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A B S T R A C T

Data driven methods are playing an increasingly important role in transient stability assessment, primarily
because of the availability of large annotated datasets. Nevertheless, training data cannot cover all the possible
operating conditions of a modern power system with variable power generations and loads. The classifier should
adjust to the near-future operation condition in limited time, and this adjustment may be hindered by the
computational time of the simulations and classifier training. To dramatically reduce the computational cost,
this paper presents a systematic approach for building and updating an accurate transient stability classifier.
First, the time-series trajectories of generators after disturbance are used as the inputs, and then a convolutional
neural network (CNN) ensemble method is proposed to generate the transient stability predictor using these
multi-dimensional data. To reduce the misclassification of instability, different cost weights are considered for
the stable and unstable instances in the loss function. When the operating condition changes substantially and
makes the pre-trained classifier unavailable, the active learning and fine-tuning techniques are integrated to
update the classifier with good performance using fewer labelled instances and short computational time. The
simulation results of two power systems illustrate the effectiveness of the proposed approach.

1. Introduction

During the past several years, there has been a substantial promo-
tion of renewable energy and flexible loads to modern power systems,
which brings challenges for the security and stability of the power
system [1]. Transient stability, or large-disturbance rotor angle stabi-
lity, is one of the major concerns for planning, operation and control of
power systems [2]. Many dynamic units in power systems act on one
another, which results in the complexity of transient stability analysis.

The most accurate method for transient stability analysis is time-
domain simulation; however, this approach is time consuming, espe-
cially for large-scale power systems. In [3], the piecewise constant-
current load equivalent is proposed to reduce the computing time for
integrating the differential/algebraic equation model of post-fault
power system dynamics, but the computational speed seems insufficient
for real-time application. By contrast, the direct methods, such as
transient energy function method [4] and extended equal-area criterion
[5], can compute quickly and provide the stability margin, whereas the
model limitations are inevitable. In [6], a hybrid method based on the
new concept of equal area criterion and corrected kinetic energy

function is proposed for real-time transient stability assessment. It can
be concluded that the methods with detailed models can provide ac-
curate prediction, whereas the computation speed seems insufficient for
real-time application. To achieve the fast prediction, it is unavoidable
to make some assumptions to simplify the problem at the expense of
accuracy.

Thanks to the wide availability of massive energy data in the power
systems, it is expected that data analytics will play an increasingly
important role in modern power systems [7,8]. Data-driven method,
which has powerful and flexible modelling capability [9], as well as the
fast prediction after the inputs are obtained, has been considered as
alternatives for transient stability prediction [10–17].

When using the data-driven methods for transient stability predic-
tion, a set of appropriate features should be selected and extracted as
the inputs; then an appropriate classification method is utilized to
predict the transient stability status. The input features of data-driven
based methods used for transient stability prediction include the gen-
erator rotor angles and speeds [10–13], generator terminal voltages
[14,15], apparent impedance [16] and the combination of different
variables [17], etc. In [18], the terms of transient energy functions are
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used as the input features. In [19], several wide-area severity indices
are defined in the time and frequency domains. These indices are used
as the inputs to build the classifiers for catastrophe predictor. In [20],
the empirical orthogonal function is used for feature extraction and
selection before training a classifier for transient stability analysis.

Various algorithms have been used to train the classifier for tran-
sient stability prediction, such as artificial neural network [10], deci-
sion tree [11–14,16,21], support vector machine [15,17,18,20,22], and
random forest [19]. Recently, the rapid development of deep learning
has promoted the widespread exploration of deep learning in industry
applications [23–28]. The deep learning model can provide more ac-
curate results than the shallow models. In [29], the long short-term
memory (LSTM) is proposed for transient stability prediction. The re-
sults show that the LSTM-based method can achieve a superior assess-
ment accuracy within a short period of time after disturbance.

In general, there are two types of application scenarios for the data-
driven based methods. One scenario is to analyse the transient stability
considering anticipated but non-occurring contingencies [18,30]. In
this case, the steady-state measurements are usually used as the inputs
[30]. When the power system is predicted as insecure, prevention
control actions should be conducted. In [18], the post-disturbance data
are used for online dynamic security assessment considering anticipated
contingencies. These dynamic data can be obtained from short-term
simulations and the generated classifier has good performance. There-
fore, the dynamic data can also be used for pre-contingency analysis.
The other scenario is to provide real-time prediction of the transient
stability status after contingences [10–17,19,20]. In this case, the dy-
namic responses of different variables that can be obtained by wide area
measurement systems are always used as the inputs.

This paper focuses on the transient stability prediction using dy-
namic data. The dynamic data can be obtained from post-contingency
real-time measurements or pre-contingency short-term simulations.
Therefore, the proposed method can be applied to predict the transient
stability status under both occurred and anticipated contingencies.
When using the dynamic trajectories of different variables and different
generators for transient stability prediction, the input is a massive
amount of spatio-temporal data. Spatio-temporal data can be stored as
multi-dimensional arrays and have similar data structure to that of the
images. This characteristic motivated us to utilize the convolutional
neural network (CNN) [31], a popular deep learning network especially
in computer vision applications, to perform the transient stability pre-
diction. During the operation of power systems, the operating condi-
tions, such as the load levels and network topologies, vary with gen-
eration and load changes, generation dispatch, scheduled maintenance,
etc. Thus, the number of possible operating conditions is infinite, and
there are unavoidable differences between the offline training and the
practical conditions. The classifier obtained by offline simulation and
historical data may become unsuitable and need to be updated peri-
odically [18,19,21]. To obtain a new classifier, a comprehensive dataset
should be generated considering the uncertainties associated with load
levels, system topology, fault types, locations, clearance time, etc. And
the classifier is retrained using the new dataset. The data generation
and classifier retraining may be time consuming and become an

obstacle for updating.
To dramatically reduce the computational cost of classifier up-

dating, this paper presents a CNN-based method integrating active
learning and fine-tuning techniques. Active learning aims to train an
accurate model with low cost by only labelling the important instances
[32,33]. Fine-tuning involves adapting an existing pre-trained model to
another domain by executing a few training iterations on a new dataset
[23]. By integrating these two techniques, the generated classifier can
be updated using less training instances in shorter time, making the
updating process more suitable for practical application.

The main contributions of this paper can be summarized as follows:
(1) All the time-series features are stored as multi-dimensional arrays,
and then three different CNNs with different window sizes of kernels
are built to construct an ensemble classifier with high accuracy and
generalization ability. (2) Before the operating conditions and topolo-
gies change greatly (as predicted by generation and load forecasting,
dispatching, scheduled maintenance, etc.), the classifiers can be up-
dated rapidly by fine-tuning the pre-trained classifier using the most
informative and representative instances, and the computational costs
of both the data generation and classifier training process are greatly
reduced, making the proposed approach more suitable for practical
application.

The remainder of this paper is organized as follows. The physical
description of transient stability, the mathematical description and
analysis of data-driven based method for transient stability analysis are
included in Section 2. Section 3 introduces the proposed CNN ensemble
classifier considering the high-dimensional characteristic of the inputs.
The total data-driven approach for transient stability prediction con-
sidering the operational variability is described in Section 4. Compre-
hensive case studies and discussions are presented in Section 5. The
conclusions are given in Section 6.

2. Problem description and analysis

The basic structure of power system for transient stability analysis is
shown in Fig. 1.

There is one synchronous generator combined with the loads and
other dynamic units through the power grid. The imbalance between
the generator mechanic power Pm and electromagnetic power Pe is
associated with the variation of rotor angles and speeds. The rotor
speed signal is then put into the prime mover and its speed control
system to control the output torque of the prime mover Tm, and hence
influence the Pm. On the other hand, the generator voltage Ut is echoed
back to the excitation system to control the field voltage Ef. For prac-
tical power systems, there are many generators, loads and other dy-
namic units. These units are combined together through the power grid
and act on one another, which results in the complexity of transient
stability analysis.

Data driven methods have been adopted as alternative approaches
for transient stability analysis, which is mainly because the rapid
computation. When using data driven methods to predict the transient
stability, a set of variables Xi=(Xi,1, Xi,2,…, Xi,k) should be selected to
describe the operating conditions of power systems. Next, a set of
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Fig. 1. Basic structure of power system model for transient stability analysis [34].
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instance-label pairs (Xi,yi) is obtained considering different load levels,
network configurations and contingencies by simulation or historical
measurements. By training from massive data, the data-driven method
can find a mapping between the input features Xi and the transient
stability analysis result yi: ψ(Xi)= yi.

The transient stability directly depends on the dynamics of gen-
erator rotor angles. Thus, the rotor angle-related variables are always
used as the inputs [10–13,17]. Moreover, the rotor angle is affected by
the electromagnetic power [17]. When the fault occurs, the electro-
magnetic power will suddenly change. After the fault clearance, relative
electromagnetic power of the i-th generator, Pei(t)/Pei(0-), reflects the
recovery of the electromagnetic power. In this research, the dynamic
trajectories of the relative rotor angles, the speeds, the accelerations,
the kinetic energy, and the relative electromagnetic power of all the
generators are used as the inputs. Detail information of the input fea-
tures are shown in Table 1. More case studies and discussions about the
input features will be provided in Section 5.3 and 5.6.

The aforementioned input data can be stored as multi-dimensional
arrays, as shown in Fig. 2.

The input data are high dimensional when using these time-series
features, especially for a large-scale power system with hundreds of

generators. As a result, the computational space and time increase
greatly with increasing system size. Actually, the data structure of these
time-series variables is similar to that of the images. The variable axis of
these time-series data depicts different views of all the generators (e.g.,
the rotor angle, speed, kinetic energies), analogous to the colour
channels of an image. Moreover, there are two axes (time and gen-
erator) featuring different variables that can be viewed as being ana-
logous to the width and height axes of the image. This characteristic
motivated us to utilize the CNN, a well-known deep learning method for
image classification, to perform the transient stability prediction using
these time-series features.

3. CNN ensemble classifier for transient stability prediction

3.1. Brief introduction of CNN

For the transient stability prediction with high-dimensional input, it
is not practical to apply the fully connected neural network to generate
a classifier since a high number of weights for each neuron is necessary.
And the required number of training instances will increase as the
parameter number increases. The CNN provides a solution to reduce the
parameter number. The convolutional neuron shares the same weights
to each spatial location (i,j); therefore, the parameter number is greatly
reduced. The output oi,j of a convolutional layer with location (i, j) is as
follows:

= ⊗ +W Xo σ b(( ) )i j i j, , (1)

where W is a kernel with learned weight, b is the bias, “⊗” is the
convolution operation that is always substituted by the correlation
operation, and σ() is the activation function. After the convolutional
layer, it is common to add a pooling layer to reduce the data dimension.
The most commonly used pooling layer, max-pooling, is utilized here.

After the convolutional and pooling process, an activation layer is
required to make the learned features more dividable. In this research,
the activation function of the convolutional layers and the pooling
layers is the rectified linear unit (ReLU), which is widely used as an
activation unit to accelerate the convergence of the CNN [31]:

=ReLU x x( ) max(0, ) (2)

Table 1
Descriptions of different input features.

Input features Descriptions

Relative rotor angle [5] of generator i at
t= tk

̃ = − ∑ ∑= =δ t δ t M δ t M( ) ( ) ( )/i k i k i
n

i i k i
n

i1 1

Relative rotor speed of generator i at
t= tk

̃ ̃ ̃=ω t δ t δ t t( ) [ ( ) - ( )]/Δi k i k i k - 1

Relative rotor acceleration of generator
i at t= tk

̃ ̃ ̃ ̃= +α t δ t δ t δ t t( ) [ ( ) - ( )  2 ( )]/Δi k i k i k i k- 1 - 2

Kinetic energy of generator i at t= tk ̃=EK t M ω t( ) ( ( ))i k i i k
1
2

2

Relative electromagnetic power of
generator i at t= tk

̃ =P t P t P( ) ( )/ (0 )ei k ei k ei -

where n is the total number of generators, Mi is the inertia coefficient of gen-
erator i, δi(tk) is the rotor angle of generator i at t= tk,
Δt= tk−tk−1= tk−1

–tk−2, Pei(tk) is the electromagnetic power of generator i at
t= tk.

Fig. 2. Data structure of the time-series variables for transient stability prediction.
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where x is the input to the activation layer.
A fully connected layer is required to generate the classification

stage after the convolutional layers and pooling layers. The mathema-
tical representation of fully-connected layer is:

= ∗ +W Xo σ b( )i j f f f, 2 (3)

where Xf is the input data of the fully-connected layer, Wf is the weight
matrix, bf is the bias. The activation function of the fully connected
layer is Softmax:

=
∑
=

XP C e

e
( | )

X

X
k

V

k

V

( )

1

2
( )

k

k

(4)

where Vk(X) is the k-th input data of the Softmax layer with instance X,
P(C1|X) and P(C2|X) are the probabilities of an unknown instance X
identified as class-1 and class-2 (binary classification), respectively. The
final output of CNN is y ̂ i=( ̂y i

(1), ̂y i
(2))=(P(C1|X), P(C2|X)). If P

(C1|X) > P(C2|X), then the unknown instance will be identified as class
1 and vice versa.

Fig. 3 shows a CNN structure with one convolution and pooling
layer.

The weight matrix and the corresponding biases in CNN are
achieved through the minimization of the loss between the true label
vectors yi=(yi(1), yi(2)) and the predicted label vectors ̂y i=( ̂y i

(1),
̂y i
(2)), for N training instances i=1,...,N. If yi(1)= 1, then the unknown

instance will be identified as stable and vice versa. In this research, the
common cross-entropy loss is used as the loss function, shown as Eq. (5)

∑ ∑= − = − +
= =

y yL
N

H
N

y y y y^1 ( , ) 1 [ log(^ ) log(^ )]i i
i

N

i

N

i i i i
1 1

(1) (1) (2) (2)

(5)

where N is the total number of training instances. The cross-entropy loss
has fast convergence rates and is numerically stable when coupled with
softmax normalization [35].

The Adam stochastic optimization algorithm is applied to minimize
the loss function. Adam is a straightforward, memory-saving and
computationally effective method and is quite suitable for models with
large inputs of data. Details of this optimization algorithm can be found
in [36].

3.2. Proposed CNN-based ensemble classifier

For the transient stability prediction, the original training data are
always unbalanced with fewer unstable instances. This condition will
lead to under-fitting for unstable instances. If a stable case is false
alarmed, then there is little impact on the power system security be-
cause the emergency measures always make the power system strong.
In contrast, an unstable case that is misidentified will result in a disaster
when no measure has been taken to prevent the collapse. Therefore, the
cost of misdetecting instability is greater than stability. One solution to

reduce the misdetection of instability is to set different costs to impose
greater weight on the unstable instances, and the loss function in Eq. (5)
can be rewritten as

̂ ̂∑= +
=

L
N

W y y W y y- 1 [ log( ) log( )]
i

N

s i i us i i
1

(1) (1) (2) (2)

(6)

where Wus and Ws are the cost weight of unstable and stable instances,
respectively. When Wus=Ws = 1, the loss function put the same im-
portance to the stability and instability. When Wus > Ws, that means
the misdetection cost of instability is greater than stability.

On the other hand, the performance of a CNN is greatly influenced
by the parameter construction. In the literatures, the window sizes of
the first convolutional layer of different kinds of CNNs are different,
e.g., 3× 3 [37], 5× 5 [31] and 7× 7 [38]. The size of the first con-
volutional layer can be larger than that of the subsequent layers, but a
larger window size corresponds to more parameters. The most com-
monly used size of the other convolutional layers is 3× 3, and the size
of max-pooling is usually selected as 2×2 [31,37,38]. A better clas-
sifier with appropriate construction can only be determined via many
time-consuming trials. Moreover, it is difficult to ensure that the se-
lected classifier can always perform the best of any test scenarios. For
this reason, different CNNs with different parameter configurations are
trained to construct an ensemble classifier. All the sub-classifiers can be
trained by multiple graphic processing units (GPUs), making the pro-
posed approach more suitable for practical application. It should be
noted that the determination of CNN number should depend on the
comprehensive case studies and hardware condition. The combination
of different classifiers is a successful approach to reduce test errors [39].
Whereas, using too many CNNs may require more graphic processing
units. In this research, three different CNNs are trained to generate the
ensemble classifier to verify the effectiveness. For different applications
and hardware conditions, the number of CNNs may be different.

Two types of power systems are used for case studies: the New
England 10-machine 39-bus system and the Northeast Power
Coordinating Council (NPCC) 48-machine 140-bus system. It is assumed
that all the dynamic variables are sampled simultaneously every cycle
(0.0167 s for 60 Hz system), therefore the input features are time series
of which time interval is 0.0167 s. The response time of dynamic tra-
jectories is Ncycle/60 s in the case studies; so, the number of cycles is
Ncycle. The input sizes are Ncycle × 10×5 and Ncycle × 48×5 for the
10-machine and 48-machine test systems, respectively. Two convolu-
tional and max pooling layers are enough for these two kinds of data.
The data pre-processing and network structure of proposed CNN en-
semble classifier are shown in Fig. 4.

In Fig. 4, all the input data are pre-processed by maximum and
minimum normalization first. Then, the normalized data are divided
into three axes according to the generator number, variables and re-
sponse time. Therefore, the input size are Ncycle × 10×5 and
Ncycle × 48×5 for the 10-machine system and the 48-machine system,

(W1x+b1)

(W2x+b2) (Maxpooling)

Input:6×6×5,Stride: 1×1
Convolutional size:3×3,number:2

Input:4×4×2,Stride: 2×2
Pooling size:2×2

Input:8×1

Flatten

Flatten

Convolution Operation Pooling Operation

(Maxpooling)

Fully Connected Layer

Output

Output

Fig. 3. Basic structure of CNN with one convolution and pooling layer.

Y. Zhou et al. Electrical Power and Energy Systems 107 (2019) 379–394

382



respectively. These high-dimensional data are placed into three dif-
ferent CNNs with two convolutional and max pooling layers, two fully
connected hidden layers and a Softmax layer at the end. The activation
function of convolutional layers and pooling layers is ReLU. The
window sizes of the first convolutional layer of the three CNNs are
3× 3, 5×5 and 7× 7 respectively. The detail parameters of the CNN
classifiers are shown in Table 2.

Moreover, dropout [40,41] is used in the fully connected layers of
Fig. 4. The neuron in the l-th fully connected layer after dropout is as
follows:

⎧
⎨
⎩

∼

= ++ +w r y

r Bernoulli p

y σ b

( )

( ( ) )
j
l

i
l

i
l l l

( )

( 1) ( 1) ( ) ( )
(7)

where r(l) is a vector of independent Bernoulli random variables, each of
which has probability p of being 1 [41]; y (l) is the input vector of the
dropout layer; and y(l+1) is the output after dropout. The final output of
the ensemble classifier is the average of all the CNNs’ probabilistic
outputs:

=
∑
=X

X
P C

P C
( | )

( | )

3z k
s

s k
1

3

(8)

where Ps(Ck|X) is the probabilities of class kwith respect to an unknown
instance X using the s-th CNN. Similar with the definition of confidence
in [43], the prediction confidence of CNN ensemble classifier is
CIz=max{PZ(C1|X), PZ(C2|X)}.

4. Data-driven approach for transient stability prediction
considering the operational variability

The data-driven method for transient stability prediction consists of
three important processes: (1) Offline classifier training, (2) Period
updating and (3) Practical application. The temporal relationships of
these three processes are shown in Fig. 5.

The offline training and period updating process should be finished
before application. Detail of the data-driven method for transient sta-
bility prediction is shown in Fig. 6.

4.1. Offline classifier training

During the offline training process, a comprehensive dataset, (Xi,yi),
should be generated for the next application period (e.g. t2-t5 in Fig. 5),
where Xi=(Xi,1, Xi,2,…, Xi,k) is a set of input variables, yi is the tran-
sient stability status of the i-th instances based on long-term time-do-
main simulation, i=Noc×Nc represents that Noc operation conditions
(OCs) and Nc contingencies are included in the dataset, the determi-
nation of Noc and Nc is related to the scale of power systems and the
time period for application. The uncertainties associated with load le-
vels, system topology, fault types, locations, clearance time should be
considered [11]. By training from massive data, the data-driven method
can find a mapping between the input features Xi and the transient
stability analysis result yi: ψ(Xi)= yi. Before application, the classifier
should be verified by several test datasets or cross-validation to avoid
the over-fitting.

4.2. Period updating integrating active learning and Fine-tuning techniques

The updating process should be conducted infrequently on daily,
hourly or shorter. The prospective OCs in the next period can be
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Fig. 4. The data pre-processing and network structure of the proposed CNN-based ensemble classifier.

Table 2
Details of the CNN models.

Layer Kernel Size/Stride Kernel Number Padding Output size

10-machine 48-machine 10-machine 48-machine

1. Convolution (1) 3× 3/1×1
(2) 5× 5/1×1
(3) 7× 7/1×1

(1) 3×3/1×2
(2) 5×5/1×2
(3) 7×7/1×2

32 Same Ncycle × 10×32 Ncycle × 24×32

2. Pooling 2×2/2×2 2×2/2×2 32 Same ⌈Ncycle/2⌉×5×32 ⌈Ncycle/2⌉×12×32
3. Convolution 3×3/1×1 3×3/1×2 64 Same ⌈Ncycle/2⌉×5×64 ⌈Ncycle/2⌉×6×64
4. Pooling 2×2/2×2 2×2/2×2 64 Same ⌈Ncycle/4⌉×3×64 ⌈Ncycle/4⌉×3×64
5. Fully connected 120 120 1 – 120×1 120×1
6. Fully connected 30 30 1 – 30×1 30×1
7. Softmax 2 2 1 – 2 2
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Application Application
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Fig. 5. Temporal relationships of three important processes.

Y. Zhou et al. Electrical Power and Energy Systems 107 (2019) 379–394

383



predicted using a short-term generation & load forecast and the asso-
ciated unit commitment rules [18,21,42]. If the prospective OCs and
anticipated contingencies are close to any of the OCs and contingencies
already considered in the offline process, the classifier can be viewed as
effective. When new OCs or anticipated contingencies appear or are
predicted, new instances Dnew should be generated based on the new
OCs and contingencies [21]. If the prediction accuracy of the classifier
for Dnew reaches to a set value Aset, the classifier remains frozen until
the next updating period. Otherwise, the classifier should be updated by
the proposed updating scheme.

During the updating process, generally, the required number of in-
stances considering Noc′ new operation conditions and Nc′ con-
tingencies for the next period should be obtained to update the new
training dataset. The real operation data can be added as the new OCs.
Moreover, the uncertainties should be considered to generate compre-
hensive OCs. Then the classifier is retrained by the new dataset.
However, it is time-consuming for massive time-domain simulations
and the classifier training especially for deep learning approaches. To
reduce the computation cost, the active learning and fine-tuning tech-
niques are used in the proposed updating strategy for transient stability
prediction.

In the proposed updating scheme, the required number of unlabeled
instances considering Noc′ new operation conditions and Nc′ con-
tingencies for the next period should be obtained via a short-term si-
mulation, that is Xs

new where s=1…Noc′×Nc′. Noc and Nc are related
to the scale of power systems and the time period for application. These
unlabeled instances will be placed into the pre-trained or old classifier
to determine which Nnew instances are important for the updating
process. Only Nnew instances will be annotated with the target labels
using long-term simulation at each iteration (The value of Nnew is
manually set). These new labeled instances (Xsi

new, ysinew) will be put
into the new training database, then the classifier is updated by fine-
tuning the pre-trained classifier using the new training database. The
aforementioned process will continue until the performance of the new
classifier for Dnew is satisfied. Then the new classifier will be used as the
final classifier for the next period.

Given an unlabelled instance set Du, a labelled training set Dl, a new
labelled testing set Dnew, an uncertainty function fu, and a pre-trained
classifier M0, the proposed updating algorithm is shown as follows.

Algorithm 1 Proposed Updating Scheme Integrating Active Learning and Fine-tuning
Techniques

Given the number of new labelled instances at each iteration, Nnew, and the iteration
time i = 0.

While (the terminating condition is not satisfied) do:
1. i← i+1
2. Compute the uncertainty index, eLC, of all the unlabelled instances.
3. Query the label of the top Nnew instances with higher uncertainty by long-term
simulation, Dni

4. Dl←Dl ∪Dni

5. Obtain the new classifier Mi by fine-tuning Mi-1 using Dl.
6. Go to 1 if the terminating condition is not satisfied

end while

One key component of this algorithm is to construct the uncertainty
measure for the unlabelled instances. For the binary classification for
transient stability prediction, the uncertainty measure is sufficient to
determine which instances should be annotated labels. A basic un-
certainty sampling strategy is to query the instance whose predicted
output has the lowest confidence [32]:

̂= Xe P yarg min ( | )LC z (9)

where ̂y is the most likely label with the highest posterior probability in
the hypothesis. This index prefers the instances with the least con-
fidence (or highest uncertainty) in deciding their most likely class la-
bels. For example, the output of an unknown instance X1 is
PZ(C1|X1)= 0.45, PZ(C2|X1)= 0.55. Therefore the most likely label of
X1 is class-2, the confidence of X1 is 0.55, and the uncertainty of X1 is
0.45. In contrast, the output of an unknown instance X2 is
PZ(C1|X2)= 0.05, PZ(C2|X2)= 0.95. Although the most likely label of
both X1 and X2 are class-2, the prediction confidence of X2 is 0.95
whereas X1 is 0.55. Therefore, the instance X1 with less confidence is
preferred to be annotated a label in this strategy.

In the Algorithm 1, the number of epochs is selected as eight during
the fine-tuning process at each iteration. The terminating condition is
satisfied only if one of the following conditions is true: (1) The accuracy
for Dnew reaches to a set value Aset. (2) The accuracy for Dnew cannot
improve during Tset iterations. In the case studies, Aset = 98%,
Tset = 10.
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Fig. 6. Details of the proposed scheme for transient stability prediction.
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Based on the proposed updating process, only i×Nnew instances are
annotated with the target labels using long-term simulation and added
into the training database, where i is the iteration time, Nnew is
manually set. Therefore, the computational time of both the time-do-
main simulation and classifier training can be greatly reduced, making
the proposed approach more suitable for practical application.

4.3. Application

The inputs of the CNN ensemble classifier include dynamic data. As
mentioned before, these dynamic responses can be obtained from real-
time measurements as well as short-term simulations [18], therefore,
the CNN ensemble classifier can be applied to both the post-con-
tingency and pre-contingency application.

For the pre-contingency application, the short-time simulation is
used to prepare dynamic inputs. The transient stability of power sys-
tems under anticipated contingencies can be estimated using the gen-
erated classifier. The system security state is determined through the
comprehensive results of the stability under all anticipated con-
tingencies.

For the post-contingency application, the rotor position measure
method is adopted to obtain the measurements of generator rotor an-
gles [12], and the trajectories of electromagnetic power are calculated
by the voltage magnitude and current of different generators. There-
fore, these dynamic responses can be obtained from measurements and
sent into the CNN ensemble classifier to rapidly predict the transient
stability of power systems. Generally, the performance of classifiers
with longer response time is better than the classifiers with shorter
response time. The sooner the prediction is completed, the longer the
time available to take countermeasures to prevent a possible collapse
will be. It is hard to draw a definite conclusion about how long the best
response time for any power system should be. In [43], a hierarchical
scheme is proposed for transient stability prediction, the classifiers with
different response times constitute the different layers to balance the
rapidity and accuracy. And the hierarchical scheme can also be used for
the proposed CNN ensemble classifier in this research.

On the other hand, it should be noted that the data-driven method is
NOT a replacement but addition for other methods. In practical appli-
cation, the data-driven method should be used combining with the
time-domain simulation and other methods based on a multiple level
structure in Fig. 7. On the first level, the data-driven method is re-
sponsible to rapidly predict the transient stability status of power sys-
tems under anticipated or occurred contingencies. For some cases with
low prediction confidence, it is reasonable to view these cases as un-
certain temporary. And these uncertain cases can be further identified
by time-domain simulation or other methods.

5. Case study

5.1. Data generation

The generations and loads are randomly changed around 80–120%
of standard operating point to generate a statistically sound dataset.
The generation of real power, relative power, real power generation
and the terminal voltage of generation at i-th operating point are based
on the following equations [18]:
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where ΔPLO(i), ΔQLO
(i) and ΔPGO(i) stand for the variation range of load

and generation power, ΔVGO
(i) = 0.02 means the variation range of the

generator terminal voltage is± 2%, ɛPL(i)(k), ɛQL(i)(k), ɛPG(i)(k), ɛVG(i)(k)
are the random number in [0,1].

Three-phase short circuit faults at three locations (10%, 50% and
90% of the head of line) of all the transmission lines are considered.
Four types of fault clearing times ranging from 6 to 12 cycles with an
increment of 2 cycles (1 cycle is 0.0167 s for 60 Hz system) are assumed
for all the contingencies.

To annotate the label of different operation conditions and con-
tingencies, the time domain simulation should be conducted. The
transient stability index, η, is calculated from the generator rotor angles
[44]:

=
+

η δ
δ

360 - |Δ |
360 |Δ |

o
max

o
max (14)

where |Δδ|max is the absolute value of the maximum angle of separation
between any two generators after disturbance. When η≥ 0, the system
is considered as stable and vice versa. Thus, the power system is con-
sidered as transiently unstable when |Δδ|max > 360°. It should be
noted that the stability criterion is dependent on the power system
characteristics [10], and different researches have used different cri-
teria. The criterion in [18] is whether the difference between the rotor
angles of any two generators exceeds 360° in the 3 s after clearing time.
In [30,43,45], the criterion is 360° in the 4 s after clearing time. In [11],
the criterion is 360° during 6 s simulation. In this research, the criterion
for transient stability is whether the difference between the rotor angles
of any two generators exceeds 360° within 4 s after the fault clearance.
All the transient stability simulations are conducted using the Power
System Toolbox 3.0 [46].

Two test power systems—the 10-machine 39-bus power system and
the NPCC 48-machine 140-bus system—are used for the case study. The
excitation systems and detailed models of synchronous generators are
considered in these two power systems. The dynamic parameters of 10-
machine power system can be found in [47], and the dynamic para-
meters of 48-machine power system are taken from the power system
toolbox [46].

5.2. Evaluation indices

A useful tool for evaluating the performance of classifiers is the
confusion matrix, shown in Table 3.

Transient stability prediction
cases

Most cases can be
recognized correctly

Some cases need
further identification

Stable Unstable

First level
Data-driven method

(rapidly)

Second level
Time-domain simulation

or other methods
(Accurately)

Fig. 7. Application mode combining the data-driven methods and other
methods.

Table 3
Confusion matrix.

Confusion matrix Stable (Predicted) Unstable (Predicted)

Stable (Actual) Ts Fus
Unstable (Actual) Fs Tus
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Setting Ns and Nus as the total number of stable and unstable in-
stances, respectively, there are Ns= Ts + Fus and Nus= Tus+ Fs.
Therefore, the related indices are defined as follows [48,49]:

= + +Accuracy Acc T T N N: ( )/( )s us s us (15)

= +Reliability A T N F: /( )us us us us (16)

= +Security A T N F: /( )s s s s (17)

− = ×G mean G A A: us s (18)

Accuracy is a widely used index without considering class im-
balance. Reliability and Security denote the ratio of correctly identified
unstable cases and stable cases, respectively. G-mean is a geometric
mean of the Reliability and Security, evaluating the overall performance
of the classifier for imbalanced data, which is the main concern in this
research.

5.3. Performance of the CNN ensemble classifier

(1) Ensemble CNN Classifier vs Single CNN Classifier

To verify the effectiveness of the proposed CNN ensemble classifier,
two test systems are used to generate the training data and testing data.
The ratio of the test data to the training data is approximately equal to
1/4, as shown in Table 4.

Different CNN classifiers are generated using the training data with
9 cycles data (150ms for this 60 Hz system) to predict the transient
stability. Setting Wus=Ws = 1 in the loss function. Tables 5 and 6
show the performances of different classifiers for testing datasets of the
10-machine system and the 48-machine system, respectively.

Tables 5 and 6 show that the prediction errors of different CNN
classifiers are different for different datasets, e.g. the CNN 1 (CNN with
size 3×3 of the first convolution layer) performs the worst in 10-
machine system but the best of the three CNN classifiers in 48-machine
system. By using the ensemble method, the proposed CNN ensemble
classifiers perform the best, with the highest G-mean for these two test
power systems, and therefore the diverse errors are avoided.

(2) Cost Ratio Adjustment vs Without Cost Ratio Adjustment

Table 7 shows the prediction results of testing data using different
cost ratios Wus/Ws in the loss function (6), where Wus and Ws are the
weights of unstable and stable instances, respectively.

With the increase of cost ratios, the CNN-based ensemble classifier
successfully identifies more unstable instances, whereas the number of
accurately identified stable instances is reduced. Nevertheless, the
performance is still satisfied due to the high G-mean and accuracy
(above 98%). It can be seen that the classifier has the highest G-mean
value when Wus/Ws= 2 and Wus/Ws= 4 for the 10-machine system
and 48-machine system, respectively.

Having a careful check of the training data in Table 4, the ratio of
stable instance number (Ns) and unstable instance number (Nus) is
10539/5779≈ 1.82 for the 10-machine system, and Ns/Nus= 66744/
17055≈ 3.91 for the 48-machine system. It can be found that the best
value of Wus/Ws is pretty close to the value of Ns/Nus in the training
data. Therefore, it is recommended to directly use a similar value of Ns/
Nus for Wus/Ws when the training data is imbalanced with less unstable

cases.

(3) Ensemble CNN Classifier vs Other Kinds of Classifiers

An additional four classifiers are generated using the same training
data in Table 4 for comparison: decision tree (DT), random forest (RF)
with 100 trees, and multilayer perceptron (MLP) with four hidden
layers. The decision tree is the classification and regression tree based
on Gini impurity. The kernel size of the four fully-connected layers in
MLP are 100, 50, 10 and 2 respectively. Considering the class im-
balance in the training data, the extended data [19] is used to train the
DT, RF and MLP. For the 10-machine system, the unstable cases are
replicated one time to obtain the extended data. For the 48-machine
system, the unstable cases are replicated three times. Then the DT, MLP
and RF generated by the extended data are called as the extended DT,
extended MLP and extended RF, respectively. Two layers of LSTM
memory blocks are employed in the LSTM layer, where each layer has
128 memory blocks [29]. The network of LSTM and CNN are trained for
up to 100 epochs. The three CNNs are trained in parallel. All these
methods are run on a PC with an Intel Core i7-4790 3.6-GHz processor,
16 GB of RAM and a Titan X Pascal GPU. Tables 8 and 9 show the
performance of different classifiers for the testing datasets of the 10-
machine system and 48-machine system, respectively.

Tables 8 and 9 show that the proposed CNN ensemble classifiers
perform the best, with the highest G-mean values for these two test
power systems. The order of the test time for one instance is 10−3 s. The
memory space of the CNN ensemble classifiers for the two test system
are the same because the parameter numbers are equal (Table 2). The
training time of CNN ensemble classifier is a little long but still ac-
ceptable because the training process is conducted offline.

On the other hand, the training time of 48-machine system increases
from 417.38 s to 2056.27 s mainly because the number of training in-
stances increases. Fig. 8 shows the training time of the CNN ensemble
classifier using different numbers of training instances.

It can be seen from Fig. 8 that, when using the same number of
training instances, there are minor differences between the training
time of the 10-machine system and 48-machine system because the
parameter numbers are equal in Table 2. For a larger power system,
therefore, the training time mainly depends on the number of instances
when using the same CNN ensemble classifier with the same epochs.

(4) Effect of Noise

The input features can be provided from measurements and com-
putations, whereas errors may be involved for practical application.

Table 4
Description of the training and testing data.

Test system Training data Testing data

Total Stable Unstable Total Stable Unstable

10-machine system 16,318 10,539 5,779 4,082 2,636 1,446
48-machine system 83,799 66,744 17,055 21,033 16,690 4,343

Table 5
Prediction results of testing data of the 10-machine system using different CNN
classifiers.

Classifier G-mean Reliability Security Accuracy

CNN 1 97.90% 96.54% 99.28% 98.31%
CNN 2 98.19% 98.13% 98.25% 98.21%
CNN 3 98.45% 98.06% 98.84% 98.29%

Ensemble 98.55% 98.27% 98.84% 98.63%

Table 6
Prediction results of testing data of the 48-machine system using different CNN
classifiers.

Classifier G-mean Reliability Security Accuracy

CNN 1 98.15% 97.40% 98.91% 98.60%
CNN 2 97.81% 96.45% 99.19% 98.62%
CNN 3 98.07% 97.17% 98.97% 98.60%

Ensemble 98.22% 97.28% 99.16% 98.77%
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More case studies are conducted to test the prediction performance
considering the input errors. The errors were simulated by adding white
noises following Gaussian distribution N(0, σ) to each variable in the
original testing set to generate a new testing set. The new variables xij′
in the testing set is

′ = × + ∼x x θ θ N σ(1 ), (0, )ij ij (19)

The range of σ is selected from 0.01 to 0.08, the prediction results of
different classifiers in Tables 8 and 9 are tested. The G-mean value of
the testing data are presented in Fig. 9. It can be found that the pro-
posed CNN ensemble classifier has the best performance under the
noise condition.

(5) Performance of the CNN Ensemble Classifiers with Different
Response Time

For post-contingency application, the total prediction time of the
CNN ensemble classifier is related to the response time of inputs,
computation time of CNN ensemble classifier and the latency. The la-
tency is unavoidable for any methods. The computation time for one
instance after the inputs obtained is 0.004 s. Therefore, the response
time is a key aspect for the total prediction time. The performance of
the CNN ensemble classifiers using the features with different response
times is tested, shown in Fig. 10.

It can be seen that the performance of CNN ensemble classifier is
better when using a longer response time. To balance the rapidity and
accuracy of transient stability prediction, the hierarchical scheme in
[43] can be used for the CNN ensemble classifier.

Take the CNN ensemble classifier with 0.05 s response time as an
example, the instability occurrence time histogram of the total testing
unstable instances, the detected and undetected unstable instances are
compared in Fig. 11.

Fig. 11(a) shows the instability occurrence time histogram of the
total testing unstable instances. Fig. 11(b) shows that the CNN en-
semble classifier can even detect some cases that instability occur after
3 s after the fault clearance. In Fig. 11(c), the instability occurrence
times of the most of the undetected unstable instances are longer than
1 s. It can be found that the proposed CNN ensemble classifier can ra-
pidly detect some instabilities. The average of the instability occurrence
time in all the detected unstable instances is 0.8242 s, the response time
is 0.05 s, the computation time of CNN is 0.004 s. Therefore, the
average preemptive time of the proposed method before instability
occurs is 0.7702 s regardless of the latency.

(6) Comparisons among different classifiers with different input fea-
tures

In the literatures, the voltage-related variables are always used as
the inputs because these variables can be obtained directly by phasor
measurement units (PMUs). These features can also be used for the
proposed CNN ensemble classifier. In this section, the voltage magnetic
and phase angles of all the generator buses over the time span of 150ms
after fault clearing are used as the inputs. Then the extended DT, MLP,
RF, LSTM and CNN ensemble classifiers are obtained using the same
training data in Section 5.3 (3). The prediction results of different
classifiers for the test data in 10-machine system are shown in Table 10.
It can be seen from Table 10 that, when using the voltage variables as
the inputs, the ensemble CNN classifier still perform the best with the
highest G-mean value.

In [50], 34 features are extracted from the original trajectories.
These features are also used to train a SVM from the same training data
in Table 4 for comparison. Besides, the extended SVM is trained from
the extended data. The response time is 150ms after the fault clearing.
The parameters of SVM are search by a cross validation with grid-search
process. Table 11 shows the performances of different classifiers for
testing datasets of the 10-machine system.

It should be noted that the data in this research and Ref. [50] are
different. Although the SVM classifier has good performance than the
other shallow models, the proposed CNN ensemble classifier (in
Table 8) still possesses the best performance with the highest G-mean.

(7) Performance of the CNN ensemble classifier using the features of
part of generators

For the post-contingency application, the inputs can only be ob-
tained from real-time measurements. Considering the PMU locations,
only the measurements of some generators can be obtained. Therefore,
the prediction performance of the CNN ensemble classifier using the
information of parts of generators should be considered.

To verify the effectiveness of the proposed approach, the CNN en-
semble classifier is retrained only using the features of part of gen-
erators. When the features of any one generator are removed from the
original inputs, the G-mean and accuracy of the CNN ensemble classi-
fier for the test data in 10-machine system are shown in Fig. 12.

When the features of multiple generators are removed from the
original inputs, the situations are more complex because of the ran-
domness. For simplicity, only the situations when the generators’ fea-
tures are removed according to the descending order of the G-mean

Table 7
Prediction results of testing data using different cost ratios.

Wus/Ws 10-machine system 48-machine system

Accuracy Reliability Security G-mean Accuracy Reliability Security G-mean

1 98.63% 98.27% 98.84% 98.55% 98.77% 97.28% 99.16% 98.22%
2 98.58% 98.69% 98.52% 98.60% 98.75% 97.90% 98.97% 98.43%
3 98.16% 99.03% 97.69% 98.36% 98.67% 98.34% 98.75% 98.54%
4 98.16% 99.03% 97.69% 98.36% 98.52% 98.71% 98.47% 98.59%
5 98.16% 99.03% 97.69% 98.36% 98.09% 99.17% 97.81% 98.49%

Table 8
Prediction results of testing data of the 10-machine system using different classifiers.

Classifier Training time Test time (one instance) Memory G-mean Reliability Security Accuracy

Extended CART 19.28 s 0.001 s 49 K 95.68% 94.67% 96.70% 95.98%
Extended MLP 10.80 s 0.001 s 1590 K 97.37% 97.37% 97.38% 97.38%
Extended RF 57.68 s 0.009 s 4929 K 97.81% 97.86% 97.76% 97.80%
LSTM, Wus/Ws = 2 2220.20 s 0.022 s 4194 K 98.20% 98.34% 98.07% 98.16%
Ensemble CNN, Wus/Ws = 2 417.38 s 0.004 s 3489 K 98.60% 98.69% 98.52% 98.58%
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value in Fig. 12. Ten generator sets are shown in Table 12.
The prediction results of the CNN ensemble classifier using different

generator sets are shown in Fig. 13.
Fig. 13 shows that the more generators are considered as the input

features, the better the CNN ensemble classifier performs. Besides, the
prediction results show that the proposed approach is effective (higher
than 97%) when only using the measurements of three generators.

5.4. Performance of the CNN ensemble classifier considering the variation
in operation conditions

In Section 5.3, because the training data and testing data are ran-
domly selected from a total dataset, the operating conditions in testing
dataset may exist in the training dataset. However, in practical appli-
cation, the operating conditions cannot be the same as those of the
offline simulation scenarios. Therefore, it is more reasonable to verify
the generalizability of the proposed classifier under different genera-
tions, loads and network configurations.

(1) New England 10-machine 39-bus system

Two new untrained datasets are generated to verify the general-
izability of the proposed classifier under different scenarios. Details of
the power flow and network configuration are shown in Table 13.

For the new test data 1, the new power flows within a similar range
can be used to simulate the normal variation in operating situation. The
new test data 2 is used to simulate the major variations. Fig. 14 shows
the prediction results of different classifiers for these two new datasets.

Fig. 14(a) shows that the proposed CNN ensemble classifier per-
forms the best under the normal variation in power flow because it has
the highest G-mean for this unbalanced testing set. Furthermore, the
accuracy of the proposed CNN ensemble classifier is still up to 97.7%.
Therefore, the proposed method can cope with the normal changes of
operation conditions.

When the power flow and network configuration change sub-
stantially, the performance of all the classifiers is reduced notably
(Fig. 14(b)). The CNN-based ensemble classifier must adjust itself to
make it suitable to the new operating condition. The performance of the
proposed updating scheme will be validated in Section 5.5.

Table 9
Prediction results of testing data of the 48-machine system using different classifiers.

Classifier Training time Test time (one instance) Memory G-mean Reliability Security Accuracy

Extended CART 858.01 s 0.001 s 149 K 95.96% 93.32% 98.67% 97.54%
Extended MLP 527.98 s 0.002 s 6934 K 97.55% 98.69% 96.42% 96.89%
Extended RF 1047.52 s 0.009 s 18862 K 98.25% 97.61% 98.89% 98.63%
LSTM, Wus/Ws = 4 11680.91 s 0.022 s 5334 K 98.06% 98.13% 97.99% 98.08%
Ensemble CNN, Wus/Ws = 4 2056.27 s 0.004 s 3489 K 98.59% 98.71% 98.47% 98.52%

48-machine system

10-machine system

48-machine system

Fig. 8. The training time using different numbers of training instances.

(a) 10-machine system (b) 48-machine system

Fig. 9. Comparison of different methods considering the effect of noise.

Fig. 10. Prediction results of the CNN ensemble classifier with different re-
sponse time of 10-machine system.
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(2) NPCC 48-machine 140-bus system

The variations in operating conditions are also considered in the
larger 48-machine system. Details of the new untrained data are shown
in Table 14. The prediction results of different classifiers to these new
test datasets are shown in Fig. 15.

Fig. 15(a) shows that the proposed CNN-based ensemble classifier
performs the best because it has the highest G-mean for these un-
balanced testing sets. However, the performance of all the classifiers is
reduced greatly in Fig. 15(b) when the operation conditions change
substantially. Therefore, the classifier should be updated using new
instances.

5.5. Performance of the proposed updating scheme integrating active
learning and fine-tuning

According to the previous simulation results, the performance of the
classifier will decrease when the operating condition of the power
system changes greatly. In fact, these variations can be predicted by
generation and load forecasting, dispatching, scheduled maintenance,
etc. Based on this information, the classifier should be updated in a
limited time. A fast updating scheme can make sure the practical ap-
plication. To verify the performance of the proposed updating strategy,
the comprehensive simulation will be conducted on the two test sys-
tems.

(1) New England 10-machine 39-bus system

An additional 11,832 instances are randomly generated using si-
milar configurations as used in testing set 2 (Table 13) to construct the
new updating dataset. The power flow of the updating and test datasets
are completely different because of the stochastic property in Eqs.
(10)–(13). Three different learning strategies are considered to compare
the effectiveness of the proposed updating strategy using the same
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Fig. 11. Instability occurrence time histogram of unstable instances.

Table 10
Prediction results of testing data of the 10-machine system using the voltage
variables as the inputs.

Classifier G-mean Reliability Security Accuracy

Extended CART 92.24% 91.70% 92.79% 92.41%
Extended MLP 94.09% 95.37% 92.83% 93.73%
Extended RF 96.43% 96.27% 96.59% 96.47%
LSTM, Wus/Ws = 2 96.41% 95.71% 97.12% 96.62%
Ensemble CNN, Wus/Ws = 2 97.51% 98.20% 96.81% 97.31%

Table 11
Prediction results of testing data of the 10-machine system using SVM and 34
features in [50].

Classifier G-mean Reliability Security Accuracy

SVM 97.82% 97.51% 98.14% 97.92%
Extended SVM 97.90% 98.20% 97.61% 97.82%

Fig. 12. Prediction results when removing one generator’s information from the
feature set.

Table 12
Generator sets when removing multiple generators’ information.

Generator set Descriptions

1 {G1,G2,G3,G4,G5,G6,G7,G8,G9,G10}
2 {G1,G2,G3,G5,G6,G7,G8,G9,G10}
3 {G2,G3,G5,G6,G7,G8,G9,G10}
4 {G2,G3,G5,G6,G7,G8,G9}
5 {G2,G3,G6,G7,G8,G9}
6 {G2,G3,G7,G8,G9}
7 {G3,G7,G8,G9}
8 {G7,G8,G9}
9 {G8,G9}
10 {G9}

Fig. 13. Prediction results of CNN ensemble classifier when using different
generator sets.
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number of training instances.

Scheme 1: Fine-tuning the pre-trained classifier based on the in-
stances selected by the active learning strategies.
Scheme 2: Retraining a new classifier based on the instances se-
lected by the active learning strategies.
Scheme 3: Retraining a new classifier based on the instances ran-
domly selected.

The number of selected labelled instances are 204, 408, 612,
816,… , 11,832 (Nnew=204 in the Algorithm 1). Since the new test
data 2 in Table 13 contains more unstable instances, the values of Wus

and Ws are set as 1 during the updating process. The performances of
classifiers obtained from different learning strategies are shown in
Fig. 16.

Fig. 16(a) shows that the accuracies of the training set (including
unlabelled instances) of Scheme 1 and 2 are higher than that of Scheme
3, therefore, active selection strategy can select representative instances
from unlabelled data. Fig. 16(b) shows that the prediction accuracy of
Scheme 1 using the classifier trained by only 816 labelled instances is
98.01%. Therefore, only 816 labeled instances are needed to be ob-
tained by long-term simulation. In contrast, Scheme 2 and Scheme 3
cannot achieve this level of performance even when using all the in-
stances. As a result, the proposed method can obtain an accurate clas-
sifier using fewer instances, thereby dramatically reducing the com-
putational time, including the time for time-domain simulation and
classifier training.

To investigate the distribution of the instances selected by three
schemes, the t-distributed stochastic neighbour embedding (T-SNE)
[51] is used to provide the visualization of the top 816 instances se-
lected by different schemes, as shown in Fig. 17. The high-dimensional
features of the top 816 instances selected by different schemes are re-
duced into two dimensions by T-SNE. There are some overlapping areas
in the visualization results. The overlapping is the main reason for
classification difficulties, and the instances in overlapping area are
more important to obtain the new classifier. Compared with the Scheme
2 and Scheme 3, shown in Fig. 17, Scheme 1 can select more instances
in the overlapping areas, allowing the proposed method to obtain an
accurate classifier with fewer training instances.

Table 15 shows the detailed results of different schemes using 816
instances and those of Scheme 3 using all 11,832 instances.

Table 15 shows that the accuracy, reliability, security and G-mean
of Scheme 1 are all the highest. Most importantly, the total computation
time Ttotal of Scheme 1 (including the selection of important instances,
training time using different numbers of instances during the iteration
in algorithm 1) is satisfied for practical application. The training time of
Scheme 2 is longer than that of Scheme 3 because the active learning
should select important instances and train multiple classifiers using
different numbers of instances. The fine-tuning technique enables the
total training time to be dramatically reduced, making the proposed
method quite suitable for online updating. Moreover, parallel compu-
tation techniques can be used with the proposed ensemble classifier to
further reduce the training time.

On the other hand, data generation is a very time-consuming step in
the classifier updating process. To obtain an instance with label, the
time-domain simulation should be conducted. However, in the pro-
posed approach, only the selected instances are needed to annotate a
label (shown in Fig. 18). Therefore, the computation time of time do-
main simulation can be significantly reduced, which makes the pro-
posed approach more suitable for practical application.

(2) NPCC 48-machine 140-bus system

An additional 74,520 instances are randomly generated with the
same configuration as in the new testing set 2 in Table 14. The fast
updating process described in Section 4.2 is used to obtain the new
classifier using these new instances. Three different learning strategies
in Section 5.5 (1) are considered to compare the effectiveness. Since the
new test data 2 in Table 14 contains less unstable instances, setting
Wus= 3 and Ws = 1 during the updating process. The performances of
classifiers obtained using different learning strategies and different
numbers of labelled instances are shown in Fig. 19.

Fig. 19(b) shows that the accuracy of the classifier on the test data is
up to 98% when using only 2070 (2.78%) labelled training instances. In
contrast, the performances of Scheme 2 and 3 are not satisfactory.
Therefore, the proposed strategy can obtain an accurate classifier using
fewer labelled instances with a shorter computational time.

Table 16 shows that detailed results of different schemes using 2070

Table 13
Different scenarios of new testing data of 10-machine system.

Power Flow Network Configuration Stable Unstable

New Test Data 1 Randomly generated from 80 to 120% of standard
power flow (different from training data)

All the lines are in service 2,576 1,504

New Test Data 2 Randomly generated from 115 to 135% of standard
power flow

An static var compensator (SVC) and a thyristor controlled series compensator
(TCSC) are added at bus 21 and line 2–25, respectively

1,510 2,570

(a) New Test Data 1 (b) New Test Data 2 

Fig. 14. Prediction accuracy of the new testing data in Table 13 using different classifiers.
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instances and Scheme 3 using all the 74,520 instances.
Table 16 reveals that the performance of Scheme 1 is the best, ex-

hibiting the shorter total computation time and best evaluation index.
Therefore, the proposed method is highly suitable for online applica-
tion.

5.6. Discussions

(1) Selection of the input features

The reasonability of the input features has a great influence on the
performance of a transient stability classifier [43]. It seems that the
input features for transient stability prediction are always different in
different studies. There is not a universal feature set for transient

Table 14
Different scenarios of new testing data of 48-machine system.

Power flow Network configuration Stable Unstable

New Test Data 1 Randomly generated from 80 to 120% of standard power flow (different from training data) All the lines are in service 17,354 2,615
New Test Data 2 Randomly generated from 115 to 135% of standard power flow Line 124–127 is out of service 14,005 5,867

(a) New Test Data 1 (b) New Test Data 2 

Fig. 15. Prediction accuracy of the new testing data in Table 14 using different classifiers.

(a) Accuracy of the new training data with 11832 instances (b) Accuracy of the new test data 2 with 4080 instances (Table 13) 

Fig. 16. Comparison of different methods of 10-machine system.

(a) 816 instances selected by Scheme 1   (b) 816 instances selected by Scheme 2    (c) 816 instances selected by Scheme 3 

Fig. 17. Visualization of the selected instances by different methods.
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stability prediction. And it is hard to say that any features can always
perform the best in any cases.

In practical, the selection of input features should consider the lo-
cations of measurement units. On the other hand, some variables have
strong correlation with the transient stability status. If the important
measurements cannot be obtained, the prediction performance will
reduce significantly. Therefore, new measurement units should be in-
stalled at new locations. It can be said that the selection of input fea-
tures and the location of measurement units interact each other.

Moreover, the input features are not fixed as the development of
science and technology. Some variables may become measurable with
the development of measurement technology. These variables should be
added as the input features. On the other hand, when new progress has
been achieved in the mechanism analysis of transient stability, new
features should be utilized as the inputs for the data-driven methods.

(2) Considering new contingencies

For the pre-contingency application, only the credible contingencies
are taken into consideration for the sake of economy. For the post-
contingency application, whereas, the number of possible disturbances

is infinite. Therefore, the generated classifier should possess good
generalization for different contingencies. To obtain a CNN ensemble
classifier with good performance under different contingencies, a
comprehensive dataset should be obtained during the training process.
Because the post-fault responses carry information about the influence
of the faults on the power system, the generated classifier may have
generalization with respect to similar contingencies. On the other hand,
some contingencies can be predicted by the information of weather,
equipment monitoring, forest fire prevention information, etc. Based on
the new dataset considering new contingences, the CNN ensemble
classifier can be updated to have good performance considering these
new contingencies.

(3) Effect of stability criterion

In this research, the transient stability criterion is whether the dif-
ference between any two generator rotor angles exceeds 360° with 4 s
after the fault clearance. It is reasonable because the time frame of
interest in transient stability studies is usually 3–5 s [2]. However, the
power system may lose the synchronous through multi swings after a
longer time period. Under this condition, the criterion with shorter time
period will label those multi-swing unstable instances as stable.

Different from the model-based methods start from the model sol-
ving or theoretical analysis, the data-driven method is learning from
massive data. When the criterion considers longer time of period, the
criterion can be reflected on the label and then learned by the data-
driven method. To verify this viewpoint, case studies are conducted on
the 10-machine system using 10 s criterion, and the results still show
that the proposed CNN ensemble classifier performs the best among the
compared methods and some multi-swing instabilities can be detected.
However, similar to the results in Fig. 11, some unstable instances with
longer instability occurrence time cannot be detected with shorter re-
sponse time. To balance the rapidity and accuracy, the hierarchical
scheme in [43] should be used.

(4) Considering different types of stability problems

The power system stability status should be determined by com-
prehensive consideration of different kinds of stability. In practical

Table 15
Prediction results of different schemes for new test data 2 in Table 13 with 4080
instances.

Nselect Ttotal G-mean Accuracy Reliability Security

Scheme 1 816 21.87 s 98.01% 98.01% 98.01% 98.02%
Scheme 2 816 101.95 s 96.16% 96.25% 96.50% 95.83%
Scheme 3 816 46.37 s 94.53% 94.78% 95.49% 93.58%
Scheme 3 11,832 508.53 s 97.15% 97.25% 97.55% 96.76%

Fig. 18. Time-domain simulation result.

(a) Accuracy of the new training data with 74520 instances (b) Accuracy of the new test data 2 with 19832 instances (Table 14) 

Fig. 19. Comparison of different methods of 48-machine system.

Table 16
Prediction results of different schemes for new test data 2 in Table 14 with
19,832 instances.

Nselect Ttotal G-mean Accuracy Reliability Security

Scheme 1 2070 62.19 s 97.76% 98.02% 97.11% 98.42%
Scheme 2 2070 252.94 s 95.28% 96.00% 93.53% 97.06%
Scheme 3 2070 61.27 s 93.25% 94.92% 89.35% 97.32%
Scheme 3 74,520 2043.33 s 96.47% 97.16% 94.73% 98.21%
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application, different classifiers should be trained for different kinds of
stabilities, and new features and indices [52] should be considered for
different stabilities. If any one of the classifiers predicted the system to
be unstable, the system is considered as unstable. Therefore, the outputs
of the three classifiers were combined using an OR logic, shown in
Fig. 20.

The stability criterion in this research can describe the instability
phenomenon, but this criterion cannot reveal the instability me-
chanism. In practical application, for example, the voltage and rotor
angle instability always intertwined. When the power systems show
several instability characteristics, addition method such as [53] should
be used to recognize the dominant instability mechanism.

6. Conclusions

This paper presents a CNN-based ensemble classifier and its fast
updating scheme for transient stability prediction. Through compre-
hensive comparisons among different methods of two test power sys-
tems, the following conclusions can be drawn:

(1) The proposed CNN-based ensemble classifier can process multi-di-
mensional data directly and provide accurate prediction even under
the measurement errors. For unbalanced data with fewer unstable
instances, the reliability (accuracy of unstable instances) of the
proposed classifier can be improved by improving the cost
weighting of the unstable instances.

(2) When the operating conditions change substantially, the proposed
updating method can obtain an accurate classifier using only a few
labelled instances. The computational time of both the time-domain
simulation and classifier training can be greatly reduced, making
the proposed method more suitable for online application.
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