNF expression, probably by decreasing the  
repressive chromatin marks that are deposited by  
the antisense transcript81.

Antisense transcripts can also mediate chromatin 
modifications in trans. The best-known example is HOX 
transcript antisense RNA (HOTAIR) in mammals, which 
is an antisense transcript to the homeobox C (HOXC) 
locus and a predictor of both metastasis and death when 
it is expressed at high levels in primary breast tumours83. 
HOTAIR silences the HOXD locus in trans through 
the recruitment of Polycomb proteins3 (FIG. 1c). In fact, 
guidance of Polycomb proteins by antisense transcripts 
is likely to be common because PRC2 directly interacts 
with more than 3,000 antisense transcripts28, which could 
target Polycomb proteins to specific genomic locations 
where they could subsequently function27,28. Thus, anti-
sense transcripts can provide sequence specificity by 
interacting either with DNA or with the nascent transcript 
of the sense strand and by serving as a scaffold for the 
chromatin-modifying machinery10,11,84. This is similar to 
how siRNAs in Schizosaccharomyces pombe use nascent 
transcripts that originate near the centrosome as assembly  
platforms to guide heterochromatin formation12.

Chromatin modifications mediated by antisense 
transcripts that suppress transcription initiation are 
not restricted to animals. In plants, COLD‑ASSISTED 
INTRONIC NON‑CODING RNA (COOLAIR), which is 
a set of antisense transcripts to FLOWERING LOCUS C 
(FLC), uses two chromatin modification pathways to 

repress FLC expression. One of these pathways involves 
the use of a proximal polyadenylation site upon cold 
treatment, which increases H3K27me3 levels through 
the function of Polycomb proteins85. The other pathway 
involves specific RNA-binding proteins that promote the 
use of the proximal polyadenylation site, which causes 
local histone H3K4 demethylation86. In this case, multiple 
ncRNA-based mechanisms interact, in that COOLAIR 
transcription is limited by the specific stabilization of an 
R-loop over its promoter87 and that another transcript, 
COLD‑INDUCED LONG ANTISENSE INTRAGENIC 
RNA (COLDAIR; antisense to COOLAIR), can also 
recruit Polycomb proteins over the FLC locus88. In bud-
ding yeast, the antisense transcript to PHO84 (which 
encodes a phosphate transporter) is induced in response 
to chronological ageing, which causes repression of the 
sense gene by histone deacetylation both in cis and in 
trans69. Moreover, in budding yeast, the silencing of the 
GAL1–GAL10 locus (the protein products of which are 
involved in galactose metabolism) by antisense tran-
scription and the resulting activity of the histone meth-
yltransferase Set1 have been extensively studied89,90. This 
mechanism has been shown to operate genome wide48 
— hundreds of XUTs have been shown to silence their 
sense counterparts through Set1 (REF. 48). However, 
despite a few clear examples of trans-acting XUTs, recent 
work suggests that XRN1 could also function as a tran-
scription factor in the nucleus91. These and other well- 
characterized examples suggest that antisense-mediated  
repression of sense transcription through histone  
modification is common (reviewed in REFS 9,84).

Figure 1 | Effects of antisense expression on transcription initiation. a | Aberrant transcriptional extension of the LUC7L 
(putative RNA‑binding protein Luc7‑like) locus produces an antisense transcript that overlaps with the haemoglobin α1 
gene (HBA1), which methylates the HBA1 promoter and represses its expression76. b | The nascent antisense transcript 
ANRIL (antisense non‑coding RNA in the INK4 locus) recruits Polycomb repressive complex 2 (PRC2) in cis, which induces 
histone H3 lysine 27 methylation (H3K27me). This represses transcription of the tumour suppressor locus CDKN2B–
CDKN2A57 and also leads to long-term promoter DNA methylation at this locus80. c | HOX transcript antisense RNA 
(HOTAIR) silences the homeobox D (HOXD) locus in trans through PRC2 recruitment3. d | Antisense transcripts that 
originate from internal cryptic promoters can modify the chromatin of their associated sense promoters by depositing 
H3K4me2, thereby modulating the binding of the histone deacetylase Set3 and gene expression dynamics38.
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Polymerase pausing
A process in which an RNA 
polymerase temporarily halts 
elongation while remaining 
associated with DNA.  
It is associated with 
transcriptional regulation after 
initiation and is particularly 
frequent in metazoans.

The act of antisense transcription, rather than the 
produced transcript, has also been shown to induce 
chromatin modifications, which are deposited during 
transcription and subsequently regulate the expression 
of the modified regions38,71,92. For example, in budding 
yeast, transcription of antisense units that arise from 
internal cryptic promoters directly modifies the chro-
matin of the associated sense genes, which delays their 
transcription initiation38,89,90 (FIG. 1d).

A less investigated mechanism for the repression of 
transcription initiation is the formation of triple helices 
between transcripts and DNA93. We currently lack reli-
able estimates of the prevalence of this mechanism in 
antisense-mediated regulation, but several cases have 
been described for sense transcripts. For example, the 
human dihydrofolate reductase gene (DHFR) produces a 
sense transcript that overlaps the promoter and 5′ region 
of DHFR. Consequently, this RNA represses the main 
promoter both in cis and in trans by forming a stable 
triple RNA–DNA helix94.

Co‑transcriptional effects of antisense expression. 
Antisense expression can regulate gene expression 
after transcription initiation by transcriptional inter-
ference that occurs co-transcriptionally. This effect can 
be mediated by direct collision of RNA polymerases, 
by ‘sitting-duck’ interference (that is, when an elon-
gating polymerase removes another that is already 
bound to its promoter) or by one RNA polymerase 
acting as a ‘roadblock’ for other incoming elongating 
polymerases74.

If a DNA region is simultaneously transcribed in both 
directions, this leads to a collision of the transcription 
machinery (FIG. 2a). Although phage polymerases that 
transcribe opposite DNA strands are able to bypass each 
other in vitro95, this is not the case for more complex bac-
terial96 or eukaryotic97 RNA polymerases. Transcriptional 
interference by direct polymerase collision is most likely 
when there are two strong convergent transcription 
units, as it is unlikely for two weak transcription units 
to be simultaneously transcribed. However, polymerase 
pausing can increase transcriptional interference, even 
for weakly transcribed units, by extending the time of 
polymerase occupancy98. An example of transcriptional 
interference that functions after transcription initiation 
is the repression of the IME4 locus (which encodes a key 
regulator of meiosis) in budding yeast by its antisense 
transcript regulator of meiosis 2 (RME2)5,99. In this case, 
a 450-bp internal region of the IME4 gene is necessary 
for antisense-mediated repression, which suggests that 
antisense-mediated transcriptional interference blocks 
the elongation, but not the initiation, of the IME4  
transcript99 (FIG. 2b).

Antisense transcription can also regulate which 
transcript isoforms are produced by the sense gene. For 
example, antisense expression can affect mRNA splicing 
by masking specific splice sites and preventing their pro-
cessing. A well-known example in humans is the zinc-
finger E-box-binding homeobox 2 gene (ZEB2), which 
encodes a transcriptional repressor of E-cadherin. Its 
antisense transcript prevents the processing of a large 

5′ intron that contains an internal ribosome entry site 
on the ZEB2 mRNA7. This does not change the abun-
dance of the ZEB2 mRNA but increases its translation 
efficiency (FIG. 2c). Throughout metazoan evolution, 
genes that produce multiple spliced isoforms are asso-
ciated with antisense transcription, which indicates 
that antisense-mediated regulation could be a common 
mechanism to control alternative splicing100. Antisense-
mediated exon skipping has also been exploited thera-
peutically to change the levels of alternatively spliced 
isoforms or to restore disrupted open reading frames101.

Antisense expression can also lead to alternative 
transcript isoforms by mechanisms that are independ-
ent of splicing. For example, transcriptional interfer-
ence by antisense enhancer RNAs that are expressed in 
mouse embryonic stem cells during specific differentia-
tion stages can lead to the appearance of shorter sense 
transcript isoforms with alternative termination sites102 
(FIG. 2d). In bacteria, a similar mechanism called tran-
scription attenuation has been shown to affect the length 
of sense mRNAs. This phenomenon induces premature 
termination of the sense transcript103 through the inter-
action between sense and antisense transcripts, which 
also allows differential regulation of genes in a single 
operon103.

Post‑transcriptional effects of antisense expression. 
Finally, antisense expression can regulate the post-
transcriptional ‘life’ of a sense mRNA (FIG. 3). This effect 
can be indirectly exerted, as in the case of ZEB2 above, 
in which antisense expression controls translation effi-
ciency by affecting the produced transcript isoform7 
(FIG. 3c). In this section, however, we focus on direct 
post-transcriptional effects of antisense transcripts. 
These effects are potentially faster than the mechanisms 
described above, as they act on mRNA molecules that 
are already present in the cell and are not affected by the 
lag between a change in transcription rate and the estab-
lishment of a new mRNA concentration level. One limi-
tation of direct post-transcriptional regulation is that it 
requires both the sense and the antisense RNA molecules 
to be simultaneously present in the same cell. This is a 
limitation in organisms such as yeast, in which genes are 
expressed, on average, at a level of only one mRNA mol-
ecule per gene per cell104 and in which levels of antisense 
transcripts are even lower. Notably, when antisense tran-
scription affects sense expression through the chromatin- 
mediated mechanisms that are discussed above, it is not 
necessary for the antisense and sense transcripts to be 
present in the same cell at the same time; steady state 
levels of antisense transcripts also become irrelevant, as 
such effects are maintained by chromatin modifications. 
The direct post-transcriptional effects of antisense–
sense transcript interactions that have been described 
are diverse and include both positive and negative effects 
on translation and mRNA stability.

An example of an activating effect on translation 
is the mouse ubiquitin carboxy-terminal hydrolase L1 
(Uchl1) antisense transcript, which increases the trans-
lation of Uchl1 (REF. 33). Specifically, the antisense tran-
script binds to the 5′ region of the sense transcript, and 
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the SINEB2 domain on the antisense molecule then 
increases Uchl1-translation efficiency (FIG. 3a). In addi-
tion, nuclear–cytoplasmic shuttling of the antisense 
transcript regulates the efficiency of Uchl1 translation33. 
Although this is currently an isolated example, it sug-
gests a modular mechanism of antisense transcript 
function, in which one element recognizes the target 
mRNA molecule and other elements (in this case, the 
SINEB2 domain) affect its post-transcriptional behav-
iour. Antisense transcripts can mediate not only activat-
ing effects but also repressive effects on translation, as in 
the case of SymE, which encodes an enterobacterial toxin 
that is induced by SOS (that is, an inducible DNA repair 
system)6. Its antisense transcript SymR binds to the 5ʹ 

end of the SymE transcript, where it blocks the bind-
ing site of the 30S ribosomal subunit, thereby inhibiting 
SymE translation (FIG. 3b).

Antisense expression can also affect the stability of 
target mRNAs. Antisense transcripts have been shown 
to increase the stability of their target sense mRNAs 
by masking specific sites that would otherwise lead to 
mRNA degradation. One example, which comes from 
humans, is that of the antisense transcript to the β-site 
APP-cleaving enzyme 1 gene (BACE1), which encodes 
β-secretase 1 — an enzyme that has a central role in the 
progression of Alzheimer’s disease. The antisense tran-
script forms an RNA duplex with the sense mRNA105, 
and this duplex masks a binding site for the miRNA 

Figure 2 | Co-transcriptional effects of antisense transcription. a | Head-to-head transcription can lead to RNA 
polymerase collision96,97. b | Transcriptional interference of IME4 (which encodes a key regulator of meiosis) by its antisense 
gene regulator of meiosis 2 (RME2)5 requires the presence of an internal sequence in a specific orientation. This supports a 
model in which RME2 blocks polymerase elongation at the IME4 locus but not initiation of its transcription99. c | The 
transcription of ZEB2 antisense RNA 1 (ZEB2‑AS1) prevents the processing of a 5′ intron that contains an internal ribosome 
entry site (IRES)7. A sequence in the 5′ untranslated region of the ZEB2 mRNA limits ribosome scanning, such that only the 
presence of this IRES in the final product allows efficient ZEB2 translation. d | Transcriptional interference by antisense 
transcripts can limit the length of the sense transcript and lead to the production of shorter sense transcript isoforms102. By 
contrast, when the level of antisense transcript expression is low (dashed line), the long sense isoform can be produced.
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miRNA sponges
RNA molecules that have 
multiple binding sites for 
specific microRNAs (miRNAs); 
they are therefore able  
to function as decoys to 
sequester miRNAs and  
prevent them from binding  
to their targets.

miR-485-5p, which consequently suppresses miRNA-
induced decay and translational repression of BACE1 
(REF. 106) (FIG. 3c). This case is especially noteworthy, 
as it illustrates the competition between two different 
kinds of regulatory RNAs (that is, miRNAs and anti-
sense transcripts) to ‘fine-tune’ gene expression levels, 
and suggests a role for antisense transcripts in directly 
binding to miRNAs and acting as miRNA sponges107. 
Regulation of gene expression by antisense expression 
can also occur between two convergent protein-coding 
RNAs. For example, in humans, the stabilities of the 
WD repeat domain 83 mRNA (WDR83) and the deox-
yhypusine synthase mRNA (DHPS) are increased by 
the formation of an RNA duplex that consists of their 
3′ UTRs53.

Sense–antisense transcript pairing can also have 
negative effects on mRNA stability; for example, in 
Gram-positive bacteria, double-stranded RNAs that 
are formed by the genome-wide pairing of sense– 
antisense transcripts are degraded by RNase III108. In this 

case, it has been postulated that the presence of anti-
sense transcripts imposes a threshold, so that only highly 
expressed transcripts will escape degradation, whereas 
transcripts that are expressed at lower levels (that is, 
cryptic transcripts) will pair with their antisense tran-
scripts and will consequently be immediately targeted 
for degradation108 (FIG. 3d).

Biological relevance
So far, we have discussed different mechanisms of action 
for antisense transcription, which can affect different 
steps of the gene expression process and can even func-
tion simultaneously at multiple steps. However, the regu-
lation of gene expression by antisense transcripts does 
not exist in isolation — it is integrated with other mecha-
nisms to achieve complex regulatory effects. Here, we 
conceptualize different ways that cells integrate antisense 
transcription and focus on the biological advantages of 
gene regulation by antisense transcription compared 
with that by protein regulators.
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Antisense transcripts as regulatory hubs. Owing to the 
ability of transcription factors to recognize short DNA 
sequences that are present in the promoters of their tar-
get genes, they are generally better suited than antisense 
transcripts for globally coordinating the expression of 
groups of genes. However, antisense transcription can 
also coordinate gene expression of multiple genes both 
in cis and in trans. In addition, antisense transcripts are 
established as hubs for gene regulation by the ability of 
antisense-mediated regulation to integrate diverse types 
of regulatory signals, including both transcriptional and 
post-transcriptional ones, and to function at multiple 
steps of the gene expression process. One of the factors 
that allow antisense transcripts to integrate these diverse 
signals is the intrinsic modular flexibility of ncRNAs10,11. 
An illustrative example is HOTAIR, which regulates 
gene expression both by binding to diverse loci across 
the genome27,28 and by recruiting chromatin-modifying 
machinery3. Antisense transcripts, such as HOTAIR, 
can also function as scaffolds for chromatin-associated  
complexes. Most components of the chromatin- 
modifying machinery lack sequence specificity, but 
RNAs can bind to specific sequences and therefore 
recruit and scaffold chromatin-associated complexes 
into larger functional units10–12,56,84. In addition, ncRNAs 

can scaffold complexes that are bound to different 
regions of the genome, thus bringing them together. 
Therefore, another attractive hypothesis is the role of 
antisense transcripts in remodelling three-dimensional 
chromatin structure, as described for the human HOXA 
distal transcript antisense RNA (HOTTIP)109.

Another way in which antisense transcripts can act 
as regulatory hubs is by locally spreading regulatory  
signals to neighbouring genes. This has been observed 
in antisense transcripts that originate from bidirectional 
promoters in organisms with compact genomes, such 
as in budding yeast29 and fission yeast110. For example, 
upon galactose induction in budding yeast, the anti-
sense transcript that originates bidirectionally from the 
GAL80 promoter runs upstream into the promoter of 
SUR7, thereby repressing its activity. In this manner, the 
regulatory signals that impinge on the GAL80 promoter 
are spread to the promoter of SUR7 (REF. 29) (FIG. 4a). 
Such local crosstalk also occurs in bacteria, in which 
some protein-coding transcripts have long UTRs that 
silence the expression of neighbouring operons encod-
ing opposing cellular functions16. Local transcriptional 
crosstalk is not limited to organisms with compact 
genomes and can also affect larger genomic regions. 
For example, in mice, upon growth factor stimulation, 

Figure 4 | Biological implications of antisense expression. a | Antisense transcripts can transmit regulatory signals  
to neighbouring promoters29. Upon galactose induction in budding yeast, the same transcription factor (TF)‑mediated 
activation pathway induces the expression of GAL80 and an antisense transcript that originates bidirectionally from  
its promoter. This antisense transcript runs upstream into the promoter of SUR7 and represses its activity, thereby 
spreading GAL80 regulatory signal to both genes. b | Sense–antisense pairs can be regarded as self-regulatory  
circuits, in which the unit can be in either an on state (that is, the sense gene (blue) is expressed (solid arrows) and  
the antisense gene (red) is repressed (dashed arrows)) or an off state (that is, the target sense gene is repressed and the 
antisense gene is expressed). c | The presence of antisense transcripts (red) can induce a threshold‑dependent (that is, 
ultrasensitive117) on–off switch on sense‑gene regulation (blue). When the gene does not have an antisense transcript, 
its expression follows different kinetics (grey). d | Antisense or non-coding RNA transcription can ‘rewire’ regulatory 
networks, which inverts the final effect of a transcription factor. A transcription factor that activates gene expression 
(upper panel) can also behave as a repressor (lower panel) if it activates the expression of a non‑coding RNA (red)  
that has repressive effects on the downstream gene (blue). Part a is modified, with permission, from REF. 29 © (2011) 
Macmillan Publishers Ltd. All rights reserved.
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Dynamic range
The range of expression  
levels between the minimum 
expression level of a gene in its 
basal or repressed state and  
its maximum expression level 
upon full activation.

Transcriptional bursting
A stochastic process in which  
a promoter changes from an 
inactive state to an active or 
open state that allows the 
production of multiple RNAs in 
a short period of time, before 
returning to the inactive state.

‘ripples’ of transcription that originate from a target 
promoter spread across 100-kb regions. This induces 
histone acetylation and the coordinated upregulation 
of both coding and non-coding neighbouring genes111.

Sense–antisense pairs as self‑regulatory circuits. The 
precise locus specificity that is afforded by nucleotide 
sequence complementarity allows antisense transcripts, 
or the act of their transcription, to have specific effects 
on their targets. As sense and antisense transcription 
units are reciprocally complementary, in principle, 
they can mutually affect one another to establish self- 
regulatory circuits between sense and antisense expression.  
In the case of mutual repression (FIG. 4b), the effects can 
be subtle when antisense expression slightly modulates 
the expression of the sense gene (that is, fine-tuning its 
expression). Alternatively, there might be more drastic 
effects, in which the pair can be in either an ‘on’ state (in 
which the sense gene is expressed and the antisense gene 
is repressed) or an ‘off ’ state (in which the target sense 
gene is repressed and the antisense gene is expressed) — 
that is, the pair can form a bistable switch. It is important 
to note that these switches are established independently 
for each locus. Thus, cases in which antisense and sense 
expression are positively correlated24,29 in experiments 
using cell populations are compatible with alternative 
expression from different cells or alleles.

Studies have shown that the repressive effect of anti-
sense transcripts is sufficient to establish switch-like 
behaviour of the sense gene. For example, budding yeast 
seems to use the equilibrium between sense and anti-
sense transcripts to increase both the dynamic range of 
gene expression and the cell-to-cell variability in levels 
of protein expression29. In the case of SUR7 expression, 
its dynamic range is expanded in the lower range by 
antisense transcription that reduces basal or leaky levels 
of sense expression in the off state, thus increasing the 
range between minimum and maximum expression29. 
The ability of antisense transcription to regulate mul-
tiple levels of gene expression could further enhance 
this response. In fact, systems that involve both tran-
scriptional and post-transcriptional antisense-mediated 
regulation have been shown to achieve more efficient 
gene repression, in which any transcriptional leakage 
is blocked post-transcriptionally112. Thus, antisense 
transcripts provide a more robust (that is, less noisy) 
sense-gene repression in the off state than transcription 
factor-based mechanisms.

In the on state, when the sense transcript is expressed, 
antisense-mediated regulation is expected to lead to 
noisier expression of the sense gene. This is due to the 
low level of antisense transcripts that are present in the 
on state, which makes them sensitive to transcriptional 
bursting113. Cell-to-cell variability in gene expression is 
likely to be increased in the on state, both because even 
low levels of antisense expression increase transcrip-
tional noise and because sense–antisense equilibrium is 
established independently for each locus within individ-
ual cells29. Such variability, which can be achieved even at 
low levels of antisense transcription, could be important 
for adaptation. It allows cells in the same populations 

to respond differently to identical environmental stim-
uli, which could be advantageous for some cells in the 
population114. This increased variability is expected to be 
particularly relevant for stress-related genes, which are 
in fact enriched for the presence of antisense transcripts 
in budding yeast29. As recently confirmed in the case 
of PHO84 in budding yeast, anticorrelated sense and 
antisense expression4,69 can actually be due to exclusive 
expression of either transcript among single cells in a 
population115, which provides an opportunity for anti-
sense-mediated regulation to contribute to cell-to-cell 
phenotypic variability.

Effects on the kinetics of transcriptional regulation. 
Antisense expression not only alters the abundance of 
sense transcripts but also affects the kinetics of the tran-
sition between differential gene expression states116. In 
general, regulation by antisense transcripts is faster 
than that by transcription factors, especially for anti-
sense transcripts that function post-transcriptionally112. 
Additionally, the observed equilibrium between sense and 
antisense transcription (FIG. 4b) supports a model in which 
antisense expression induces a threshold-dependent  
(that is, ultrasensitive117) on–off switch for sense 
expression29 (FIG. 4c). Specifically, the activation of the  
sense transcript needs to be high enough to oppose 
the repressive (that is, buffering) effect of the antisense 
transcript before the equilibrium can be altered and an 
increase in sense expression can be produced. This anti-
sense-dependent ultrasensitivity allows buffering against 
low levels of activating stimuli, such as transient spuri-
ous activation signals, and also enables non-linear gene 
expression responses. For example, in Synechocystis spp. 
cyanobacteria, the presence of an antisense transcript 
(isrR) allows cells to ignore transient stimuli118. Only 
upon continued stimulation does the production of the 
sense iron-stress chlorophyll-binding protein transcript 
(isiA) overcome the repressive degradation effect of the 
antisense isrR transcript, which results in an accumu-
lation of the sense transcript and thereby allows the 
bacteria to adapt to iron stress conditions118,119 (FIG. 4c). 
Additionally, upon removal of the stimulus, a system that 
is based on antisense regulation can rapidly recover back 
to its basal state, especially if the antisense transcript is 
quickly degraded113.

Rewiring regulatory networks. Antisense transcripts 
can function in conjunction with protein regulators to 
modify their effects. For example, cells can use ncRNA 
expression to invert the final effect of other transcrip-
tional regulators. This ncRNA-mediated regulation not 
only allows the coordinated expression of neighbouring 
genes, in which an antisense transcript originating from 
a bidirectional promoter can spread signals that regulate 
sense expression29 (FIG. 4a), but can also function as a sim-
ple mechanism to rewire regulatory networks (FIG. 4d). 
An example of this rewiring is the transcription of a long 
ncRNA IRT1 that overlaps the IME1 promoter, which is 
a key regulator of sporulation in budding yeast92. The 
transcription factor Rme1 activates the transcription  
of IRT1, which arises from a promoter that is upstream 

R E V I E W S

890 | DECEMBER 2013 | VOLUME 14  www.nature.com/reviews/genetics

© 2013 Macmillan Publishers Limited. All rights reserved



of the IME1 promoter, but this activating upstream  
signal is transformed into a repressive one by the 
ncRNA, which silences the downstream IME1 promoter. 
Although IRT1 overlaps the IME1 promoter on the same 
strand, antisense transcripts can mediate similar effects; 
for example, both sense and antisense transcripts that 
are repressed by Set3C (which is a histone deacetylase 
that recognizes H3K4me) regulate the expression of 
their neighbouring genes in a similar manner38. Thus, 
the rewiring of regulatory networks by both antisense 
transcripts and ncRNAs could be a general mechanism 
for switching transcription factor functions between  
activators and repressors.

Rapid evolution of antisense-mediated regulation
Regulation by antisense transcripts has potential advan-
tages over regulation by transcription factors because it 
allows rapid evolution. The sequences of ncRNAs are 
constrained by factors such as RNA secondary structure, 
genomic position and expression level; collectively, the 
sequences that encode these ncRNAs accumulate fewer 
substitutions than neighbouring neutral sequences61. In 
addition, both the presence and regulation of sense–anti-
sense units show evolutionary conservation58–60. However, 
the appearance of new ncRNAs is less evolutionarily 
constrained than strategies that are dependent on pro-
teins because it does not involve the modification of  
protein-coding regions. This allows a rapid generation  
of antisense transcripts and contributes to the evolution of  
regulatory circuitries. In the simplest case, in which the 
act of transcription is the main regulatory function of 
an antisense transcript, no evolutionary limitations exist 
with respect to the RNA sequence itself or to its final 
abundance. Additionally, antisense-mediated regulation 
does not require any factors that are not already intrinsic 
to sense expression; thus, evolutionarily, it could have 
provided a regulatory mechanism that did not require 
the invention of new machinery.

Antisense transcripts in bacteria appear rapidly on 
an evolutionary timescale62,63. This high evolvability of 
ncRNAs is also seen in higher eukaryotes, as shown in a 
study of closely related mammals61. These studies have 
found that the gain or loss of gene loci is more frequent 
for non-protein-coding genes than for protein-coding 
ones. In fact, the rate of evolutionary turnover for anti-
sense transcripts is similar to those reported for tran-
scription factor-binding events120 or for other regulatory 
sequences121. It has been suggested that rapid evolution of 
non-coding regulatory mechanisms allows rapid adapta-
tion61. However, this rapid evolution also implies that 
the same antisense transcript cannot be easily studied 
across different species. In addition, although ncRNAs  
or antisense transcripts may not initially encode pro-
teins, they can provide ‘raw material’ for evolution to 
act on to give rise to proteins. Therefore, although we 
do not know the proportion of ncRNAs with regu-
latory functionality, some are likely to provide fit-
ness advantages in the future. Along these lines, both  
ncRNAs and antisense transcripts have been proposed 
to be proto-genes that generate a pool of transcripts 
encoding short polypeptides, which acts as a reservoir 

for new genes. This represents an evolutionary contin-
uum between antisense transcripts or other ncRNAs and  
protein-coding genes122.

Antisense transcripts may also participate in shap-
ing the evolution of genome architecture. Namely, they 
provide an intrinsic mechanism for the regulation of 
gene expression, in which not only the promoter and 
its terminator, but also other neighbouring regions  
and transcripts, affect gene expression through ncRNAs 
that invade a gene boundary29. In addition, when consid-
ering groups of neighbouring loci, both the interleaved 
organization of the transcriptome25,35,55 and the tran-
scriptional crosstalk between loci29 constrain the evolu-
tion of genome architecture. In particular, gene shuffling 
could be evolutionarily restricted in regions that support 
beneficial interactions between loci, whereas in other 
regions, new rearrangements could give rise to novel 
interaction networks that are mediated by ncRNAs and 
antisense transcripts.

Conclusions
Research over the past few years shows that antisense 
transcription is pervasive and, in many cases, it regulates 
gene expression at multiple stages, from the control of 
chromatin state to the modulation of the post-transcrip-
tional life of mRNAs. When studying a particular gene 
locus, its overlapping antisense and ncRNA transcription 
should be taken into account to improve experimental 
designs that are aimed at understanding its regulation 
and phenotypic consequences. However, to deepen our 
understanding of antisense transcription and to fully 
characterize the different mechanisms of action used 
by cells to regulate gene expression, many technical and 
conceptual developments are required.

From a technical point of view, both detailed bio-
chemical dissection of antisense-mediated regulation 
and additional genome-wide functional studies will be 
instrumental. To distinguish between effects caused by 
the act of transcription and those caused by the produced 
transcripts, it will be necessary to disentangle the meas-
urement of RNA levels35 from its transcription and deg-
radation37,67 (BOX 2). This, together with the application  
of methods such as chromatin immunoprecipitation 
followed by sequencing (ChIP–seq), will improve our 
mechanistic understanding of cis-acting antisense 
transcripts. The study of specific subcellular popula-
tions of transcripts25 will help to differentiate among 
co-transcriptional, post-transcriptional or chromatin-
mediated effects. Experimental designs that involve 
time course analyses will be instrumental for determin-
ing the dynamics of the non-coding transcriptome and 
will thus be critical for distinguishing between the causes 
and consequences of antisense expression. Furthermore, 
the application of new single-cell115 and transcriptomic55 
technologies promises a clearer picture of both the func-
tion and structure of antisense transcripts, as the variabil-
ity of sense–antisense expression among different cells of  
the same population might obscure the actual effects  
of antisense expression in individual cells. Carrying out 
comparative studies across species will help to under-
stand how the different antisense-mediated mechanisms 
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