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The stochastic nature of several renewable energy resources adds a layer of complexity to the planning of the
distribution networks. Distributed energy storage is a potential solution for buffering the intermittent supply of
energy from such stochastic resources and increasing reliability. This paper quantifies the benefit of investing in
battery energy storage systems (BESS) along with relatively high solar photovoltaic (PV) penetrations to defer
capital-intensive investments in distribution system assets. Uncertainties in the load growth and the solar PV
generation are considered in the assessment of risk by using modified risk-adjusted cost ratios. Furthermore, the

size and allocation of BESS in the network system are optimized by applying a heuristic algorithm. The results
are demonstrated via simulations on a typical Latin American distribution network. Simulation results indicate
that the flexibility of BESS for distribution planning lies in closely accommodating the growth demand and

distributed PV integration.

1. Introduction

Battery energy storage systems (BESS) are integrated with dis-
tribution networks to help buffer the stochastic energy generated by
renewable energy resources (RER) such as solar photovoltaics (PV). The
combination of RER and BESS holds the potential for deferring capital
investment on electricity grid assets by performing peak-shaving, peak-
shifting, and minimizing the financial risk that limits investments in
delivery networks expansion [1-3].

There is a correlation between the selections of the size and the
location of energy storage systems (ESS). In the literature, several stu-
dies focused on finding the optimal choice of energy storage technol-
ogies and their dispatch profiles in order to improve supply reliability
or to shave and shift the peak demand [4-6]. The work in [7] presents a
heuristic planning tool using genetic algorithm (GA) to make the de-
cision of sizing and allocating ESS in the distribution network. This
intents to help the distribution system operator (DSO) to solve the
problem of operating voltage rise due to high penetration of solar PV
systems. The study shows that single-phase residential distributed en-
ergy storage might be more financially viable than the three-phase
aggregated energy storage at the head of the feeder or at the substation.

Reference [8] proposes an optimal sizing of a hybrid energy system
technique with RER independent of BESS. It calculates the net present
value (NPV) to compare against the transmission line extension plans to
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ensure cost-effectiveness. The paper uses response surface methodology
to optimize and ensure break-even of the hybrid system and its location
in comparison with transmission line extension. It is worth mentioning
that the paper considers the stochasticity of the input variables when
solving the optimization problem.

Reference [9] presents a methodology to optimally size BESS on a
microgrid system that has a variety of RER by including BESS in the
unit-commitment formulation. This optimization is based on cost ben-
efit analysis. The paper builds a mathematical model for both microgrid
modes of operation (i.e., the grid-connected and the islanded modes)
and uses mixed linear integer programing (MLIP) to minimize the total
cost.

In [10,11], the papers attempt to examine the potential of using
BESS in the low-voltage side of the distribution grid to defer upgrades
needed to increase the penetration of PV. In [10], a multi-objective
function is proposed to combine three objectives, which include the
combination of maintaining voltage level, shaving peak demand, and
minimizing the total cost. The work in [11] attempts to find the optimal
sizing and location of distributed BESS. The aim of the optimization
technique is to minimize the total cost considering price arbitrage and
adopting different tariffs. GA is used to find the solution of the opti-
mization problem.

From the literature, several goals are targeted by employing BESS
such as peak shaving [6,12], minimizing the total cost [9,11],
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minimizing power losses in the distribution grid [13], and deferring
investment [14].The main objective of this work is the assessment of
risk in deferring capital-intensive investments in distribution grid assets
in lieu of investments in BESS technologies, considering the stochasti-
city associated with the solar PV generation and the load growth. The
expected flexibility of BESS options enables the system to closely follow
the growths in demand and PV integration.

In capital asset management and investment portfolios, some risk-
adjusted ratios (RARs) such as Sharpe ratio (SR) and Sortino ratio (SOR)
are usually used for assessing returns of an investment per unit risk
[15]. Hence, the objective in investment studies is to find the highest
value of these ratios. In this work, we attempt to target the lowest total
cost per unit of risk for distribution grid planning using modifications to
such RARs.

The contributions of this work are: (i) a risk-based optimization
framework for distribution expansion planning; (ii) two modified RARs
for investment risk assessment; (iii) the analysis of investing in BESS on
a real distribution network in Latin America along with high PV pe-
netrations; considering actual data of solar-weather conditions and as-
sociated load data, cost values, and projected growth rates. This work
builds on the initial results from our previous work [16,17]. In [16], we
proposed an initial study of investing in BESS for supporting high pe-
netration of PVs installed by the customers, without considering un-
certainties. In [17], we quantified improvements in wind power fore-
casts by deferring ancillary services using newly developed metrics for
RARs. In this paper, we further modify the new metrics from [17] to fit
the application, and consider uncertainties along with the original
framework from [16] to provide a comprehensive approach to assessing
risk in distribution planning.

The rest of the paper is organized as follows. Section 2 explains the
proposed framework of the optimization problem. Section 3 applies the
optimization framework to a case study on a typical Argentinian dis-
tribution network. Finally, Section 4 provides the conclusions of the
work.

2. Optimization problem formulation

The proposed optimization framework is based on stochastic Monte
Carlo simulations (MCS) to take into consideration the uncertainties of
the input variables in the distribution planning problem. The original
(unmodified) SR considers the expected return (profit), E[R], and the
risk, o [R], associated with an investment portfolio as shown in (1) [15].
Further, the SR considers a risk-free rate, rf, which is usually re-
presented by the minimum acceptable rate (MAR) of return on the in-
vestments. Note that the values of E[R] and o [R] correspond to the
mean and the standard deviation of the returns, respectively. This is
under the assumption that the returns are nearly normally distributed,
implying the skewness of the probability distribution of the returns is
close to zero.

E [R]—l"f

K= R

(€8]

If the skewness of the returns distribution is non-negligible, the use
of the downside deviation is better than the standard deviation for risk.
In this sense, the original SOR considers those returns falling below a
specified target value as the MAR that could be set to rf or zero. Then,
the risk in an investment portfolio is evaluated as the target downside
deviation (TDD) or semi-variance, as shown in (2) [15]

E[R]-MAR
TDD[R]

SOR =
@

where, TDD is the root mean square of the deviations of the under-
performing returns from the target return (i.e., MAR), which is math-
ematically computed as in (3).
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N
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where, R; is the i return, and N is the total number of returns.

In this work, both a modified Sharpe cost ratio (MSCR) and a
modified Sortino cost ratio (MSOR), which are presented in (4) and (5)
respectively, are proposed to assess risk in distribution expansion in-
vestments. The proposed modifications pertain to considering only the
present value of the total costs (Cp.) of —but neglecting the incomes
from —the investments in BESS and distribution grid assets, that means
for each expansion alternative assessed (if). Further, it does not con-
sider rf in (4), as it does not pertain to this analysis, and the target MAR
in (5) is set to zero. The minus signs in (4) and (5) indicate the con-
sideration of the above assumptions. Cp,, is computed in (6) using the
following: investment cost for each expansion alternative (i), C,,; the
cost of energy losses, Cy,ss; the penalty cost of energy supplied with poor
quality (i.e., by violating voltage limits), Cporn; the penalty cost of
violating the ratings of feeders and distribution power transformers by
over load energy, Cogy; the discount rate, r; and, the planning horizon,
T. In (6) also is considered the total number of MCS, M. The variables t
and i correspond to the indexes of the time horizon and MCS, respec-
tively.

E [_CPYB(H)]

MSCR =
c'[_C’Pre(a)] (4)
soR = El=Cn @]
—TDD (—Cpy () (5)
S s (G (@) + Cross (@) + Croen (&) + COEN(E))
Cpre () = L,
e Z;;( (1 +ry e

Either the MSCR or the MSOR could be minimized as the objective
function of the optimization problem. Based on a simply analysis per-
formed in the previous work [17], in this work the objective function of
the optimization method is to minimize the MSOR (5) by considering
constraints vis-a:vis load flow, as shown in (7), and later the MSCR is
just calculated for the best solutions found (corresponding to the ex-
pansion plan). The objective function is the minimizing of MSOR as
follows:

Min {

E [_CPYL’ (l'_‘)]

—TDD (~Cpre () @)
subjecttoIL;; = ILyayg,: + /N\Lpxcr,s (8)
ITps, = IMyax,e + NI Texce,s (C)]
Proad,t + Prosst = Pps,c + Pprr,t (10)

The constraints (8)-(10) represent the line capacity constraint, the
DS capacity constraint, and the power balance constraint, respectively.
Where, the current that exceeds the capacity of a line (j), AILgxcg, is
then used to compute the overload energy, OEN; the maximum capacity
of the power distribution substation (DS), ITj,, is determined by the
power rating of the transformers, and the current that exceeds the DS
capacity, /\ITixck, is also used to compute the OEN. In turn, with the
power losses, P, the energy losses are calculated; and the nodes with
high voltage drops are considered to evaluate the energy supplied with
poor quality, Ryzy. The power of distributed energy resources (DER)
that considers the power injection of both the solar PV distributed
generators and the BESS is presented in (10), as well as the possibility of
BESS consuming electric energy as a load; along with the power load
demand, Ppoqq, and the P, assuming the DS as the slack node.

Each expansion alternative (&) takes into account the decision
variables of the optimization problem, including both conventional
reinforcements of networks (such as upgrading feeders, installing ca-
pacitor banks, and expanding the DS) and the installation of BESS.
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Fig. 1. General flowchart of the risk-based optimization framework.

Because the decision variables include integer, binary, real, and com-
plex types, we can justify using heuristic optimization techniques for
finding near-optimal solutions. Particularly, the Evolutionary Particle
Swarm Optimization (EPSO) algorithm is applied to solve the expansion
problem. It is well used in several complex power system problems,
presenting appropriate qualities such as mainly self-adaptation of the
algorithm parameters, robustness, and fast convergence [16,18].
Moreover, the OpenDSS® software is used for running power flow si-
mulations and computing the energy losses, the energy supplied with
poor quality (PQEN) and the over load energy (OEN). OpenDSS® is an
open-source tool developed by Electrical Power Research Institute
(EPRI) to model and simulate the electrical behavior of distribution
grids [19,20]. This paper does not commercialize the OpenDSS® soft-
ware nor does it support its exclusive use for such studies; rather, the
authors present it as one of the freely available software options for
conducting such distribution studies.

Fig. 1 depicts the proposed risk-based optimization problem, where
the input includes deterministic parameters such as the network data to
be analyzed, demand characteristics (types of customers, and typical
load curves), costs of conventional reinforcements, and discount rate as
well as stochastic variables such as the load growth, the PV penetration,
the solar-weather conditions (temperature and irradiance), and the cost
of BESS. After running the expansion optimization, the best-compro-
mise expansion plan is obtained as a solution.

In brief, the near-optimal solution of the proposed optimization
framework is mathematically equivalent to finding the investment de-
cision option (or expansion plan) that minimizes the expected present
value of the total costs, i.e., investment and operational costs, per unit
of cost deviation (or risk). In this sense, the framework considers the
installation of new equipment—feeders, capacitors, transformers, or
BESS—to supply the expected load requirements on time and with ac-
ceptable power quality. Particularly, when the installation of BESS is
optimized, the size and allocation of BESS are also optimized con-
sidering the time of their investment (i.e., the timing). In this last sense,
Fig. 2 shows the computational encoding done of the relationship be-
tween the optimization algorithm (i.e., EPSO) and the Open-
DSS®environment when the BESS are taken into consideration as an
expansion plan, where:

Particle of EPSO Feeder on OpenDSS
Q)
0 o 6
o
Elements (siting) >>  (3)

Fig. 2. Encoding of BESS as expansion plans into the optimization problem.
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o the dimension or total number of elements of the particles of EPSO is
equal to the number of the suggested locations for installing BESS in
the network under study; and,

e cach element of a particle of EPSO is represented by a two-digit
integer, where the first digit represents the timing at which the BESS
investment is made, e.g., O is not installed, 1 represents the first
year, 2 denotes the second year, and so on; and the second digit
indicates the sizing of BESS (i.e., the power capacity) to be installed,
e.g., 11is 250 kW, 2 is 500 kW, and 9 is 2.250 MW, where the energy
capacity of BESS is also taken into account within the optimization.

Based on the encoding example in Fig. 2, the first element of the par-
ticle represents an option for installing a BESS unit in the first node of
the feeder, in the third year, at a rating of 500 kW. Note that to reduce
the computational time resulting from the combinatorial explosion of
this large optimization problem, distributed or parallel computing may
be easily used.

3. Case study and results
3.1. Data of the test system

In this study, a typical Latin American distribution network is used
[16].Itis a 13.2kV three-phase balanced network with four feeders and
20 MW of peak load demand (not coincident), as described in Table 1,
where residential loads constitute 44% and 74% of the total load
composition of feeders F1 and F4, respectively. Based on that, along
such F1 and F4 feeders the BESS are proposed to be installed as possible
allocations into the optimization framework. Fig. 3 depicts the one-line
diagram of such distribution network. For this test system, actual data
of load, temperature, and irradiance for the San Juan province in Ar-
gentina (30.870 S 68.980 W) are mapped [19-21]. Figs. 4 and 5 re-
present the typical load curves of a weekday for the residential, com-
mercial, and industrial customers in summer and winter, respectively.
Note that in the San Juan province, the average of 60% of the days per
year are mostly considered summer-days and the remaining 40% as
winter-days. The main data of this case study is available online on
[22].

For a ten-year analysis period within the expansion planning hor-
izon, the following parameters are assumed, in US Dollars ($), which
represent typical values in Argentina:

® Cost of energy to evaluate energy losses: 100 $/MWh in year 1,
growing with a constant annual rate of 5 $/MWh.

® Cost of Pypy for +5% voltage variations: 300 $/MWh.

® Cost of OEN for power rating violations: 1500 $/MWh.

e Annual discount rate, r: 10%.

3.2. Stochastic input data

3.2.1. Load growth

When performing MCS, the load demand growth is assumed to be
governed by a geometric Brownian motion (GBM) [18]. For a time-
interval, /\t, the variation of a GBM satisfies the stochastic differential

Table 1

Characteristics of Individual Demand by Customer Type.
Customer Type Peak load Distribution of load per Power Annual

feeder (%) factor growth
rate (%)
MW (%) F1 F2 F3 F4

Residential 850 425 44 00 34 74 0.80 6
Commercial 450 225 25 00 31 26 0.85 3
Industrial 7.00 35.0 31 100 35 00 0.90 2
> 22.0 100 100 100 100 100
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Fig. 3. One-line diagram of the distribution network under study [13], where B indicate the possible nodes proposed to install the BESS units.
—o—Res —«-Com —+—Ind Eq. (11).

ADP,, = ADP,_-(u-/\t + o-e-/ Al) an

where D, is the peak power demand per node, u is the drift or growth
rate, o is the standard deviation or volatility, € is a normally distributed
random variable such that N (0, 1), i is the MCS index, and t is a period
of time.

Based on typical load growth data in Argentina described in
[16,23], the drift values (u) are the same annual growth rate values
12345672 9101112131415161718192021 283 A shown in Table 1 for each type of costumer, and the volatility values, o,

Houwrs per day are assumed as 5% for residential customers, 4% for commercial, and
3% for industrial customers. Fig. 6 shows an example of the load growth
for a residential customer of 1 MW, by running 100 MCS.

Load demend (pu)

0.00

Fig. 4. Typical curves of load demand of a weekday in summer.

—p—Res === Com. —+—Ind
1.00 3.2.2. Solar-weather conditions

- /\ Two years of hourly solar-weather data for the San Juan province
g f ,‘—"\ were collected and analyzed to model the distributed PV generation
- 060 /‘* ,’ 'S installed by residential customers [24]. Based on that, we performed a
§ \BRRRE A statistical inference study of the data to find the probability distribution
i 040 jitg functions (PDFs) for typical-weather summer and winter days. This
§ - U ’ study was performed by specifying a set of statistical models, or PDFs,

and then using a model selection technique or criteria to choose the
most appropriate PDF for each data set of temperature and irradiance
[25]. It was specifically done by using the Open Distribution Fitting
Hours per day App of MATLAB® that fits univariate distributions to data by estimating
Fig. 5. Typical curves of load demand of a weekday in winter. its main parameters, the standard error (Std.Err) and the cumulative
probability (CDF).
With the PDFs obtained, we run MCS to take into consideration the
uncertainties from the temperature and the irradiance into the PV

8

1234567 8%89101112131415161718192021 22283 24
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Fig. 6. Load growth for a residential customer by running 100 simulations.
Table 2
Solar-Weather Statistical Data for Summer.
Hours irradince (kW/m?2) Temperature (C°)
Function Parameters Std.Err CDF Function Parameters Std.Err CDF
06-09 Exponential(1) 0.1004 0.0047 0.9694 Weibull (a,b) 22.856 7.483 0.1468 0.2639 0.9995
09-11 Weibull (a,b) 0.5303 3.4459 0.0073 0.1303 0.9684 Weibull (a,b) 24.5887 7.5287 0.1569 0.2642 0.9886
11-13 Weibull (a,b) 0.8993 7.7747 0.0054 0.2992 0.9917 Normal (u, o) 25.5081 3.6973 0.1684 0.1192 0.9996
13-15 Weibull (a,b) 1.0462 13.249 0.0036 0.5501 0.9969 Normal (u, o) 27.8122 3.8533 0.1755 0.1243 0.9992
15-17 Weibull (a,b) 0.9362 7.0707 0.0062 0.2835 0.9969 Normal (u, o) 29.6591 3.9675 0.1807 0.1279 0.9954
17-19 Weibull (a,b) 0.5775 3.2155 0.0085 0.1230 0.9866 Weibull (a,b) 32.332 9.0031 0.1720 0.3179 0.9989
19-21 Exponential(1) 0.1316 0.0029 0.9521 Weibull (a,b) 32.0183 9.0414 0.1694 0.3282 0.9994
Table 3
Solar-Weather Statistical Data for Winter.
Hours irradince (KW/m?2) Temperature (C°)
Function Parameters Std.Err CDF Function Parameters Std.Err CDF
08-11 Exponential(1) 0.1231 0.0056 0.9315 Normal (u, o) 8.7485 4.1497 0.1908 0.1351 0.9999
11-13 Weibull (a,b) 0.4330 3.9398 0.0053 0.1438 0.9987 Normal (u, o) 11.7648 4.4413 0.2033 0.1440 0.9999
13-15 Weibull (a,b) 0.5713 6.0784 0.0046 0.2318 0.9965 Weibull (a,b) 16.2582 3.3538 0.2406 0.1212 0.9999
15-17 Weibull (a,b) 0.4799 4.7126 0.0049 0.1717 0.9973 Weibull (a,b) 18.3536 3.9711 0.2227 0.1427 0.9991
17-19 Exponential(1) 0.1857 0.0085 0.8840 Weibull (a,b) 18.8866 4.1604 0.2187 0.1498 0.9999

model in OpenDSS®. Also, the parameters of efficiency of the PV model
were adjusted based on current PV generators installed on the roof of
some houses and buildings in San Juan province [26].

Tables 2 and 3 summarize the PDFs and their statistical parameters
obtained for the summer and winter seasons, respectively, where the
main characteristic of the distribution functions are the rate or inverse
scale parameter for the exponential function (1), the scale parameter
(a) and the shape parameter (b) for Weibull distribution, and the mean
(u) and the standard deviation (o) for the normal function.

Based on the statistical data of Tables 2 and 3, Figs. 7 and 8 show
the modeled PV generation in OpenDSS® of 100 kW by running 100
stochastic simulations for summer and winter, respectively.

3.2.3. PV penetration
In this planning study, varying levels of PV penetration between
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10% and 60% are considered to account for expected growth, using
uniform probability distribution. For instance, Fig. 9 presents the ex-
pected coincident power flow profile at the head of the feeder F4, which
has the highest residential load demand composition (see Table 1),
considering different levels of PV penetration installed by residential
loads for a summer day. Similarly, Fig. 10 shows the voltage profile at
the end-node of the feeder F4.

Based on the previous analysis, the BESS are set for a daily load
peak-shaving operation, storing energy produced by PV generators
during off-peak demand periods (between the 9th and the 12thh) and
injecting it later at peak hours (between the 21st and the 24thh).

3.2.4. The cost of BESS
BESS technologies include a variety of materials such as the classic
and well-known lead-acid (LA) batteries, modern redox
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Fig. 7. PV generation in summer by running 100 stochastic simulations.
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Fig. 8. PV generation in winter by running 100 stochastic simulations.

(reduction—oxidation) flow batteries, advanced-LA and new alkaline
batteries such as with nickel chemistry and sodium chemistry (sodium-
sulfur NaS or sodium-salt NaNiCl or ZEBRA) [2,27-30,30]. The main
technical characteristics of BESS are the nominal power, in kW, the
maximum energy stored, in kWh, which reflects the maximum time to
store energy at the nominal power rate, their efficiency of charging and
discharging, and the idling losses.

LA batteries are the most commercially mature rechargeable battery
technology.Advanced-LA technologies, comprising the absorbent glass
mat (AGM), have improved their efficiency and life-time cycles. NaS
batteries are a commercial technology finding applications in electric
utility distribution grid support, because of its long discharge period
(about 6h). ZEBRA batteries have been commercially available since
1990’s for mobile applications and now are seeing deployment in the
size range of 50-1000 kW. Table 4 summarizes the main characteristics
of these key three kinds of batteries [28-31].

Then, advanced-LA batteries are considered for this study, assuming
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the following considerations: a range investment cost between 1200
$/kW and 1800 $/kW (that means between 400 $/kWh and 600 $/
kWh, respectively, considering up to three hours of energy storage at
maximum power); a lifetime about 4000 cycles of charging and dis-
charging, i.e., 10 years approximately for a daily operation; and an ef-
ficiency of 10% for charging and 10% for discharging. For varying le-
vels of this investment cost of BESS, uniform probability distribution is
used.

3.3. Results

Based on the optimization problem formulation presented in the
Section 2, for each expansion alternative (ir) and for each t year from 1
to 10-year planning horizon a MCS process is run, from 1 to M ith si-
mulations, and then the present value of the total costs (Cp,) are
computed in (6). In turn, into each ith simulation the system is assessed
for each-two representative day in summer and winter, considering the
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Fig. 9. Expected coincident power at the head of the feeder F4 by different levels of PV penetrations in summer.

101

Voltage (pu)

— o 10%

——20%

ceeee300

g0

1 2 3 4 5 6 7 & 9 10111213 14151617 1819 2021 228 24
Howrs per day

Fig. 10. Expected voltage at end-node of the feeder F4 by different levels of PV penetrations in summer.

Table 4
Characteristics of the three main BESS technologies.

BESS Efficiency Life Cycles Investment Cost  Energy Capital
Technology Cost
Advanced-LA 75-90 % 3000-4500 1000-2500 350-750 $/kWh
$/kwW
(8-12 yrs)
NaS 75-90 % 2500-4500 1500-2500 400-600 $/kWh
$/kw
(7-12 yrs)
ZEBRA 85-90 % 2500-3000 1500-4000 400-950 $/kWh
$/kwW
(7-8 yrs)

typical curve for the stochastic load demand through the GBM process
(see Section 3.2.1) and the stochastic-sorted value of temperature and
irradiance (based on the data depicted in the Section 3.2.2) to simulate
the power generation of the solar PV penetration (through the PV
model set on OpenDSS®). Later, considering the typical seasons in the
San Juan province (60% summer-days and 40% winter-days, on
average), the Cp,, are proportionally computed. This process is briefly
presented in Fig. 11. Therefore, the BESS is set for a daily load peak-
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shaving operation, charging during the morning hours and discharging
at night during the peak of demand, based on the size and allocation
proposed by the optimization process itself, as observed in Fig. 12.

Then, we run the proposed risk-based optimization framework for
analyzing the following three cases in the distribution network under
study. For that, into the optimization process, firstly for a particular
planning solution considered by the EPSO, 1000 MCS are carried out for
a ten-year planning horizon, resulting in an estimation of the objective
function. This procedure is iterated for a large number of planning
possibilities (the search is being driven by the EPSO strategy), and the
best solution at the end of the EPSO search is finally selected. Later, the
best-compromise expansion plans obtained in each case were checked
by running 5000 MCS.

1. Base case is the expansion planning taking into account traditional
reinforcements, such as expanding the power capacity of the main
distribution substation (DS), feeders, and installing fixed capacitor
banks.

. BESS option is the distribution planning for siting and sizing bat-
teries as expansion options, by avoiding capital-intensive re-
inforcements such as an expansion of the main DS.

3. Flexible plan considers the installation of BESS as a flexible
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Into the expansion optimization process
For each expansion alternative ()

v

[ Fort=1to T (years) }
For each winter and summer typical days

[ )

[ )

v

Set the solar-weather statistical data

v

Run the Monte Carlo process
For i=1 to M (simulations)

v

Sort the stochastic values of solar-weather inputs

v

-

Call OpenDSS to simulate the system operation
Run the PV generation daily simulation
. /
Sort the stochastic values of the stochastic load demand )
Sort the PV penetration (by uniform distribution)

9 Run a daily power flow simulation )
( Sort the cost of BESS (by uniform distribution) )
Assess the total present costs Cere (6) by proportionally
computing it for each winter and summer typical day
. J

Fig. 11. Flow chart of the optimization process.

expansion option by deferring some large network reinforcement,
by closely following the growth demand and the PV integration.

Table 5 and Fig. 13 summarize the results obtained for the three
expansion planning cases, by running the EPSO algorithm for 50
iterations of 10 particles each, where:

e In the base case, the major investment is installing a new power
transformer of 25 MVA at the main substation (DS) in the third year,
with a cost of $ 3M (which its present value is $2.25M). The ex-
pected total cost of this plan is $3.09 M, with a significant deviation

—=—A)withoot ¥ —+—B) wih PV

Power (MW)
r

-
o

5
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Table 5
The Expansion Planning Results.

Present Value of Costs (M$) Base case BESS option Flexible plan
Feeders and capacitors investments 0.1118 0.1118 0.1118
Power transformer investment at DS 2.2539 0 1.3995
Expected BESS investments: 0 2.2803 1.6363
Expected total cost 3.0917 4.9315 3.1753
Standard deviation 0.6738 0.5322 0.2615
MSCR —4.5885 —9.2661 —12.143
TDD 3.1322 5.0055 3.2513
MSOR 0.9871 0.9852 0.9766

of $0.67 M (21.8%) and a MSOR equal to 0.987.

o The BESS option considers the installation of 2.0 MW in BESS, which
includes installing 0.50 MW in the second year at the point of
common coupling (PCC) of line L.4.4, 0.75 MW in the third year at
the PCC of line L.4.3, and 0.75 MW in the fourth year at the PCC of
line L.1.2.

o The flexible plan proposes to install 1.50 MW of BESS (0.50 MW in
the second, third, and fourth years at the same locations, respec-
tively, as the previous second case) by deferring the transformer
investment for five years until the eight year. This plan gives a major
flexibility to the distribution planner during the first half of the
planning period, which could be assessed by taking into account the
recovery value of such investments in BESS (through a constant-line
depreciation) when the investment in expanding the main DS will be
done.

The second option concerns the expected present value of BESS in-
vestment of $2.28 M, without considering the large investment in ex-
panding the main substation. In this case, the expected total cost is
about 60% higher than the first case, equal to $4.93 M, but with a lower
deviation of $0.53 M (10.8%) and a resultant MSOR of 0.985 (that is
very close to MSOR of the base case).

The third expansion case involves the expected present value of
investment of $3.03 M between both the BESS and the transformer in-
vestments, obtaining the expected total cost just about 2.7% higher
than the base case, equal to $3.17 M, but with the lowest risk or de-
viation of $0.26 M (8.2%) and also the lowest MSOR value of 0.976.

Realizing the obtained results and specifically comparing the base
case with the flexible plan indicates that their expected total costs are
close ($3.09 M and $3.17 M, respectively) but the deviation of the last
case is 13.6% lower than the first case, meaning the expansion plan

- e~ C) wih BESS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 BB 24

Homs

Fig. 12. Power metering at Distribution Substation for the 5th year, a summer-sunny day to: (A) considering the growthing demand but without PV generation, (B)
idem to A, with a high penetration of PV distributed generation, (C) idem to B, taking into account the BESS for load peak-shaving.
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Table 6
Sensitivity analysis of the MSOR for the base case (considering traditional re-
inforcements).

PQEN 25% 50% 75% 100% 125%  150%

OEN ($/MWh) 75 150 225 300 375 450

25% 375 0.9996 0.9983 0.9959  0.9920 0.9800 0.9687
50% 750 0.9993  0.99975 0.9945 0.9879  0.9774 0.9719
75% 1125 0.9992  0.9978 0.9942  0.9899 0.9787  0.9696
100% 1500 0.9964  0.9940 0.9904 0.9871 0.9764 0.9672
125% 1875 0.9961 0.9938  0.9894 0.9865 0.9699  0.9586
150% 2250 0.9911 0.9867 0.9848 0.9795 0.9692  0.9623

Table 7

Sensitivity analysis of the MSOR for
stallation of BESS).

the flexible plan (considering the in-

PQEN 25% 50% 75% 100% 125% 150%

OEN ($/MWh) 75 150 225 300 375 450

25% 375 0.9962  0.9893 0.9869 0.9835 0.9724  0.9700
50% 750 0.9916 0.9822 0.9788 0.9776 0.9733  0.9673
75% 1125 0.9941 0.9881 0.9851 0.9814 0.9714  0.9689
100% 1500 0.9928 0.9852 0.9814 0.9766 0.9734  0.9702
125% 1875 0.9882  0.9853  0.9809 0.9872 0.9644  0.9549
150% 2250 0.9895 0.9871 0.9856  0.9805 0.9641  0.9519

with lower risk should be rationally chosen. In this sense, the values of
both MSOR and MSCR are justly the lowest for the flexible plan.

Finally, contrasting these achieved results regarding the initial re-
sults [16], in both works the expansion plans obtained are similar.
However, this work considers uncertainties and the proposed risk-ad-
justed cost ratios (either MSOR or MSCR) point to making near-optimal
investments decisions, by choosing the expansion option with the
lowest expected total cost per unit cost deviation. Based on [17], note
that the MSOR allows for better decisions making to choose the option
with the lower expected cost per unit of deviation.

3.4. Sensitivity analysis
Taken the base case and the flexible plan obtained in the previous

section, a sensitivity analysis of both penalty costs of PQEN (energy
supplied with poor quality by violating voltage limits) and OEN (over
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load energy by violating the ratings of feeders and distribution power
transformers) was done and the results of the MSOR are presented in
Tables 6 and 7. Comparing these two tables, we can confirm that in
general the flexible planning is better than the base case planning, by
supporting significant variations of some input parameters.

4. Conclusion

A comprehensive framework to assess risk in distribution expansion
investments was proposed in this work by using modified risk-adjusted
cost ratios. The framework was applied specifically to quantify the
benefit of investing in BESS (battery energy storage systems), con-
sidering distributed PV generation and uncertainties in the load growth,
the PV penetration, the solar-weather conditions, and the cost of BESS.
Moreover, the size and allocation of BESS were optimized by con-
sidering the timing of their investment.

By application to a typical Argentinian distribution network we
showed the main contribution of BESS lies in the flexibility for dis-
tribution planning by deferring large capital-intensive reinforcements.
This flexibility was mainly given for closely following the uncertain
growth demand along with fairly high distributed PV generation pe-
netrations.

Future work, and under another context, may include investing in
other new technological solutions such as reactive control of PV in-
stallations (to alleviate voltage fluctuations) and demand-response so-
lutions (to tackle line congestions), instead of BESS. Besides, other extra
incomes of BESS could be considered, for instance from offering an-
cillary services to the transmission system, by also changing the pro-
posed modifications to the cost risk-adjusted ratios on this work, where
the revenues of all kind of investment (BESS and traditional re-
inforcements) were neglected.
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