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Abstract 

The focus of data scientists is essentially divided into three areas: collecting data, analyzing data, and inferring information from 
data. Each one of these tasks requires special personnel, takes time, and costs money. Yet, the next and the fastidious step is how 
to turn data into products. Therefore, this field grabs the attention of many research groups in academia as well as industry. In the 
last decades, data-driven approaches came into existence and gained more popularity because they require much less human 
effort. Natural Language Processing (NLP) is strongly among the fields influenced by data. The growth of data is behind the 
performance improvement of most NLP applications such as machine translation and automatic speech recognition. 
Consequently, many NLP applications are frequently moving from rule-based systems and knowledge-based methods to data-
driven approaches. However, collected data that are based on undefined design criteria or on technically unsuitable forms will be 
useless. Also, they will be neglected if the size is not enough to perform the required analysis and to infer the accurate 
information. The chief purpose of this overview is to shed some lights on the vital role of data in various fields and give a better 
understanding of data in light of NLP. Expressly, it describes what happen to data during its life-cycle: building, processing, 
analyzing, and exploring phases. 
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1. Introduction 

Recently, a variety of Natural Language Processing (NLP) applications are based on data-driven methods such as 
neural networks and Hidden Markow Models (HMMs) [1]. Since the progress in most of these methods is driven 
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from data, large and high-quality data become very valuable resources. For instance, some of their beneficial effects 
have been observed in machine translation [2], word sense disambiguation [3], summarization [4], syntactic 
annotation  [5], named entity recognition [6], among other NLP applications. Over centuries, the primary data have 
accumulated manually in the form of unstructured repositories of texts called archives. In the early 1980s, the 
revolution of computer industry leads to a new way of data treatment primarily in term of storage capacity. The new 
form of an entire population of electronic data are called databases that are designed to facilitate data entry and 
retrieval. A few years later, the NLP scientists gave a name of corpora to a subset of databases. i.e., a collection of 
naturally occurring text samples are compiled according to some explicit criteria in order to represent a language [7]. 

Similarly, various fields such as linguistic, lexicography, and education have been supported by data. This latter, 
in form of archives, dictionaries, and corpora, are considered as a principal source of evidence for linguistic 
description and argumentation. Grammarians have always needed sources of evidence as a basis to illustrate 
grammatical features such as the nature, the structure, and the functions of languages [8]. In lexicography, corpora 
are exceedingly used to build and make major revision of relevant dictionaries such as the “Dictionary of the Older 
Scottish Tongue”, the “Middle English Dictionary”, the “Dictionary of Old English”, and the “Oxford English 
Dictionary” [9]. Alongside the linguistic description and lexicography, data significantly affect a wide range of 
research activities that have a pedagogical purpose. For instance, learner corpora, collections of first or second 
language learner data, are generally used to build word frequency lists. These lists are a quick guide and better 
curricula materials for teaching and learning vocabulary. Nation [10] believes that the high-frequency words is 
important for the learners and need to focus on their learning burden and ensure that the learners will come back to 
them again. Whereas, some low frequent words may not need to become a part of the learners’ output or the teacher 
may give some brief attention to them. 

The aim of this paper is to outline the main stages in life-cycle of data in NLP, from data design and collection to 
data processing and analysis. Further, to make this overview equally rich in both theoretical and practical aspects, a 
surveya, that covers 100 of well-known and influential corpora, has addressed these stages. Yet, it represents many 
languages including monolingual corpora (24 languages), bilingual corpora (11 languages), and multilingual corpora 
(3 to 109 languages). Since the English language was the forerunner in NLP, it is normal that 25% of covered 
corpora are devoted to English. However, many other languages are catching up, implicitly considering English 
corpora as a global standard. It worth mention that most covered corpora are publicly available, either free of charge 
or at an affordable cost, and some of them are available for online search or downloadable. Finally, information 
regarding the website addresses or DOI for all data mentioned in this survey are given in the appendix. 

After this introduction, the main content of the paper is structured in section 2. We outline various stages of data 
life-cycle in light of NLP. Expressly, data sources, format, and corpus design criteria are described. Further, we 
attempt to present a general view of different data collection methods. Then, data processing and analysis are 
discussed in detail. Finally, Section 3 contains some concluding remarks. 

2. Life-cycle of data in NLP 

NLP, also known as computational linguistics, is a subfield of artificial intelligence that aims to learn, 
understand, recognize, and produce human language content [11]. To get over the limitation of rule-based systems, 
many research groups move to data-driven methods. However, collecting data is not a trivial undertaking and 
demands a coherent treatment behind it. For instance, one of the biggest challenges all corpora builders encounter is 
the lack of public resources as well as copyright. Yet, the quality and quantity of data does matter and should not 
haphazardly collected. For instance, Manning [12] reports that what we need to enhance the part-of-speech tagging 
and move the accuracy from its current level of about 97.3% to close to 100% is using better training data. 

2.1. Data design, sources, and format 

A corpus is not haphazard collections of textual material, therefore, a great care must be taken during the data 
collection [13]. Building corpora usually starts by identifying the appropriate criteria in order to be representative 
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with respect to the phenomena under investigation [14]. If there are no specific criteria, the corpus should be 
designed for a general use to suit most NLP applications. In the 90’s, primarily with the completion of the British 
National Corpus [15], basic guidelines in corpus design and compilation have been set by relevant specialists [15–
18]. Later, Sinclair [19] expanded these guidelines in ten fundamental criteria which are considered as core 
principles such as representativeness, balance, and homogeneity. 

Based on these design criteria, corpora builders should identify the data source genres and size. The selection and 
finding suitable resources is much more complicated. For example, as stressed by Lüdeling [20], the components of 
general corpora typically are representative of various genres, whilst specialized corpora can be limited to highlight 
only one genre or a family of genres. Regarding the size and balance, Lüdeling claims that it is not always possible 
to collect data in similar (or even sufficient) quantities for each text category represented in the corpus; this is often 
the case with historical corpora. However, several sources can be used to build corpora. A corpus, in one hand, may 
consist of a single book like the one developed by Baneyx et al. [21] to build an ontology of pulmonary diseases, 
and the one used for common-sense knowledge enhanced embeddings to solve pronoun disambiguation problems 
[22]. On the other hand, corpora are usually developed using a number of books (e.g., Shamela [23]), or editions of a 
particular newspaper (e.g., [24]). Recently, corpora builders, in particular individuals, use the web to build a very 
large corpora in a short time and with low cost [25]. However, we must be cautious when drawing data from the 
web, especially if the aim is to build a balanced corpus in which the language data have to be drawn from a wide 
range of sources. 

Regarding our survey, we proposed 9 well-known sources (books, web, magazines ...), offering the possibility to 
select multiple choices or adding new sources that are not listed. The results are presented in Table 1. 

Table 1. The used sources to build corpora 

Sources of corpora Number of corpora 

books 11 
books, Official Prints, Newspapers, Magazines 16 
Dictionaries 1 
Human-generated 4 
Newspapers 12 
Records 2 
Video subtitles 3 
Web 22 
Web, books, Official Prints, Old Manuscripts, Newspapers, Magazines 22 
Web, Human-generated 3 
Web, Newspapers, Magazines 4 
Total 100 

Text encoding or markup is one of the main tasks during data collection. Typically, corpora consist of electronic 
versions of texts taken from various sources. Therefore, a confusion may arise due to different codes used for 
markup. Since the 1980s, the Standard Generalized Markup Language (SGML) has become increasingly accepted as 
a standard way of encoding electronic texts. Using SGML is considered as a basis for data preparation; it facilitates 
the portability of corpora, enabling them to be reused in different contexts on different equipment, thus saving the 
cost of repeated typesetting. Since SGML can be complex for some corpora builders and users, an Extensible 
Markup Language (XML) that was derived from SGML contains a limited feature set to make it simpler to use. 
Among the different XML standards, the formation of the Text Encoding Initiative (TEIb) has to be seen as the first, 
the most comprehensive, and mature encoding standard for machine-readable texts. Since its launch in 1987, the 
TEI has become the reference platform for the representation of machine-readable texts [26]. TEI aims to encode as 
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many possible views (e.g., text components as physical, typographical or linguistic objects) of a text as possible. The 
TEI P5, which was the current edition at the time this article was first submitted, was released on November 2, 2007. 

2.2. Data collection methods 

The earlier corpora that occurred before the 1960s are called pre-electronic because they were not computerized. 
The roots of developing a corpus can be traced back to 1897 when the German linguist Kaeding assembled a large 
corpus that contains 11 million words [27]. Based on this corpus, Kaeding could publish the first known word 
frequency list using word counting. In doing so, he needed the help of over five thousand assistants over a period of 
years to process the corpus [28, 29]. However, the first corpus to be given that name was the Brown Corpus [30, 31], 
developed and released in 1964. It consists of texts amounting to over one million tokens after compiling a single 
year of publication (1961). 

Understandably enough, building corpora is time-consuming and often difficult to undertake regarding the size of 
data and the adopted compilation methods. Through this survey, it was possible to gather information about the 
methods used to build 100 corpora in relation to their size and the average time consumed during the compilation 
procedure. The purpose of this study is not to determine the best way to build a corpus. Instead, we would like to 
know what relevant methods are used and how long they took to complete the procedure. Table 2 exhibits the 
obtained results. 

Table 2. Compilation methods of corpora 

Compilation methods Corpora size (Nb of tokens) Nb of corpora Average time consumed 

Manual (28%) 

<= 100K 5 2 years 

<= 1M 8 3 years 6 months 

<= 10M 7 4 years 6 months 

<= 50M 4 7 years 

<= 100M 1 3 years 

<= 500M 2 3 years 

<= 1Bn 1 7 years 

Semi-automated (40%) 

<= 100K 1 2 years 

<= 1M 8 3 years 

<= 10M 6 4 years 6 months 

<= 50M 3 5 years 

<= 100M 3 2 years 

<= 500M 10 5 years 

<= 1Bn 3 6 years 

> 1Bn 6 10 years 3 months 

Automated (25%) 

<= 10M 1 3 years 

<= 50M 1 4 years 

<= 100M 6 5 years 8 months 

<= 500M 5 3 years 10 months 

<= 1Bn 3 2 years 6 months 

> 1Bn 9 3 years 
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Crowdsourcing (6%) 

<= 100K 2 1 years 9 months 

<= 1M 2 7 months 

<= 50M 1 8 years 

<= 1Bn 1 Since 2001 

Gamified approach (1%) <= 100K 1 43 days 

Table 2 exhibits the summary of compilation methods mentioned in the survey. We can observe that corpora 
builders usually rely on three major methods: (1) The first and the oldest method ever, the manual method. (2) The 
inevitable result after the appearance of computers, the automatic method. (3) This latter is not completely accurate, 
because the crawled data are often duplicated on the Web and need to be cleaned, filtered, and converted into the 
right format. Therefore, a manual edition is subsequently performed. This is the semi-automatic method. Concerning 
the crowdsourcing method, it is catching up. The crowdsourcing was the result of the advancement of digital 
technology and the Internet in the mid-2000s. It is mainly an online sourcing model in which individuals or 
organizations use contributions from online communities for problem solving and resources production [32]. One of 
the main platforms used in crowdsourcing is Amazon’s Mechanical Turkc (e.g., [33, 34]). The last observed method 
is the gamified approach or “Gamification”. It is a new-coming method to NLP [35], it was first mentioned in 2003 
and start to be used in literature in 2010 [36] (e.g., [37]). By definition, gamification is the use of game design 
elements in non­game contexts to increase users’ motivations towards given activities [38]. Though gamified 
approaches are based on the same strategy as crowdsourcing, in this latter, the participants receive money to 
increase motivation; whereas gamification incentivizes them by getting entertained. 

It can be surmised that producing a corpus with a considerable size and variety requires years of efforts 
regardless of the used method. In the context of NLP, the first and the most way to collect meaningful and high-
quality of data is to hire expert linguists to manually build or annotate corpora; however, it takes time, and costs 
money. The survey shows that 86% of manually built corpora contain less than 50 million words and it takes more 
than four years to complete them; whereas, 88% of automatically built corpora with a size that varies from 100 
million to billions are completed in less than the same period. Further, the automatic methods marked a considerable 
progress lately, mainly due to the recent advances in deep learning technologies (e.g., deep neural networks), 
especially when it comes to dealing with very large data and access to information. The “Intelligent Personal 
Assistants” like Apple Siri, Google Assistant, Microsoft Cortana, Amazon Echo, etc. are certainly sufficient 
examples of the significant success achieved using these methods. Generally, the semi-automated methods are a 
combination of both manual and automated methods, the aim is to raise the quality of data within a 
feasible/reasonable time and cost. In doing so, at first stage, the data are collected or annotated automatically and 
later edited by experts. It worth mentioning that the shortest time consumed for building a corpus is achieved by the 
gamified approach, this method can be promising, especially it combines some key features of the other methods. 
For example, it is fast as well as an automated method and provides good quality results; yet, it is based on the same 
strategy as crowdsourcing, but its cost does not scale with data size. 

2.3. Data processing and analysis 

After the data compilation, a set of general analyses and text processing are essential for NLP scientists. 
Generally, corpus annotation is a process devoted to assign linguistic features to language data [39]. The annotation 
implies to use standards, or at least, a well-elaborated set of procedures that is widely accepted and frequently used 
into common corpus creation and processing tools. Over the last years, significant efforts have been put into 
developing procedures for automatic annotation and text processing. The aim is to greatly reduce the human 
intervention and vastly expands the empirical basis. 

While some corpora builders attempt to annotate their collected data or processing existing ones, many others 
still do not bother with processing tasks and they just produce the corpora in raw format. Further, one of the main 
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quality of data is to hire expert linguists to manually build or annotate corpora; however, it takes time, and costs 
money. The survey shows that 86% of manually built corpora contain less than 50 million words and it takes more 
than four years to complete them; whereas, 88% of automatically built corpora with a size that varies from 100 
million to billions are completed in less than the same period. Further, the automatic methods marked a considerable 
progress lately, mainly due to the recent advances in deep learning technologies (e.g., deep neural networks), 
especially when it comes to dealing with very large data and access to information. The “Intelligent Personal 
Assistants” like Apple Siri, Google Assistant, Microsoft Cortana, Amazon Echo, etc. are certainly sufficient 
examples of the significant success achieved using these methods. Generally, the semi-automated methods are a 
combination of both manual and automated methods, the aim is to raise the quality of data within a 
feasible/reasonable time and cost. In doing so, at first stage, the data are collected or annotated automatically and 
later edited by experts. It worth mentioning that the shortest time consumed for building a corpus is achieved by the 
gamified approach, this method can be promising, especially it combines some key features of the other methods. 
For example, it is fast as well as an automated method and provides good quality results; yet, it is based on the same 
strategy as crowdsourcing, but its cost does not scale with data size. 

2.3. Data processing and analysis 

After the data compilation, a set of general analyses and text processing are essential for NLP scientists. 
Generally, corpus annotation is a process devoted to assign linguistic features to language data [39]. The annotation 
implies to use standards, or at least, a well-elaborated set of procedures that is widely accepted and frequently used 
into common corpus creation and processing tools. Over the last years, significant efforts have been put into 
developing procedures for automatic annotation and text processing. The aim is to greatly reduce the human 
intervention and vastly expands the empirical basis. 

While some corpora builders attempt to annotate their collected data or processing existing ones, many others 
still do not bother with processing tasks and they just produce the corpora in raw format. Further, one of the main 

 

c https://www.mturk.com 

 Imad Zeroual / Procedia Computer Science 00 (2018) 000–000 

aims being addressed in NLP is developing new forms of annotation and improving the accuracy of automatic 
annotation. The following tasks are some key features of corpus annotation, they are considered sophisticated as a 
part of a basic data processing workflow, and their design is more contentious. They can be performed manually by 
expert linguists to ensure the quality of annotation, or they may be done automatically to allow an extensive and 
difficult analyses to be carried out. To name a few: 

• Lemmatization: The purpose of lemmatization process is to reduce surface words to their canonical form called 
lemma; this latter is a dictionary lookup form. The lemma relates different word forms that have the same 
meaning [40]. Further, using lemmatization is found to be efficient, in particular, for information retrieval [41].  

• Part of speech (PoS) tagging: It is a basic task in corpus linguistics and an underlying condition to support many 
subsequent NLP applications. It aims to assign a morpho­syntactical features to each word in a sentence 
according to the context; also, it allows simple syntactic searches to be performed [42]. 

• Parsing: The natural successor to PoS tagging is parsing. Basically, it provides a dependency tree as an output. 
Here, the goal is predicting for each sentence or clause an abstract representation of the grammatical entities and 
the relations between them. Consequently, the parser assigns a fully labelled syntactic tree or bracketing of 
constituents to sentences of the corpus [43]. 

According to the survey, Table 3 presents the different annotation processes performed during corpora building. 
Note that, many corpora may contain parts of both annotated texts and raw data. 

Table 3. Types of corpora annotation 

Annotation types Number of corpora 

Raw texts 7 

Texts with metadata 17 

Partially annotated 10 

Full annotation 28 

Parsed 1 

Semantic annotation 1 

Parts of Raw texts and Texts with metadata 4 

Parts of Raw texts and Full annotation 2 

Parts of Texts with metadata and Partially annotated 12 

Parts of Texts with metadata and Full annotation 11 

Parts of Parsed and Partially annotated texts 2 

Parts of Parsed and Full PoS annotated texts 5 

Total 100 

As seen in Table 3, 40% of corpora contain texts with metadata, and with the same rate, we have corpora with 
full annotation, which means they contain, at least, lemmatized and PoS tagged data. A small rate (8 corpora) has 
been totally or partially parsed and only one corpus has been semantically annotated. These results are expected 
knowing that parsing and sentiment analysis require an advanced level knowledge of linguistic theories and rules. 
However, automatic sentiment analysis has been increased in recent years due to the rapid data growth in social 
networks especially twitter. 

Regarding the data analysis, they are probably the most important procedures in data life­cycle that could help to 
solve issues, support theories, observe phenomena, extract valuable information, and produce useful and reliable 
applications in academic, commercial and public sectors. Next, we briefly state the basis analysis used in NLP: 

• Concordance: It aims to search the text and finds every occurrence of each word and displays all the occurrences 
with its immediate context in a corpus. Further, Concordances can be produced in several formats, but the most 
usual form is the Key Word in Context (KWIC) concordance [29]. The first concordance, completed in 1230, was 
that of Hugo of Caro [44], Dominican monk and cardinal (died 1263). It has been said that 500 monks to have 
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been engaged upon its preparation. As the basis of their work they used the text of the Latin Vulgate, the standard 
Bible of the Middle Ages in Western Europe. 

• Word frequency procedure: It aims to produce lists of words and their frequency in the corpus. Moreover, it is 
feasible to produce word frequency lists using a PoS tagged corpus not merely their orthographic status. For 
example, Leech et al [45] use the tagged British National Corpus to build the word frequencies list in written and 
spoken English. 

• Collocation statistics: It is a procedure to calculate statistical information about the association, the strength of 
collocation, and the comparative frequencies of word forms in a corpus or multiple corpora. Unlike the previous 
analytical procedures, collocation requires a big­sized corpus. Otherwise, the analyst cannot cope with the 
available data. 

In addition, deeper analysis lead to produce NLP applications that help performing sophisticated tasks effectively 
that no individual or using knowledge­based methods can do better, not to mention that they could require years or 
decades of efforts. As examples of those applications, Information Retrieval (IR), summarization, and Machine 
Translation (MT). By applying IR, we can search and retrieve relevant information required among enormous data 
(e.g., search engines [46]), even if the source documents are written in a language while the user’s queries are in 
another one [47]. Summarization analysis can turn large numbers of documents into shorter versions without 
changing meaning of the original texts. This is useful for a question answering system, whereas, the summarization 
generates a sort of summary of the answer, primarily if the question is why or how type question (e.g., [48]). On the 
other hand, the benefit from online education is still limited by language barriers since the content is usually 
generated in English. Machine translation can bridge the language gap by providing an initial translation which can 
be later post­edited by translators (e.g., [49]). 

3. Conclusion 

In this paper, we have briefly presented distinct stages in the life­cycle of data in NLP. The goal of this overview 
is to help readers to better understand the data design, collection, annotation, and analysis procedures by taking an 
experiment from already published corpora of the most prominent projects of resource rich–poor languages. In order 
to make the survey rich in information, we targeted well­known corpora in the literature and those publicly 
available; yet, we covered many languages in purpose to ensure that the survey is balanced as much as possible. 
Finally, this overview is always a subject to make further progress and more detailed descriptions and to a critical 
understanding of the conceptual, technical, and practical scope of data in light of NLP. 
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Appendix: Corpora of the survey 

Corpora language(s) Corpus reference (URL or DOI) 
Al-Hayat Arabic Corpus Arabic  http://catalog.elra.info/product_info.php?products_id=632 
Alpino Treebank Dutch http://odur.let.rug.nl/~vannoord/trees/ 
Amara 20 languages http://alt.qcri.org/resources/qedcorpus/ 
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been engaged upon its preparation. As the basis of their work they used the text of the Latin Vulgate, the standard 
Bible of the Middle Ages in Western Europe. 

• Word frequency procedure: It aims to produce lists of words and their frequency in the corpus. Moreover, it is 
feasible to produce word frequency lists using a PoS tagged corpus not merely their orthographic status. For 
example, Leech et al [45] use the tagged British National Corpus to build the word frequencies list in written and 
spoken English. 

• Collocation statistics: It is a procedure to calculate statistical information about the association, the strength of 
collocation, and the comparative frequencies of word forms in a corpus or multiple corpora. Unlike the previous 
analytical procedures, collocation requires a big­sized corpus. Otherwise, the analyst cannot cope with the 
available data. 

In addition, deeper analysis lead to produce NLP applications that help performing sophisticated tasks effectively 
that no individual or using knowledge­based methods can do better, not to mention that they could require years or 
decades of efforts. As examples of those applications, Information Retrieval (IR), summarization, and Machine 
Translation (MT). By applying IR, we can search and retrieve relevant information required among enormous data 
(e.g., search engines [46]), even if the source documents are written in a language while the user’s queries are in 
another one [47]. Summarization analysis can turn large numbers of documents into shorter versions without 
changing meaning of the original texts. This is useful for a question answering system, whereas, the summarization 
generates a sort of summary of the answer, primarily if the question is why or how type question (e.g., [48]). On the 
other hand, the benefit from online education is still limited by language barriers since the content is usually 
generated in English. Machine translation can bridge the language gap by providing an initial translation which can 
be later post­edited by translators (e.g., [49]). 

3. Conclusion 

In this paper, we have briefly presented distinct stages in the life­cycle of data in NLP. The goal of this overview 
is to help readers to better understand the data design, collection, annotation, and analysis procedures by taking an 
experiment from already published corpora of the most prominent projects of resource rich–poor languages. In order 
to make the survey rich in information, we targeted well­known corpora in the literature and those publicly 
available; yet, we covered many languages in purpose to ensure that the survey is balanced as much as possible. 
Finally, this overview is always a subject to make further progress and more detailed descriptions and to a critical 
understanding of the conceptual, technical, and practical scope of data in light of NLP. 
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