
F

S
A

P
D

h

•
•
•
•

a

A
R
R
A
A

K
I
R
S
F
D
R

1

c
i
h
m
e
u
u
n

h
0

ARTICLE IN PRESSG Model
USION-7484; No. of Pages 6

Fusion Engineering and Design xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Fusion Engineering and Design

jo ur nal home p age: www.elsev ier .com/ locate / fusengdes

oftware fault detection and recovery in critical real-time systems:
n approach based on loose coupling

ekka Alho ∗, Jouni Mattila
epartment of Intelligent Hydraulics and Automation, Tampere University of Technology, Finland

 i g h l i g h t s

We analyze fault tolerance in mission-critical real-time systems.
Decoupled architectural model can be used to implement fault tolerance.
Prototype implementation for remote handling control system and service manager.
Recovery from transient faults by restarting services.

 r t i c l e i n f o

rticle history:
eceived 30 August 2013
eceived in revised form 7 April 2014
ccepted 22 April 2014
vailable online xxx

eywords:
TER
emote handling

a b s t r a c t

Remote handling (RH) systems are used to inspect, make changes to, and maintain components in the
ITER machine and as such are an example of mission-critical system. Failure in a critical system may cause
damage, significant financial losses and loss of experiment runtime, making dependability one of their
most important properties. However, even if the software for RH control systems has been developed
using best practices, the system might still fail due to undetected faults (bugs), hardware failures, etc.
Critical systems therefore need capability to tolerate faults and resume operation after their occurrence.
However, design of effective fault detection and recovery mechanisms poses a challenge due to timeli-
ness requirements, growth in scale, and complex interactions. In this paper we evaluate effectiveness of
oftware
ault tolerance
ependability
eal-time

service-oriented architectural approach to fault tolerance in mission-critical real-time systems. We use a
prototype implementation for service management with an experimental RH control system and indus-
trial manipulator. The fault tolerance is based on using the high level of decoupling between services to
recover from transient faults by service restarts. In case the recovery process is not successful, the system
can still be used if the fault was not in a critical software module.

© 2014 Elsevier B.V. All rights reserved.
. Introduction

Remote handling (RH) systems are used to inspect, make
hanges to, and maintain components in the ITER machine. Failure
n a mission-critical system like RH may cause damage and, per-
aps even more significantly, loss of experiment runtime, therefore
aking dependability one of its most important properties. How-

ver, even if the software for the RH system has been developed
Please cite this article in press as: P. Alho, J. Mattila, Software fault de
based on loose coupling, Fusion Eng. Des. (2014), http://dx.doi.org/10

sing valid development processes, the system might still fail due to
ndetected faults, hardware failures, etc. Critical systems therefore
eed to be able to resume operation after faults have occurred, but

∗ Corresponding author. Tel.: +358 505375726.
E-mail address: pekka.alho@tut.fi (P. Alho).

ttp://dx.doi.org/10.1016/j.fusengdes.2014.04.050
920-3796/© 2014 Elsevier B.V. All rights reserved.
design of effective fault detection and recovery mechanisms poses
a challenge. This is due to timeliness requirements combined with
growth in scale and complex dynamic interactions in RH systems
and embedded systems in general.

Several programming languages and frameworks, e.g. Erlang or
OSGi for Java, support use of decoupled architectural models that
can be used to implement fault tolerance solutions and dynamic
loading of software modules, but these approaches are typically
used in non-critical applications that do not have requirements for
deterministic response times. In this paper we evaluate effective-
ness of the decoupled architectural approach in mission-critical
real-time systems using an experimental RH control system for
tection and recovery in critical real-time systems: An approach
.1016/j.fusengdes.2014.04.050

an industrial manipulator. The control system is based on a real-
time service oriented architecture (RTSOA) that we have introduced
and evaluated in [1]. Services (i.e. the applications that participate
in the control of the manipulator) are managed by a prototype

dx.doi.org/10.1016/j.fusengdes.2014.04.050
dx.doi.org/10.1016/j.fusengdes.2014.04.050
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:pekka.alho@tut.fi
dx.doi.org/10.1016/j.fusengdes.2014.04.050

 IN PRESSG Model
F

2 eering and Design xxx (2014) xxx–xxx

s
p

t
o
c
n
p
c
a
c

2

o
r
fl
t
d
a
o
b
s
j

e
s
t
r
r
i

l
z
r
l
t
f
t
s
t
c
k
i
t
f
v
a
b

s
i
a
r
[

3

3

s
S
w

ARTICLEUSION-7484; No. of Pages 6

 P. Alho, J. Mattila / Fusion Engin

ervice manager that is used to detect faults and initiate recovery
rocesses.

The RH control system consists of several heterogeneous subsys-
ems, including equipment controller (EC), virtual reality (VR) and
perations management system (OMS), specified in the ITER RH
ontrol system handbook [2]. This kind of cooperation of several
etworked computational units is typical for the field of cyber-
hysical systems (CPS), featuring a tight coordination between
omputational and physical elements of the system. CPS research
ims to improve interoperability and openness between networked
ontrollers to produce more intelligent applications.

. Background

Fault tolerance means avoiding service failures in the presence
f faults, and consists of error detection and recovery [3]. However,
ecovery can introduce unpredictable delays that might be in con-
ict with the predictability requirements of real-time systems. A
ypical approach for real-time fault tolerance is to use two or more
iverse versions of software. Such an approach is suitable, e.g. in
viation, where the scope of critical systems is limited, and the cost
f creating multi-version software is distributed over a large num-
er of aircraft [4]. However, for large and complex one-off software
ystems, such as RH, use of multi-version techniques is difficult to
ustify.

Key challenges for fault tolerance in RH systems include recov-
ry of state data, reliable detection of faults, fault recovery that
upports real-time requirements, and ensuring reliability of end-
o-end service chains. Safety of the system relies heavily on
easoning about consequences of faults, which is an important open
esearch area due to the complex and stochastic nature character-
stic for CPS.

Previous research on real-time fault tolerance has focused
argely on redundancy-based solutions and reconfiguration. Gon-
ales et al. use adaptive management of redundancy to assure
eliability of critical modules by allocating as much redundancy to
ess critical modules as could be afforded, thus gracefully reducing
heir resource requirements [5]. Assured reconfiguration in case of
ailures is used in [6]. This allows the primary function to fail and
hen reconfigure to some simpler function – reconfiguration of the
ystem is a critical part, and it is formally verified. Simplex archi-
ecture by Sha et al. uses high assurance and high performance
ontrol subsystems [7]. The high assurance subsystem is used to
eep the system within the safety envelope. ORTEGA architecture
mproves the Simplex architecture by adding on-demand detec-
ion and recovery of faulty tasks [8]. An anomaly based approach
or detecting and identifying software and hardware faults in per-
asive computing systems is proposed in [9]. The methodology uses
n array of features to capture spatial and temporal variability to
e used by an anomaly analysis engine.

Our work differs from these approaches by focusing on tran-
ient faults in a real-time system by using highly modular approach
nstead of redundancy. Similar solution based on modularity
nd fault isolation has been successfully used, e.g. in the non-
eal-time MINIX operating system (OS) for driver management
10].

. Fault detection and recovery in real-time systems

.1. System definition
Please cite this article in press as: P. Alho, J. Mattila, Software fault de
based on loose coupling, Fusion Eng. Des. (2014), http://dx.doi.org/10

Our hypothesis is that mission critical real-time systems can use
ervice management to recover from transient faults (discussed in
ection 5) in a loosely coupled software architecture. In this context,
e define a loosely coupled real-time system as follows:
Fig. 1. Logical system architecture.

• The system is made up of a set of periodic processes, i.e. services.
• Services are loosely coupled, having no direct interdependencies

or references to each other.
• Services can be distributed over network or located on a single

computer.
• Services communicate with a communication buses that facilitate

monitoring of communication deadlines.

Advent of modern, powerful processors to RH systems provides
a chance to mitigate the delays caused by the recovery process if
the fault is detected before deadlines. In an optimal case, a fault
can be detected and recovered before it causes service failures. If
fault recovery causes exceeding of a deadline, other services can
detect this and react accordingly by moving the system to a safe
state while simultaneously isolating the fault. Since this recovery
strategy does not rely on redundant versions, there is no need to
maintain consistency between replicas, which is a major challenge
for redundant systems [11]. We also leave formal methods out of
the scope of our solution because of architectural limitations and
costs associated with these methods are likely to be prohibitive for
ITER.

3.2. Architecture

The system architecture in our implementation is based on
RTSOA using data-centric middleware and an open source real-
time operating system (RTOS). It provides decoupled connections
for the services via local and global service buses (LSB and GSB) and
includes a service manager to monitor and manage services (Fig. 1)
[1].

The LSB is based on real-time queues, a communication mode
provided by the RTOS. A message queue can be created by one
service and used by multiple services that send and/or receive
messages to the queue. GSB is a wrapper that uses Data Dis-
tribution Service for Real-Time Systems (DDS) middleware for
networked connections; DDS is a standard for decentralized and
data-centric middleware based on the publish/subscribe model and
aimed at mission-critical and embedded systems. The standard
is maintained by the Object Management Group (http://portals.
omg.org/dds/).

3.3. Service manager and service configuration
tection and recovery in critical real-time systems: An approach
.1016/j.fusengdes.2014.04.050

Service manager is a local component used to start services
and detect faults. Service manager spawns the services as child
processes, according to a configuration file – more advanced con-
figuration methods could be supported, e.g. GUIs, web interface

dx.doi.org/10.1016/j.fusengdes.2014.04.050
http://portals.omg.org/dds/
http://portals.omg.org/dds/

 ING Model
F

eering

o
m
m
s
u
(
w
a
a

m
h
t
d
w
t

u
e
d
n
f
s
a
t
s
s
s

t
t
i
s

f
p
T
E
e
s
i
u
m

s
p
i

•
•
•
•

•
•

3

b
c
r
s
d
o
s

We have implemented an experimental RH control system to
evaluate the proposed approach to fault detection and recovery.
The RH control system operates an industrial manipulator (Fig. 2)
manufactured by Comau in ITER relevant RH task scenarios. The
ARTICLEUSION-7484; No. of Pages 6

P. Alho, J. Mattila / Fusion Engin

r GSB-based, but have not been included in the prototype imple-
entation at this phase. Services update their status to the service
anager through either LSB or GSB. Possible states are running,

topped, (re)starting, and error. The local communication bus is also
sed by the service manager to command services to switch states
start, stop and restart). More extensive set of states and commands
ould give a more fine-grained control over services, but also add

dditional complexity to service implementation and service man-
gement logic, potentially introducing new faults.

Fault detection utilizes several methods: service status updates,
onitoring user-set resource limits for CPU and memory usage,

eartbeat monitoring, and OS features (parent process can check
he state of its child processes). Service manager can be used to
ynamically update services by terminating them and replacing
ith new version, enabled by the decoupled bus-based architec-

ure.
Unresponsive behavior or unexpected increase in resource

sage for a service can indicate a fault in the service, potentially
ndangering real-time performance of other services or causing
angerous movements – this is a typical challenge for design of CPS,
eeding interdisciplinary co-operation of designers and researches

rom industry and academia. After a fault has been detected, the
ervice manager either terminates or restarts the faulty service,
ccording to the configuration. These actions will either recover
he fault without cascading service failures or put the system to a
afe state, according to “let it fail” approach. This method is mainly
uited to handling of transient faults. If the fault recovery fails,
ystem simply stays in the safe state.

The fault recovery strategy enables operator to continue opera-
ion or recover equipment by avoiding the conditions that trigger
he fault, postponing software update to later time and thus retain-
ng higher system availability. Alternatively, operations can be
uspended until the fault has been removed.

Effectively the described method of fault tolerance is a form of
ault masking. The system therefore needs an error manager com-
onent to track number of errors so that they do not go unnoticed.
his functionality is logical to implement in the service manager.
rror data provided by the service manager can be used to give,
.g. graphical warnings to the user about encountered faults or
end notifications via email or another message channel. Finally,
f restarting a service does not solve the fault, service manager can
tilize escalation and move the system to limp-home or recovery
ode.
Configuration of services to be started and managed by the

ervice manager may include the following parameters – new
arameters can be easily added on per-need basis (parameters in

talics are not implemented in the prototype):

Start command, including necessary command line parameters.
CPU and memory usage limits in percentage (or bytes).
Heartbeat timeout.
Actions to be taken on failure: restart, terminate, execute
{program}, alert {email address}.
Limit for the number of restarts.
List of dependencies if they must be also restarted.

.4. Service design

In the case of a failure, service stops execution or is terminated
y the service manager and its state data will be lost. State data
an be divided to temporary, static and dynamic: temporary data is
elated to current computations and is not relevant after a failure,
Please cite this article in press as: P. Alho, J. Mattila, Software fault de
based on loose coupling, Fusion Eng. Des. (2014), http://dx.doi.org/10

tatic data is typically configuration data that can be reread, and
ynamic data contains results of calculations, user input, etc. Some
f the dynamic state data can also be recalculated or reread (e.g.
ensor measurements), but commonly it needs to be protected. This
 PRESS
 and Design xxx (2014) xxx–xxx 3

means that any state data that needs to be recovered after restart
must be stored in a stable storage. However, since it is possible that
the saved state data has been corrupted, sanity-checking (typically
checksums or valid range for data) is needed. Another issue regards
how much of the state should be recovered. For example, an inter-
rupted trajectory of a remotely operated manipulator should not
be continued because of potential risks. The software may also hit
the exactly same bug again if the full state from the time of failure
is recovered.

Another major consideration for service design is that services
should be fail-stop or fail-silent so that a failure in one applica-
tion does not cause unwanted behavior in others. Compared to
heartbeat timeouts and increased resource use, detection of erro-
neous outputs is more difficult to implement and has to be done
using more “traditional” methods including contract programming,
asserts, exceptions, etc., according to the needs of the specific appli-
cation. If the service detects an internal error (e.g. an exception), and
is still in otherwise sane state, it can report the error to the service
manager by publishing status change to error. In our implementa-
tion, services publish the status in the heartbeat signal periodically
sent to the service manager.

Service dependencies may be unavailable at times due to faults
or even normal use scenarios. Service developer therefore needs
to implement monitoring for communication deadlines and decide
how to recover services from faults. Recovery should be taken into
account already in the specification [12]. This is a direct conse-
quence of the dynamic nature of decoupled architectures and forces
the developer to take into account situations where the dependen-
cies of a service are offline or unavailable. Although the dynamic
service connections necessitate some extra code, such as reini-
tialization of communications after faults, the final result is more
resilient to error situations. RH specific failure mode analysis is
covered in Section 5.

Another benefit of loose coupling between services is capabil-
ity to have multiple copies running on more than one computer at
once, providing redundant processing or hot backup capabilities.
This can provide cost-efficient redundancy against computer hard-
ware faults, especially for critical services. Services can also be hot
swapped to enable better maintainability and non-stop reliability.

4. Remote handling control system
tection and recovery in critical real-time systems: An approach
.1016/j.fusengdes.2014.04.050

Fig. 2. Industrial manipulator used in experiments, equipped with a pneumatic
gripper tool.

dx.doi.org/10.1016/j.fusengdes.2014.04.050

ARTICLE IN PRESSG Model
FUSION-7484; No. of Pages 6

4 P. Alho, J. Mattila / Fusion Engineering and Design xxx (2014) xxx–xxx

Table 1
RTSOA services on EC (service names in Courier).

Service Service task description Period Ti [ms]

TrajectoryGenerator

(TG)

Generate a trajectory
profile that the
manipulator can follow
from one point to another.

2

C4G Send position and velocity
reference to the
manipulator control
system at 500 Hz.

2

C4GJointDataPub Publish manipulator joint
position data to GSB.

10

OmsCom Read OMS commands from 50

s
m
d
t
d
c
t
u
s
d
s
r

i
t
p
t

m
t
a

w
A
m
i

p
P
m
u
b
s

5

5

[
l
r
f
i
a
s
i
f
d
m

Table 2
RH control system service criticality & recovery. Stop = “stop manipulator move-
ment”, restart = “restart service”.

Service name Critical Restore state Failure action

TG Y N Stop, restart.
C4G Y Y Terminate TG, restart.
GSB and pass them to the
trajectory generator.

ystem architectural model from Section 3.2 is applied to imple-
ent safe management of services in the RH control system to

etect failures based on observing abnormal behavior. The RH con-
rol system is a non-trivial application that is used to test the fault
etection and recovery in critical real-time systems. Communi-
ation frequency between master and slave controllers in similar
eleoperation applications is typically 500–1000 Hz. The prototype
ses 500 Hz communication loop between EC and Comau low-level
ervo controller over real-time Ethernet. Missing a communication
eadline causes the low-level controller to engage an emergency
top and drop the communication link, necessitating a system
estart.

Test setup includes EC, VR and OMS subsystems that are spec-
fied in the ITER RH control system architecture [2], in addition to
he Comau’s own low-level controller. VR is used to visualize robot
osition, although the operator also has direct visual contact with
he manipulator in the test setup.

EC is a real-time system for operating RH equipment, i.e. the
anipulator in this case. Our EC implementation is running real-

ime Linux with the RTSOA services and service manager. Services
nd loop timings are listed in Table 1.

VR capabilities are provided by IHA3D, Windows-based soft-
are developed at the Department of Intelligent Hydraulics and
utomation (IHA) [13]. IHA3D provides a simulated virtual environ-
ent for the operator and can be used for virtual force generation

n bilateral teleoperation.
OMS is a task planner subsystem used to support operation by

lanning, helping and instructing execution of RH procedures [13].
rocedures are complete sequences of manual actions and move-
ents required to perform maintenance or testing operations. We

sed a web-server based OMS implementation which provides a
rowser-based GUI for the operator. Operator can use the OMS to
end movement commands to the manipulator.

. Fault recovery for RH system

.1. Fault types

One way to categorize faults is permanent and transient faults
3]. Transient faults include aging-related faults (e.g. memory
eaks), interaction faults, race conditions, attempts to exploit secu-
ity vulnerabilities, resource leaks, bit flips, temporary device
ailures, etc. [3,10]. Transient faults can be difficult to find with test-
ng because their activation may depend on complex timing, state
nd runtime environment conditions. This means that even critical
ystems developed with best practices can encounter them, mak-
Please cite this article in press as: P. Alho, J. Mattila, Software fault de
based on loose coupling, Fusion Eng. Des. (2014), http://dx.doi.org/10

ng error confinement and recovery capabilities important. These
aults may be temporarily solved by rejuvenation [14], i.e. shutting
own the software item and restarting it. Although the root cause
ay not necessarily be removed by creating a fresh item, system
C4GJointDataPub Y Y Stop, restart.
OmsCom N Y Restart

would typically be usable after restart. Transient faults are detected
by service manager with resource limits, service status updates,
heartbeat timeouts and monitoring of child process status.

Our implementation uses real-time message queues to send
heartbeat signals from services to the service manager. Heartbeat
signal is combined with the status update for the service. This
functionality can be extended to the GSB, providing remote nodes
awareness of service health. Resource limit monitoring is currently
based on the proc file system, a feature in UNIX-like systems pro-
viding a method to access process data through a file-like structure.
Alternatively system calls, such as getrusage, could also be utilized.

Permanent faults, caused, e.g. by faults in algorithms or control
flow, persist after service restart. Determining if the fault is perma-
nent or transient is based on error counting implemented by the
service manager, i.e. limiting the number of restarts per service to
prevent infinite restart loops that would otherwise be caused by
former.

Severe permanent faults are typically detected in testing for
commonly used features. If new permanent faults are encoun-
tered during operations, operator can avoid triggering conditions
(if known) and recover RH equipment using reduced or alterna-
tive functionality for maintenance. For example, remote handling
systems typically offer alternative control modes in the form of con-
trollers and input modes (e.g. manual vs. OMS). If a permanent fault
prevents use of OMS, operator can recover the equipment using
manual mode. Loosely coupled service-based design supports this
kind of robustness, as faults are isolated to services (e.g. OmsCom)
and system can use alternative service configuration. Basically, a
service failure is not necessarily a system failure.

5.2. Recovery from service failures

Next we describe services failures and recovery in the prototype
RH system (see Table 2). Fault detection and recovery are imple-
mented as previously described. Tests with the prototype system
have shown that the service manager implementation is capable
of detecting crashed services with heartbeat timeouts and process
status. Crashed service is restarted or terminated according to the
used configuration file. To be able to safely recover services, we
need to understand roles of different services, as stated in [12],
including identifying safety-critical services. For example, even if a
non-critical service such as OmsCom experiences a permanent fault,
system can retain partial operationality. VR and OMS are stand-
alone applications that have separate software architectures and
are presumed to have relevant fault tolerance mechanisms.

Trajectory Generator (TG) failures: steps for recovery pro-
cess are outlined in Fig. 3. If a failure occurs during movement,
robot needs to be stopped with a ramp because of large masses for
remotely operated equipment, but this feature is typically imple-
mented either in mechanical design with brakes or in the service
responsible for robot movements (C4G service) as part of standard
fault handling. Recovery of interrupted trajectory would be pos-
tection and recovery in critical real-time systems: An approach
.1016/j.fusengdes.2014.04.050

sible, but is not desirable in order to avoid sudden unwanted
movements.

C4G failures: service failure stops all manipulator movements
and is recovered to a safe state. Service manager must terminate

dx.doi.org/10.1016/j.fusengdes.2014.04.050

ARTICLE ING Model
FUSION-7484; No. of Pages 6

P. Alho, J. Mattila / Fusion Engineering

Fig. 3. Service recovering from failure; illustration simplified by showing only a
s

a
S
t
s

t
S
d
m
a
t
o

o
n
r

Ti. Therefore, to retain availability while recovering from service
failure, combined time to detect failure (T), time to restart

F
d

ingle connected service. Solid arrows indicate the direction of data flow in queues.

lso the TG service to avoid unintentional movements after restart.
ervice needs to recover state data for manipulator position, con-
rol mode and equipped tools. Position data can be recovered from
ensors, other data can be recovered from GSB.

C4GJointDataPub failures: service can be used for VR visualiza-
ion and haptic feedback, including virtual constraints and walls.
ystem operation is possible without this service if operator has
irect or video-based vision of the manipulator. However, since
anipulator position data is used by support systems such as VR

nd collision detection, manipulator movement is stopped. Opera-
ion can resume safely after restart. State data restoration consists
f reading joint status data from LSB queue.

OmsCom failures: service is non-critical in the sense that it is
nly used to initiate movement commands. In the case of perma-
Please cite this article in press as: P. Alho, J. Mattila, Software fault de
based on loose coupling, Fusion Eng. Des. (2014), http://dx.doi.org/10

ent faults, manual operations with input device can be used for
ecovery. Command data is restored from GSB.

ig. 4. Timing chart for service failure and restart. Upper scenario shows restart witho
eadline.
 PRESS
 and Design xxx (2014) xxx–xxx 5

Compared to a non-critical application, such as a general-
purpose OS in [10], first priority for a critical system is to guarantee
safety of all operations. Fault in a critical service may compromise
this goal so the system must move to a safe (fail-stop) state. In the
case of a critical service, such as C4G, a fail-stop failure is preferred
to undetected fault recovery. Therefore, critical services could be
restarted to a stopped state. In the current implementation, services
resume execution after restart (start command issued by service
manager). In any case, services must be designed, implemented
and tested to initialize to a safe state, even after recovery.

5.3. Recovery timing analysis

We analyze a situation where a failure occurs in the TG service.
Failure is detected by the service manager and the service is
restarted. Faulty service is presumed to report error status to the
service manager (not shown in the figure) immediately after failure
through heartbeat status updates that are sent during every service
cycle. Cycle period Ti is 2 ms for C4G and TG services. Service man-
ager uses Ti = 1 ms in the prototype. Worst-case jitter for periodic
scheduling was tested on our previous study to have been around
6 �s, less than 1% of the RH service cycles [1].

To maintain correct operation, the C4G service must be able to
read the updated trajectory values from TG during each period
tection and recovery in critical real-time systems: An approach
.1016/j.fusengdes.2014.04.050

detect
(Trestart), and time to send and receive message (Tcom) must be less
than Ti plus possible spare time left from the previous cycle (Tspare).

ut exceeding communication deadlines and lower scenario restart with a missed

dx.doi.org/10.1016/j.fusengdes.2014.04.050

 ING Model
F

6 eering

T
L

T

d
a
“
i

f
c
c
m
t
(
s

5

e
b
c
a
c
t
e
m
n
a

6

i
B
s
t
c
s
l
a

[

[

[

[

ARTICLEUSION-7484; No. of Pages 6

 P. Alho, J. Mattila / Fusion Engin

spare is included if the service has sent a correct message to C4G’s
SB queue during the previous period, otherwise Tspare = 0:

detect + Trestart + Tcom < Ti + Tspare

If true, operation can be resumed successfully. Otherwise C4G
etects an exceeded communication deadline and the failure prop-
gates. Fig. 4 illustrates both an optimal recovery situation and a
deadline exceeded” situation. C4G service has higher priority and
s therefore executed first.

Successful recovery within time limits is largely dependent on
ault detection time Tdetect and restart time Trestart. Service manager
ycle time is a trade-off point: if the service manager uses a fast
ycle time (<Ti of monitored services), it can react faster, but uses
ore CPU time. Alternatively, choosing a slow cycle time means

hat any service failure would automatically cause deadline miss
Tdetect > Ti), forcing the system to a fail-safe state and causing a
ystem failure.

.4. Performance costs

Evaluation of performance costs of fault detection and recov-
ry is challenging, since there is no comparable non-service
ased implementation available, making meaningful performance
omparison problematic. However, other studies using similar
pproach with operating systems have estimated performance
osts to be around 5–10% [10]. Taking into account the use of
he service manager and communication queues to services, we
stimate that the overall performance cost is around this order of
agnitude. However, the exact number depends directly from the

umber of services, how often CPU and memory usage is checked
nd service manager task period Ti.

. Conclusions

The decoupled architecture model – in this case the RTSOA –
s one approach to managing challenges of complexity and scale.
ased on the evaluation of our prototype implementation, it can
upport handling of transient faults and implementation of fault
olerance design patterns in critical real-time systems such as RH
Please cite this article in press as: P. Alho, J. Mattila, Software fault de
based on loose coupling, Fusion Eng. Des. (2014), http://dx.doi.org/10

ontrol systems. Although any architectural model cannot make the
ystem automatically fault tolerant, it can provide tools for hand-
ing and mitigation of errors. A system based on a loosely coupled
rchitecture can be in a safe state even after a service fault, without

[

 PRESS
 and Design xxx (2014) xxx–xxx

losing all system functionalities. The system is more robust to fail-
ures, providing mid-ground between binary “works” vs. “broken”
options.

A large monolithic and tightly coupled application is difficult to
verify, validate and maintain, whereas a service can be managed
and verified individually, as long as the deployment environment
is specified. Therefore, an approach based on loose coupling (e.g.
service or component based) is recommended for ITER. Moreover,
the RTSOA allows capabilities to be dynamically introduced to the
system that were not initially planned. This is a major concern for
a long-term research project such as ITER where the systems are
likely to evolve to meet changing scientific and technical needs.

References

[1] P. Alho, J. Mattila, Real-time service-oriented architectures: a data-centric
implementation for distributed and heterogeneous robotic system, in: 4th IFIP
TC 10 International Embedded Systems Symposium, 2013, pp. 262–271.

[2] D. Hamilton, ITER Remote Handling Control System Design Handbook 2EGPEC
v2. (2011) 3.

[3] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy
of dependable and secure computing, Trans. Dependable Secure Comput. 1 (1)
(2004) 11–33.

[4] T. Anderson, J. Knight, A framework for software fault tolerance in real-time
systems, IEEE Trans. Softw. Eng. 3 (SE-9) (1983) 355–364.

[5] O. Gonzalez, H. Shrikumar, J.A. Stankovic, K. Ramamritham, Adaptive fault
tolerance and graceful degradation under dynamic hard real-time sched-
uling, in: Proceedings of the 1st IEEE Real-Time Systems Symposium, 1997,
pp. 79–89.

[6] E. Strunk, J. Knight, Dependability through assured reconfiguration in embed-
ded system software, IEEE Trans. Dependable Secure Comput. 3 (3) (2006)
172–187.

[7] L. Sha, Using simplicity to control complexity, IEEE Softw. 4 (18) (2001) 20–28.
[8] X. Liu, Q. Wang, S. Gopalakrishnan, W. He, L. Sha, H. Ding, et al., ORTEGA: an

efficient and flexible online fault tolerance architecture for real-time control
systems, IEEE Trans. Ind. Inform. 4 (4) (2008) 213–224.

[9] B.U. Kim, Y. Al-Nashif, S. Fayssal, S. Hariri, M. Yousif, Anomaly-based fault detec-
tion in pervasive computing system, in: Proceedings of the 5th International
Conference on Pervasive Services, 2008, pp. 147–156.

10] J. Herder, Building a Dependable Operating System: Fault Tolerance in MINIX
3, Vrije Universiteit, Netherlands, 2010.

11] P.M. Melliar-Smith, L.E. Moser, Progress in real-time fault tolerance, in:
Proceedings of the 23rd IEEE International Symposium on Reliable Distributed
Systems, 2004, pp. 109–111.

12] P. Alho, J. Mattila, Breaking down the requirements: reliability in remote hand-
ling software, Fusion Eng. Des. 88 (9–10) (2013) 1912–1915.

13] L. Aha, K. Salminen, A. Hahto, H. Saarinen, J. Mattila, M. Siuko, et al., DTP2
tection and recovery in critical real-time systems: An approach
.1016/j.fusengdes.2014.04.050

control room operator and remote handing operation designer responsibil-
ities and information available to them, Fusion Eng. Des. 86 (9–11) (2011)
2078–2081.

14] R. Hanmer, Software rejuvenation, in: 17th Conference on Pattern Languages
of Programs, 2010.

dx.doi.org/10.1016/j.fusengdes.2014.04.050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0005
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0010
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0015
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0020
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0025
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0030
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0035
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0040
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0045
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0050
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0055
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0060
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0065
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070
http://refhub.elsevier.com/S0920-3796(14)00327-5/sbref0070

	Software fault detection and recovery in critical real-time systems: An approach based on loose coupling
	1 Introduction
	2 Background
	3 Fault detection and recovery in real-time systems
	3.1 System definition
	3.2 Architecture
	3.3 Service manager and service configuration
	3.4 Service design

	4 Remote handling control system
	5 Fault recovery for RH system
	5.1 Fault types
	5.2 Recovery from service failures
	5.3 Recovery timing analysis
	5.4 Performance costs

	6 Conclusions
	References

