Future Generation Computer Systems 56 (2016) 124-139

Contents lists available at ScienceDirect
FiGICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs —

Logic-based modeling of information transfer in cyber-physical
multi-agent systems

CrossMark

@

Christian KroiR **, Tomas Bures®

¢ Ludwig Maximilian University of Munich, Institute for Informatics, Munich, Germany
b Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech Republic

HIGHLIGHTS

Logic-based modeling of information transfer in multi-agent systems.
Considers stochastic nature of communication in the cyber-physical setting.
Allows property specification with first-order time-bounded LTL.

Can be used for statistical model checking.

ARTICLE INFO

Article history:

Received 7 February 2015

Received in revised form

7 September 2015

Accepted 11 September 2015
Available online 25 September 2015

Keywords:

Statistical model checking
cyber-physical systems
Situation calculus
Discrete event simulation

ABSTRACT

In modeling multi-agent systems, the structure of their communication is typically one of the most
important aspects, especially for systems that strive toward self-organization or collaborative adaptation.
Traditionally, such structures have often been described using logic-based approaches as they provide
a formal foundation for many verification methods. However, these formalisms are typically not well
suited to reflect the stochastic nature of communication in the cyber-physical setting. In particular, their
level of abstraction is either too high to provide sufficient accuracy or too low to be practicable in more
complex models. Therefore, we propose an extension of the logic-based modeling language SALMA, which
we have introduced recently, that provides adequate high-level constructs for communication and data
propagation, explicitly taking into account stochastic delays and errors. In combination with SALMA's tool
support for simulation and statistical model checking, this creates a pragmatic approach for verification
and validation of cyber-physical multi-agent systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With SALMA (Simulation and Analysis of Logic-Based Multi-
Agent Systems) [1], we have recently introduced an approach for
modeling and analysis of multi-agent systems that is aimed to pro-
vide a lightweight solution for approximated verification through
statistical model checking [2] with the system model still being
grounded on a rigorous formal foundation. SALMA’s modeling lan-
guage is based on the well-established situation calculus [3], a first-
order logic language for describing dynamical systems.

In this paper, we provide an extension of SALMA (and the
situation calculus in general) to explicitly address one aspect
that is particularly important for cyber-physical [4] multi-agent

* Corresponding author.
E-mail addresses: kroiss@pst.ifi.imu.de (C. Kroif3), bures@d3s.mff.cuni.cz
(T. Bures).

http://dx.doi.org/10.1016/j.future.2015.09.013
0167-739X/© 2015 Elsevier B.V. All rights reserved.

systems, namely the distributed gathering and transfer of infor-
mation. Agents not only have to continuously sense their envi-
ronment, but also share these readings with other agents, acquire
information of others, and participate in coordination activities. In
the cyber-physical context, these information transfer processes
are subject to stochastic effects, e.g. due to sensor errors or unre-
liable communication channels. Furthermore, accuracy and timing
of information transfer processes can strongly influence the behav-
ior of the whole system. In particular, the efficacy of mechanisms
for self-adaptation or optimization typically degrades when cer-
tain time-constraints are violated or the accuracy of sensors is in-
sufficient.

Using pure logical formalisms like the basic situation calculus
for describing such scenarios results in rather verbose and low-
level representations that are not practicable in more complex
cases. What is needed instead are high-level constructs that
establish a bridge between the underlying logical semantics and
the typical requirements for modeling information transfer in

http://dx.doi.org/10.1016/j.future.2015.09.013
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.09.013&domain=pdf
mailto:kroiss@pst.ifi.lmu.de
mailto:bures@d3s.mff.cuni.cz
http://dx.doi.org/10.1016/j.future.2015.09.013

C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139 125

:

= |m é‘/,e

-
-
o E
W50 PLCS
3.»5\’3 ‘\(\\?\)\’ »))
\ [duration _#freeslots

tart,
] . plcs-prefs: S
- W

Fig. 1. Optimized parking lot assignment scenario.

multi-agent CPS. Although higher-level extensions on top of the
situation calculus have been designed for related aspects like
sensing and knowledge (e.g. [5]), there has, to our knowledge, not
been a detailed reflection of information propagation in CPS in the
context of the situation calculus.

We have therefore developed a generic model of information
transfer that is based on a stochastic timed version of the situation
calculus and allows capturing a wide range of effects that may be
imposed on information transfer processes. Additionally, we have
defined a set of macro-like abstractions for common information
transfer scenarios within CPS, such as message passing or sensor
data propagation. This creates a concise interface for the modeler
that hides the stochastic details of information propagation but
makes them fully accessible in simulation and verification.

In the following sections, we first set the picture by introducing
an example from the e-mobility domain that will be used
throughout the paper to demonstrate the developed concepts. We
then shortly give some necessary background about the situation
calculus that will be needed to understand the mechanisms
described later. Then, in Section 4, we introduce the basics of the
SALMA approach and formally define a core part of its simulation
semantics in Section 5 as a foundation for the discussion of the
information transfer model. The main contribution of this article
starts in Section 6, where we introduce our generic model for
information transfer and describe precisely its realization on the
basis of the situation calculus. After that, in Section 7, we define
several extensions to SALMA’s modeling language that provide
pragmatic abstractions for the information transfer model. This
is continued in Section 8, where the focus is set on the use of
SALMA for statistical model checking in the context of information
transfer processes. As an evaluation of our approach, Section 9
discusses its application to the example that was introduced in the
beginning. There, we show some experimental results and assess
experiences regarding the benefits of our approach. Finally, we give
an overview of related work before we end the paper with a short
conclusion.

2. Example: optimized parking lot assignment

As a running example to illustrate our approach, we employ
the e-mobility case-study of the ASCENS EU project' that has
been described before, e.g., in [6]. The case study focuses on a
scenario in which electric vehicles compete for parking lots with
integrated charging stations (PLCS) in an urban area. The goal is
to find an optimal assignment of PLCS to vehicles. Technically,
the assignment is performed by an agent called super-autonomic
manager (SAM) that coordinates a number of PLCS. The structure
of the information transfer within this scenario is outlined in Fig. 1.
The basic idea is that vehicles send assignment requests to the SAM,
including a start time, a duration, and a list of preferred PLCS that
is compiled by the vehicle’s on-board computer. The SAM tries

1 www.ascens-ist.eu.

to find optimal suggestions for parking lot assignments, based
on the knowledge about driver’s intentions, and on occupancy
information that is sent repeatedly by the PLCS.

True to the distributed CPS principle, all the agents (vehicles,
PLCS, SAM) are autonomous and communicate via some wireless
data transmission infrastructure like a VANET or 3G/4G network.
This implies that neither transmission delays nor the possibility
of errors can be neglected. However, timing clearly plays an
important role in the scenario described above. First of all, the
reservation service would simply not be accepted if the delay
between reservation requests and reservation responses was too
high. Also, the communication timing affects the convergence of
the optimization, thus directly it influences the functionality of the
distributed CPS.

3. Background: situation calculus

In this article, we show how to capture the timing aspects in
situation calculus models, while maintaining a practical level of
abstraction that focuses on the core “business-level” functionality.
However, before doing so, we briefly summarize the main
principles of the situation calculus in this section, so as to provide
a necessary background for the rest of the paper.

The situation calculus [3] s a first-order logic language for mod-
eling dynamic systems. Its foundation is based on the notion of sit-
uations, which can be seen as histories of the world resulting from
performing action sequences. Actions can either be deliberately ex-
ecuted by agents or exogenous, i.e. external events caused by the
environment. Situation terms are then formed recursively by the
function do(a, s) that denotes the execution of action a in situation
s. Consequently, the term

do(ay,, do(a,_1, do(...,do(ai, Sp)...)))

stands for the situation that results when the action sequence
{(ay, ..., a,) is executed in the initial situation Sy.

The state of the world in a given situation is defined by the set of
all fluents, which are situation-dependent predicates or functions.
Since the models discussed here are meant to be used in discrete
event simulation, time itself is simply modeled as an integer fluent
named time that is increased with each simulation step. How other
fluents are affected by actions and events is defined by successor
state axioms (SSAs) that recursively relates the next situation to the
current one. In fact, a situation calculus model has to contain one
SSA for every fluent that define exactly when a boolean (relational)
fluent is true, or when a functional fluent has a certain value. As a
simple example, the following axiom states that a vehicle is driving
in a situation do(a, s) either when a start event occurred, or when
no stop event occurred and the vehicle had been driving in the
situation before.

driving (vehicle, do(a, s)) = a = start(vehicle)
Vv (—(a = stop(vehicle)) A driving(vehicle, s)).

Additionally, a situation calculus model also contains precon-
dition axioms that define whether or not an action or event is
possible in a given situation. In general, both the effects of ac-
tions and events, and also the occurrence of exogenous actions, are
of stochastic nature. Consequently, simulation involves sampling
from a set of probability distributions that the modeler can define
as part of the simulation’s configuration (cf. Section 7).

In SALMA, the situation calculus is used together with a forward
reasoning technique called progression [3, chap. 9] that basically
uses the successor state axioms to create a new snapshot of the
world state and uses this as the initial situation for the next
simulation step. In contrast to the original situation calculus
reasoning method, regression [3, chap. 4.5], progression actually
“forgets the past” and is therefore not suited for many theorem

http://www.ascens-ist.eu

126 C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139

Domain Model
(Situation Calculus, Prolog)

Agent Behavior Model
(GOLOG-like, Python)

Probability Distributions
(Python)

g1
Simulatior,@ :
On T

Simulation Runs Bernoulli Sample

+— of Verdicts

T

.)

Properties
(Bounded FO-LTL)
Invariants, Goals

Statistical Model Checking

HoP(M':(I))ZPO

Fig. 2. Overview of the SALMA approach.

proving applications. However, since regression works on situation
terms that encode the whole action sequence since the initial
situation, it is not applicable in complex, long running simulations.

One of the most prominent applications of the situation calculus
is GOLOG [7], a language that combines elements from procedural
with logic programming. It has been used for modeling and
implementation in various domains, ranging from robotics to the
semantic web. In particular, GOLOG’s core principles have strongly
inspired the SALMA approach, which is introduced in the next
section.

4. The SALMA approach

In [1], we have introduced SALMA (Simulation and Analysis of
Logic-Based Multi-Agent Systems), an approach that adapts the
concepts of the situation calculus and GOLOG for discrete event
simulation and statistical model checking. In this section, we first
give a broad overview of SALMA, and in the next section, we
discuss the core semantics of its simulation engine in more detail.
Altogether, this part is meant to provide the necessary background
and context for the presentation of the information transfer model
in the remainder of this article.

The SALMA approach is outlined in Fig. 2. The domain model,
i.e. the general mechanisms of the simulated world, is described
by means of situation calculus axioms that are encoded in Pro-
log. Based on this axiomatization, the modeler defines the behavior
of agents by equipping them with one or multiple processes that
can be defined using SALMA’s procedural process definition lan-
guage (SALMA-PDL). Realized as an internal domain specific lan-
guage (DSL) [8] within Python, the SALMA-PDL offers the usual
control flow constructs like loops and conditionals, but also pro-
vides means to access the underlying situation calculus model, in
particular by performing actions, reading fluent values, and ob-
serving events. For example, the code fragment in Fig. 3 defines a
process that reacts to the event called by iteratively performing the
action moveRight (Act) and waits for the completion of each step,
which is indicated by a finishStep event. In order to stop the move-
ment at the target, the fluents xpos and targetX are accessed in the
loop condition.

Processes can be set up with different scheduling schemes,
namely one-time execution, periodic, or triggered as in Fig. 3,
i.e. executed when a given condition evaluates to true. The abil-
ity to freely combine these options allows the modeler to realize
various agent architectures, in particular reactive and layered ar-
chitectures [9] that are widely used in robotics and other branches
of cyber-physical systems.

With the models for the domain and the agents’ behavior
in place, a concrete simulation experiment is created by defining
initial values and probability distributions for stochastic actions and
events.

p1 = Procedure([
While("xpos(self) < targetX(self)", [
Act("move_right", [SELF]),
Wait("occur(finish_step’, self)")])]

mover = TriggeredProcess(p1, "occur(called(self))")

Fig. 3. Simple procedure in SALMA-PDL.

The simulation engine uses a simulation world view that can
be seen as a combination of event scheduling and activity scan-
ning, similar to the three-phase approach in discrete event simula-
tion [10]. For scheduled events, the occurrence time is determined in
advance by sampling from a (conditional) probability distribution.
Additionally, for immediate events, the simulation engine decides
for each time step separately whether the event should occur or
not—similar to activity scanning. While the second approach ob-
viously increases computational effort, it can be better suited for
capturing highly dynamic effects, e.g. when the position of a mov-
ing agent has significant impact on the latency of an ongoing com-
munication process.

In addition to the system model, a set of invariants and goals can
be specified using SALMA's property specification language, which
is mainly a first-order version of linear temporal logics (LTL) [11]
with time-bounds for the temporal modalities. Since the simulated
system model is also described by means of first-order logics, the
property specification language is able to provide a very detailed
and direct access to the system’s state (i.e. fluents), actions, and
events. For example, Fig. 4 shows a property that asserts that after
any robot is called, it reaches its target within 100 time units while
keeping a minimum distance of 50 to all other robots.

Given the system model together with invariants and goals, the
SALMA interpreter performs discrete event simulations. For each
simulation run, the engine eventually decides whether it satisfies
the given properties or not. The set of resulting verdicts yields
a Bernoulli sample that is used to test the statistical hypothesis
Hp : p = Py which asserts that the probability of a success (a run
fulfills the property) is at least as high as a given lower bound. By
using the sequential probability ratio test (SPRT) by A. Wald [12],
the number of required simulation runs for given statistical error
bounds can be determined dynamically. Additionally, any methods
for interval estimation of binomial proportions can be used to
estimate p directly (see [13]).

This way of approximative assertion of properties defined by
temporal logics is generally called statistical model checking [2]
and provides a pragmatic alternative to exact model checking
techniques that does not suffer from the same scalability problems

C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139 127

forall(r1:robot, implies(occur(called(r1)),

until(100, forall(r2:robot, implies(r2 \= r1, dist(r1, r2) >= 50)), atTarget(r1))))

Fig. 4. Example property defined with SALMA’s property specification language.

since only individual simulation runs are inspected instead of the
complete state space.

5. SALMA simulation semantics

This section formalizes the operational semantics of the core
part of SALMA'’s simulation framework. The goal is to provide the
necessary background for the following sections. Rather than to
cover every detail. To save space, we intentionally omit details of
the SALMA’s semantics that are not relevant for the description of
the model for information transfer as featured in the paper.

As a starting point, we define the notion of the simulated system
as a combination of all declarations together with the world state.

Definition 1 (Simulated System). A simulated system is defined by
the following tuple:

Sys = (Decl, D™, Agents, (Procsq) aeagents Prob, So, St).

Here, Decl is the set of all declaration statements for sort, sort hi-
erarchies, fluents, (exogenous) actions, connectors, and ensembles.
In conjunction with this, DP°™ denotes the basic action theory [3]
that forms the situation calculus basis for the simulation, i.e. the
complete set of axioms that define how the system can progress
in response to actions and events. Furthermore, (Procsq)acagents is
an indexed family of process definitions that define the agents’ be-
havior, and Prob stands for the set of probability distributions that
are used by the simulation to schedule events and to choose prob-
abilistic action outcomes. Finally, Sy is the initial situation, i.e. the
set of values for fluent instances that is used at the start of the sim-
ulationrun. W

The most important part of the definition above for describing
the simulation semantics, is obviously the system state, which is
by itself a combination of several structures that are manipulated
during simulation.

Definition 2 (System State). The current state of a simulated
system is given by the following tuple:

St = (Prun; Pac[, Pwait» Pidle7 ACt5 Evt, s)

Here, P, Pact, Puair, and Pig are sets of process states (see
below) that describe the processes that are currently being
executed, performing actions, waiting, or idle, respectively. Act
is the set of pending actions that are yet to be executed in the
current simulation step, Evt is the event schedule, and S represents
the current situation, i.e. the current set of values for all fluent
instances of the system. M

The process state descriptions mentioned above combine all
information about the current state of each process. As mentioned
in the beginning of this section, the details about procedure
execution are not presented here to simplify the description.

Definition 3 (Process State). A process state is defined by a tuple of
the following form:

(pid, a, ngr 0 0, M, 7).

Here, pid is a process identifier, a is the agent that executes the
process and ng,, is the process control node that is executed next.
The suffix of the process, i.e. the remaining control nodes of the
process body that will be executed after n,,, is denoted by o, and
the operator o is used to represent sequence composition. Finally,
n is the process evaluation context that defines the mappings of
variables to values, and 7 is the procedure call stack that stores
the environment that will be restored when the current procedure
is exited. W

At the initial state of a simulation, the initial situation Sy holds,
i.e. all fluent instances are set to their initial values. Additionally,
all processes are in the idle state and neither actions nor events are
scheduled.

Definition 4 (Initial System State). Let Sy be the initial situation
of the system in the sense of the situation calculus. Furthermore,
let PBody, be the full control node sequence of the procedure
declaration of process p. Then the initial state of the simulation is
given by

Sto = (P2, P>, PO .., PY., Acto, Evto, So)
where
PO =P =P0. =Acty=Evty =0

PY = {(pid, a, PBody, 8, %) | a € Agents
A (pid, PBody) € Procs,}. n

Concrete control nodes, that can appear in ng,, or o from above,
include the usual control flow statements like conditionals or
loops. Aside from that, there is the Act statement with which an
agent can execute actions. In fact, this is the only option for an agent
to influence its environment — namely through the effect of the
executed actions in the sense of the situation calculus. However,
the progression is not performed directly for each Act call. Instead,
the current interpretation of the action term is added to the set
of pending actions. At the same time, the process is suspended
temporarily until the action has been handled.

Definition 5 (Action Execution). Let o be an action term that
possibly contains variables. Then,

({(pid, a5, Act(ar) o o, n,)} U P, Pacr, Pusaie s Pidies Act, Evt, S)
—> (Prun, Paee U {(pid, a5, 0, 1,)},
Pyqit, Pige, Act U {llet s}, Evt, S). ™

Concordant with the postponed execution mentioned in the last
definition, the system performs progression steps only when all
active processes are currently blocked, i.e. they are either waiting
or performing actions. In this case, both pending actions and events
that are due for the current time step are performed in random
order.

Definition 6 (System Progression). Let « and € be ground terms
that denote a valid concrete action or event, respectively.
Furthermore, lett = time(S) be the current time and Progress(c, S)
the world state that results from performing a progression step for
action « in the current situation S (see [3, chap. 9]). Then,

128 C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139

(a) Actions:
(D, Pact, Pait » Pigie, {0t} U Act, Evt, S)
—> (@, Pact s Pyait s Pigte, Act, Evt, Sl)

if Poss(«, S)
if =Poss(«, S).

where S’ — {Is’rogress(oc, S)
(b) Events:
(®5 Pact’ Pwai[, Pidle; ACt7 {(E’ t)}) EUt, S)
— (ij PaCtv Pwai[a Pidle, ACtv Evt? S/>

if Poss(e, S)
if =Poss(¢,S). W

where §' — {Progress(a, S)
1S

After all currently scheduled agent actions have been per-
formed, blocked processes are reactivated. This first includes all
processes that are currently executing actions. Additionally, wait-
ing and idle processes can be scheduled in this phase when the cor-
responding conditions are satisfied.

Definition 7 (Process Reactivation). Let cond(p) denote a condition
on which the process p is waiting after executing a Wait statement,
and let trigger (p) be a condition that, if true, triggers an idle process
to be executed in the current step. Then,

(D, Pact, Puait Pigies 9, Evt, S) —> (Prun, ¥, Ppygic, Pige» 9, EvE, S)

where P;T = {pw | DPw € Pyair A [[COHd(Dw)]]S = T}

P = {pi | pi € Puie A [trigger(p) Is = T}

Pun = Poe UP) UPF

Pz,uait = Pwait\PL_uF

Pl = Pie\P;". u

An event can be added to the event schedule either (a) instanta-
neously, i.e. at the current moment if it is found to be possible and
chosen by “coin flipping”, or (b) anticipatory, i.e. at a time point in
the future that is chosen according to a specific probability distri-
bution. In general, scheduling is performed iteratively until no fur-
ther events can be scheduled, although every concrete event can
only be scheduled once. Additionally, there may be cases where
there can be only one of a set of several events—i.e. they form an
event choice. An example for such a case will be presented later in
Section 6 with the two events transferStarts and transferFails.

Definition 8 (Event Scheduling). Let € be an event term, AT a
random variable that models a delay, and Occur, a random
variable that models whether an event should occur in the current
simulation step (Occur, = 1) or not (Occur. = 0). For both Occur,
and AT, it is assumed that appropriate probability distributions
have been chosen by the modeler. Furthermore, the predicate
Sched(e, S) is used to determine whether event ¢ is schedulable
in the current situation S. Whether two events are mutually
exclusive as part of an event choice is determined by the predicate

exclusive(eq, €;). Finally, the notation 5 is used to express that
the given state transition occurs with probability p.

Given the definitions above, assume that @, and one of the two
conditions @, or @, is satisfied:
D (#t'. (e, t') € Evt)

A (Bt"%e’ . exclusive(e, €') A (€', t") € Evt)

@1 = type(e) = immediate A Poss(e, S)
&, = type(e) = scheduled A Sched(e, S).

Then, for any value t € Ny, the event instance € is scheduled
8t time units after the current time step with probability p, i.e.

<®a Pacta Pwai[s Pidlea ACt, El}f, 5)
25 (@, Pact Puait» Piie» Act, {(€, [time [ls +8t)} U Evt, S)

where

Pr(Occur, = 1l¢,S) if®yand st =0
p = {1 Pr(AT = é§tle, S) if &,
0 otherwise. H

When no agent processes can progress further and no more
actions or events can be executed in the current simulation step,
the system progresses to the next time point that is relevant either
(a) because an event is scheduled, (b) because a periodic process
is scheduled to be executed, or (c) because an event will become
possible or schedulable at this time.

Definition 9 (Time Advance). Let the predicate EligibleEvent be
defined so that it is true when an event instance can either happen
immediately (in the current time step) or can be scheduled, i.e.

EligibleEvent(e) = (type(e) = immediate A Poss(e, S))
V (type(e) = scheduled A Sched(e, S)).

Furthermore, the predicate StepEnd tests whether the system
has arrived in a state where no further events can be scheduled
and no process can be activated:

StepEnd = ($py € Puaic- [cond(p,) Is = T)
A (@p;i € Pigee. [itrigger (p) 1s = T)
A Jle. EligibleEvent (e, S).

If StepEnd holds in the current system state, then

(@, @v Pwaita Pidle, @, Evt, S) I <@a @a Pwuita Pidle» @, Evt» S/>
where S’ = S[time — tpex]
tey, = min{t | (e, t) € Evt}
tperioa = min{t | Ip € Pigie. t = nextScheduleTime(p)}
tscan = min{t | 3S, €. EligibleEvent(e,S) A t = time(S)}
bhext = min{tev; tperiod; tscan}

Here, nextScheduleTime(p) denotes the time at which the next
execution of the periodic process p is scheduled. =

The definitions above together have two important implica-
tions:

Remark 1 (Actions and Events do not have A Duration). The system
does not enforce a limit for the number of actions and events
performed at the same time step. This means that the modeler is
responsible for assuring that the simulation does not exhibit Zeno-
behavior (see [14]). Every activity that blocks a process for a certain
duration has to be modeled by an action that is followed by a Wait-
statement (e.g. in Fig. 3).

Remark 2 (The Definitions Imply Weak Fairness Among Processes).
Each time a process executes an action, it is only performed after all
other processes had the chance to schedule an action execution. All
actions from the action schedule Act are then performed in random
order before any process can continue its execution.

6. A generic situation calculus model for information transfer

In order to use SALMA for analyzing scenarios like the one
described in Section 2, concepts like sensing and communication
have to be mapped to SALMA’s modeling language framework. As
a first step, we propose a generic model for information transfer
in the situation calculus. This model is able to describe both
sensing and inter-agent communication in a unified way and
allows capturing stochastic effects with a variable level of detail.

In general, our approach is based on the notion that information
is transferred from a source fluent to a destination fluent that is
directly accessible by the receiving agent. The source fluent can

C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139 129

initiateTransfer(ai, c, T)

(7" o tick o 7*)P»

preparing
time = Ty
1@ =y

spec(m) = FQc

content(m) =7

domain(Message) = QU {m}

preparing
time=T1 =Ty + D,
1) =y
spec(m) = TQc
content(m) =7
domain(Message) = U {m}

aseyd
uonesedasd

transferring

time =T> =T + Dy
J(@) = /P2
spec(m)
content(m)

S

glaz, 1
domain(Message) = Q
tstampy (a1, &) = T»

FQc

Yi

domain(Message) = QU {m}

aseyd
19jsuen)

(transmission) error
\

transferEnds(m, &)

(7% o tick o 7*)Pt (sensor) error

Fig. 5. Overview of the general information transfer model.

either represent a feature of the physical world or data created
by some artificial process, e.g. a message queue. A connector
is an entity that defines modalities of an information transfer
process, including the fluent endpoints and the types and roles
of participating agents. The messages that are transmitted over
connectors are treated as first-level model citizens by representing
them as entities of the dedicated sort Message. Both the content and
the state of each message are stored separately by a set of fluents
and evolve independently as result to several types of events.
This representation provides great flexibility for the realization of
arbitrary propagation structures.

In the following, the information model will first be introduced
from a higher level as structured into two general phases,
before Section 6.2 describes the information transfer paradigms
supported by SALMA more thoroughly.

6.1. Information transfer phases

Based on the foundational concepts described above, we
distinguish two phases of information transfer that are sketched
in Fig. 5:

(A) The preparation phase starts when an agent (a; in Fig. 5) initi-
ates the information transfer (sensing or communication). For
that, he specifies a connector (c) and a parameter vector (X) that
fully qualifies the information source and, in case of a point-
to-point transmission, contains the identity of the receiving
agent. In response to this action, a new message (m) is created
and initialized with the transfer metadata but without content
yet. Depending on the concrete scenario, there can be various
reasons for the actual transfer being delayed, e.g. initialization
of sensors or communication devices. This means that there
may be an arbitrary sequence of time steps (tick events) inter-
leaved with actions and events (denoted as 7 in Fig. 5) that may
change the information source (f) but are not recognized by
the agent. After that sequence, the actual value that is eventu-
ally used as message content can deviate from the information
source value present at the time when the transfer was initi-
ated.

(B) The transfer phase follows the preparation phase and begins
when a transferStarts event occurs. At that point, the current
value of the source fluent f is fixated as the content of the
message that is now actually transferred to its destination over
the connector ¢ whose stochastic characteristics are specified
within the simulation model. Like above, this phase may take
an arbitrary amount of time during which unrecognized or
unrelated actions and events occur. Eventually, a transferEnds
event finishes the transfer process. Thereupon, the destination
fluent instance g(a,, X) is updated and the message entity is
removed. This moment, as well as the starting points of both
phases, are memorized in time-stamp fluents that can, for in-
stance, be used to reason about the age of a measurement.

The diagram in Fig. 5 omits the fact that, due to malfunctions and
disturbances in the environment, the transfer could fail at any time,
which would be represented by an additional event transferFails.
Additionally, the transfer process may be affected by stochastic
errors that eventually cause the received value to deviate from the
original input, which is reflected by the error terms €; and ¢, in the
events transferStarts and transferEnds.

In general, both stochastic errors and delays are governed by
a set of probability distributions that are used during simulation
to decide when the events mentioned above occur and which
errors they introduce. By adjusting these parameters, a wide
variety of different scenarios can be modeled, ranging from nearly
perfect local sensing to wireless low-energy communication with
interferences. This topic is examined further in Section 6.4.

6.2. Information transfer paradigms

The generic abstract model presented above contains several
degrees of freedom regarding, in particularly with respect to
how the content of messages is set, and how the recipients are
determined. These variation points have to be handled according
to the particular kind of information transfer. In the following, we
present four classes of information transfer that cover the typical
scenarios in cyber-physical multi agent systems. To make this
section more comprehensible, we present the situation calculus
semantics of each class in a reduced form by means of annotated
state diagrams. For a detailed axiomatization, we refer the reader
to Appendix.

Generally, we distinguish the following basic paradigms:

1. Channel-based communication: An agent actively sends data
to one or several other agents. The well-known channel
paradigm fits well to the asynchronous communication style
predominant in CPS and to the relational way of identifying
information in the situation calculus. As usual, a distinction is
made between the following communication schemes:

(a) Unicast (point-to-point): Fig. 6 shows a unicast message
transfer from agent src to agent dest via channel c. Here,
a message is sent from the source to a single destination
that is specified when the transfer is initiated. In the situa-
tion calculus model, this means that the specification of the
message spec(m) is set when the message is created. This
specification includes all relevant static information about
the message, namely the channel (c), the message type (uc
for unicast), source and destination, as well as source and
destination roles (r; and rg, respectively) and the original
message content (msg). The actual transferred content (flu-
ent Cyqns) Of this message is set when the transfer starts,
possibly tampered by an error ¢ originating in the prepa-
ration phase. When the message transfer ends successfully

130

sre.send(c,msg, rs, dst,rq)/
m < new(Msg)

. spec(m) < (c,uc, sre,rg, dst,rq, msg)

requestTrans fer(m)

)

preparing(m

trans fer Fails(m)

transferStarts(m,)/
Cirans(m) < msg+¢

trans ferFails(m)

trans ferring(m .
f (]() transfer Ends(m,€)/ queuei,(c) < queue,(c)@pre U @

{(sre,rs,dst, ra, Cirans(m) +€)}

Fig. 6. Unicast channel based communication.

(event transferEnds occurs), a tuple is added to the chan-
nel’s incoming message queue (queue;,). This message tuple
identifies source and destination, their roles with respect
to the channel definition, and the eventually received mes-
sage content that again might incorporate an error originat-
ing from the transfer phase. In contrast, when the transfer
fails (event transferEnds occurs) either during the prepara-
tion or transfer phase, the information is lost. In both cases,
the message entity is removed from the model, i.e. from the
domain of the message sort.

(b) Multicast: Here, the destination of the message transfer is
not specified directly when the message is sent but instead
via some shared address property. This case is shown in
Fig. 7. Other than in the unicast case, the specification of the
source message m does not contain the destination. Instead,
the destinations are chosen on the arrival of a transferStarts
event by evaluating the channels ensemble predicate (see
Section 6.3). For each selected recipient, the source mes-
sage is replicated and hence transferred on an independent
path. In particular, terminating messages (transferEnds and
transfer) occur independently for each message, which al-
lows capturing phenomena that are caused by lack of syn-
chronization or deviating information among agents.

2. Generalized sensing: an agent acquires information about a
feature of the world that can be assessed through sensing. We
further distinguish two types of sensing:

(a) Direct(local)sensing: Here the querying agent can produce
the desired result on its own, although the sensing process
may take a considerable amount of time and can be
disturbed by internal or external factors. In Fig. 8, agent ag
uses its local sensor sen to make a measurement. Different
from the communication models explained above, the
transferred content of the sensor message (Sengyqys) is not
at all specified at the creation of the message but retrieved
from the sensed fluent (fi,) on arrival of transferStarts. Also,
the received sensor values are not written to a queue like
messages but are used to update a local sensor view fluent
(sen in Fig. 8) that the agent can access.

(b) Remote sensing: Here the agent cannot observe the desired
information itself by using its local sensors but has to gather
information from one or several other agents. The remote
sensing abstraction reflects the delays and disturbances of
the involved communication processes but abstracts away
their technical details. In particular, both for direct and re-
mote sensing, the most recently retrieved value is made
available in a local fluent that can be accessed in axioms and
agent processes without considering the underlying infras-
tructure. In SALMA's situation calculus model, remote sens-
ing is realized very similar to regular intentional multicast

. spec(m) < (¢, mes, sre, rs, msg)

C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139

src.send(c, msg,rs)/
m < new(Msg)

requestTrans fer(m)

preparing(m)

transferFails(m)

trans ferStarts(m,€)/
Vd € ensemble(c, src). (mg < new(Msg);
spec(mq) < (c,med, sre,m, d, rq); Cirans(Mma) < msg +¢€)

x(z,y, z) =queue;,(c) < queue;,(c)Qpre U
{(sre, s, 2,7, Crrans (y) + 2)}

transferFails(mg,) transferFails(mag,)

trans ferEnds(mg, 1)/

x(di,ma,, 1)

trans ferEnds(mg, ,€,)/

X(dn, Mg, €n)

Fig. 7. Multicast channel based communication.

ag.sense(sen)/
m < new(Msg)

. spec(m) « (sen, sen, ag)

> idle(m)

requestTrans fer(m)

preparing(m)
trans fer Fails(m)

trans ferStarts(m,e)/
Sentrans(m) < fien(ag) +e

transferFails(m)

trans ferring(m)

-®

trans fer Ends(m,)/
< sen > (ag) + Senyns(m) +¢

Fig. 8. Local sensing.

message communication as described above. Fig. 9 shows
the transmission of data from agent src’s local sensor sen to
recipients within the ensemble that is defined for the remote
sensor rsen. The first main difference to multicast message
transmission is that the transferred content is not defined
explicitly by the sending agent but instead taken from the
local sensor (sen) that is declared as the information source.
Furthermore, the ensemble is specified from the perspective
of the receiving agents. After the destination messages have
been created, the rest of the transfer is identical to the mul-
ticast case from Fig. 7.

As mentioned above, remote sensing tries to hide the
communication infrastructure and therefore present the ac-
quired data similar to local sensor data. This is achieved
with the remote sensor view, a fluent that keeps the most
recent value from each source. The update step is shown if
Fig. 10. It can be seen that the update step has to be per-
formed actively by the receiving agents. This is intended
as it resembles the distributed nature of remote sensing
and allows capturing effects caused by delayed updates, etc.
However, the update step is by default hidden from the

C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139 131

sre.transmit(rsen)/
m < new(Msg)

. spec(m) < (rsen,rssre, src)

requestTrans fer(m)

trans ferStarts(m,e)/
Vd. src € ensemble(rsen,d). (mg < new(Msg);

spec(mg) < (rsen,med, sre,m, d,rsen); Cirans(ma) < sen(src) +¢€)

transferring(mag,,)

Fig. 9. Transmission of remote sensor data.

dst.update RemoteSensor(sen)/

Vmt.(3sre.Jval. mt = (sre,rsen, dst, rsen,val) =
< rsen > (dst, src) < val;

queue;, (rsen) « queue;, (rsen)@pre \ {mt})

Fig. 10. Reception of remote sensor data.

ensemble(assignment, Vehicle, SAM, S) :-

distance(Vehicle, SAM, D, S), D < max_comm_dist.

Fig. 11. Ensemble predicate example.

modeler as a background process that is installed automat-
ically according to the remote sensor declarations in the
model (see Section 7.3).

6.3. Predicate-based addressing

An important concern that arises in modeling multi-agent
information propagation is how the set of receiving agents is
determined. In many cases, it is either impossible or impracticable
to do this statically. A particularly elegant alternative, supported
by SALMA, is predicate-based addressing [15]. In this approach,
the set of recipients for each information transfer is determined
by a characteristic ensemble predicate that is evaluated for each
(properly typed) agent pair. An ensemble predicate may describe
intentional selection criteria as well as intrinsic constraints imposed
by agent attributes or the environment. For instance, the Prolog
code in Fig. 11, which is taken from the e-mobility example,
declares an ensemble for the multicast channel assignment. The
predicate selects all super-autonomous manager agents within a
given maximum distance from a vehicle as recipients of messages
that this vehicle sends on the channel.

6.4. Influence of the choice of probability distributions

Although the core information transfer mechanisms of SALMA
are to a large extend determined by situation calculus axioms,
the concrete characteristics of the modeled communication
processes are governed by the choice of probability distributions
for the occurrence of the events transferStarts, transferEnds, and
transferFails. The SALMA framework provides access to common
predefined distributions like Gaussian or Exponential, but also

allows using custom distributions that can access all fluents within
the system to derive parameters or make decisions. A common use
case for distributions with situation-based parameters are message
delays, i.e. transmission durations. For example, a reasonable
choice for the duration of the transmission of messages with
variable sizes would be a Gaussian distribution with a mean that is
derived from the package size and the currently available channel
bandwidth. If we denote with chan(m) and size(m) the channel
and the size of message m, respectively, and if we assume there
is a function currentBandwidth(c, S) that returns the currently
available bandwidth capacity of channel c at situation S, then a
distribution for the delay of the transferEnds event could be given
asin (6.1).

P(AT = 8t | transferEnds(m), S) ~ N (u, 0'2)
size(m)
currentBandwidth(chan(m), S)
ando = Fpu. (6.1)

where =

The factor F above relates the standard deviation to the mean.
This could be a constant value based on experience or also a
function of factors like the current message traffic, etc.

The chosen value of &t is used to schedule the transferEnds
event according to Definition 8 in Section 5. Before that, however,
a choice is made between transferEnds and transferFails according
to another distribution that represents the likelihood of failures.
Additionally, the error amount ¢ that is introduced by transferEnds
is sampled from a third distribution. As the preparation phase
is treated analogically, the whole information transfer of a
message is technically governed by six probability distributions
altogether. This offers a huge variety of configuration choices and
allows modeling a wide range of scenarios. While setting up the
distributions for a simulation from scratch can clearly become a
devious task for more complex models, the SALMA framework
already offers several abstractions and pattern-based solutions
that can reduce the effort significantly. In the future, these may be
extended with additional pattern-based configuration macros that
encode domain knowledge, experience, or empirical data.

7. Modeling abstractions for information transfer processes

To turn the generic information transfer model to a practical
solution for modeling real-size systems, SALMA provides high-
level constructs that reflect the way a modeler normally thinks
about information transfer processes in a CPS. These constructs can
be seen as macros that are internally mapped to situation calculus
axioms, agent process fragments, and probability distributions.
Altogether, this creates an instantiation of the generic schema from
Section 6 that integrates seamlessly with the rest of the model.
In the remainder of this section, the most important elements of
this high-level language are introduced, and their integration into
the general simulation semantics of SALMA and the information
transfer model from Section 6 are explained.

7.1. Connector declaration macros

SALMA'’s high-level language support for communication and
generalized sensing spans across several sections of the model.
First, all connectors, i.e. local sensors, remote sensors, and channels
are declared in the domain model. This is done with the Prolog
predicates channel, sensor, and remoteSensor, that are
shown in Fig. 12.

For channel, the modeler specifies a name for the channel,
two roles with associated agent sorts, and the channel’s mode,
i.e. whether it is a singlecast or a multicast channel. All channels

132 C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139

channel(«name», «role1»:«sort1», «role2»:«sort2», «mode»).

sensor(«name», «ownerSort», «srcFluent»).

remoteSensor(«name», «ownerSort», «localSensor», «localSensorOwnerSort»).

Fig. 12. Connector declaration predicates.

channel(assignment, veh:vehicle, sam:plcssam, unicast).
channel(reservation, veh:vehicle, plcs:plcs, unicast).
sensor(freeSlotsL, plcs, freeSlots).

remoteSensor(freeSlotsR, sam, freeSlotsL, plcs).

Fig. 13. Connector declarations in the e-mobility example.

are bi-directional and the roles are used to distinguish message
queues.

The sensor declaration defines the name of the local sensor,
the sort of agents that own this sensor, and the fluent that
represents the actual information source. This fluent is supposed
to be qualified solely by the owning agent, i.e. it must be a function
of the form Agent x Situation — T with T being an arbitrary type.
Similarly, the remoteSensor declaration establishes a sensor at
the owner but connects it not to a fluent but to local sensors that are
owned by other agents. Both local and remote sensor declarations
add fluents of the same name to the model that provide a current
view on the acquired information (see Section 6.2). Additionally, a
time-stamp fluent is installed for each sensor that records the time
of the latest measurement or remote data retrieval, respectively.
Finally, the declarations for both local and remote sensors are used
to automatically install background processes that hide the sensing
infrastructure (see Section 7.3).

An example for the use of the predicates described above can be
found in Fig. 13 that contains all connector declarations from the
e-mobility example.

Here, assignment is defined to be a channel over which agents
of the sort vehicle can communicate directly with agents of the
sort plcssam in order to request and receive a PLCS assignment.
The other channel reservation is used by vehicles to request slot
reservations from PLCS agents and by the latter to acknowledge
or deny these requests. The sensors of type freeSlotsL allow
PLCS agents to count the current number of free slots at their
station, i.e. access the fluent freeSlots. This information is
propagated to the SAM via remote sensors of type freeSlotsR that
effectively install channels and periodic background processes at
each SAM and PLCS agent which transmit and receive the content
of freeSlotsL, respectively.

7.2. Specialized process elements for information transfer

With the necessary declarations in place, the communication
and sensing infrastructure can be used in agent processes by means
of several special statements of the SALMA process definition
language. As an example, the process p1l shown in Fig. 14 is
installed on PLCSSAM agents in the e-mobility example. It handles
incoming requests from vehicles, calculates optimal assignments,
and sends them back to the vehicles.

The process p1 is executed when messages are available at the
SAM'’s incoming message queue of the assignment channel. First,
all available assignment requests are retrieved from the queue
with a call to Receive which stores a message list in the variable
req. The actual assignment selection logic is integrated by means

pprocreq = Procedure([
Receive("assignment"”, "sam", "assignment_requests"),
Assign(assignments, processRequests),
lterate(assignments, [v, p],
Send("assignment", Term("aresp", p), "sam", v, "veh"))])
p1 = TriggeredProcess(pprocreq,

"message_available", [SELF, "assignment", "sam"])

Fig. 14. Assignment request processing procedure in e-mobility example.

of an external Python function processRequests, which is not
presented here for brevity’s sake. Through the Assign statement,
the function is called with the received request list as a parameter
and the function’s result is stored in the variable assignments.
One of the most important inputs for this optimization is the num-
ber of free slots at each PLCS. This information is made available
by the remote sensor freeS1lotsR from above that transparently
gathers occupancy information from all PLCS (see Section 7.3). The
result of processRequests, stored in assignments, is a list of
tuples that assign each requesting vehicle to a PLCS. The agent pro-
cess iterates over this list and sends to each vehicle v in that list a
response term that contains the PLCS id p.

Based on the definitions from Sections 5 and 6, the process
elements used above can be defined accurately within the context
of SALMA’s simulation semantics and the situation calculus for
information transfer. The most basic case is sending messages on a
unicast channel like assignment from the example above.

Definition 10 (Unicast Send). Let a; be an agent and m a fresh
message. Also, let ¢, msg, dest, 15, and ry be terms that can be
evaluated at the current simulation state to a unicast channel, a
viable message term, an agent, and roles defined for channel c,
respectively. Then
({(as, Send(c, msg, 15, dst, rq) 0 0, 0,)} U Py, Pace s Puir
P4, Act, Evt, S)
—> ({(as, Act (requestTransfer (m)) oo, n,)}
UPT[HH Pactv Pwaih Pidle’ ACt» EUL S,>
—)*<{(a57 o,n, 1)} U Prun, Pact, Pwait» Pidies Act, Evt, SN)
where S’ = S[domain(Msg) > [domain(Msg) Ts U{m}, spec(m)
= ([c s,y uc, as, [rs s, Ldst D, [rs Ts, . [msg Ts ;)]
and S” = S'[awaitingTransfer(m) — T]. A

As described in Section 6.2, the model for multicast channel-
based communication differs from the unicast case mostly in the
transmission phase. In fact, sending a multicast message merely
means to leave out the destination.

Definition 11 (Multicast Send). Let a5, m, msg, and rs be defined as
in Definition 10. However, let ¢ now refer to a multicast channel.

C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139 133

Then

<{(a57 Send(c, msg, rs) oo, n, 77)} U Pruns Pact, Puait»
PidIEs ACt, EUt, S)
—> ({(as, Act (requestTransfer(m)) oo, n,)}
U Prun, Paces Puwdic» Pidies Act, Evt, S')
_)*({(GSa 0,1,)} U P, Pacts Puit > Pidie, Act, Evt, SN)
where S’ = S[domain(Msg) — [[domain(Msg) s U{m}, spec(m)
= (llc Is,,, mes, as, [rs s, [msg s)]
and S” = S'[awaitingTransfer(m) — T]. A

Agents that are receiving messages from unicast or multicast
channels must select those messages from the channels message
queue that are sent to the receiving agent and that match
the requested destination role. In fact, the Receive statement
removes all those messages from the queue and stores the
resulting set in a variable.

Definition 12 (Receive). Let a, refer to an agent, and let ¢ be a
term that denotes a channel in the current evaluation context 7.
Furthermore, let the evaluation of ry in 5 refer to a role of c. Finally,
let v be a variable name that is unbound in 7. Then,

({(a, Receive(c, rqg, V) o 0, 0,)} U P, Pacts Puait»
Pjgie, Act, Evt, S)
— ({(as, Act(cleanQueue(as, ¢, 15)) o o, 7,)}
U Prun, Pace s Pwait » Pidle> Act, Evt, S)
—*(as, o, n',)} U Prun, Pace, Poaic» Pigte, Act, Evt, S')
where M = {mt | mt € [queue;;(c) Is ,
Ada3rs3e. mt = (a5, 15, a, [ra Is,,,,)}
N =nlv > M]
S" = Slqueuei ([[c Ils,) + [queuei;(c) lls,, \M]. =

The three statements presented above are actively used
within agent processes to realize the respective agent’s role in
message-based communication processes. Additionally, there are
three further statements that are necessary to implement the
information transfer processes described in Section 6.2:

e Sense(c) initiates local sensing on sensor c as shown in Fig. 8.

e TransmitRemoteSensorReading(rs) initiates the trans-
mission of sensor data according to the specification of remote
sensor rs along the lines of Fig. 9.

e UpdateRemoteSensor (rs) processes the received data on
remote sensor rs and updates the remote sensor view
accordingly (see Fig. 10).

The semantical interpretations of the statements mentioned
above are very similar to those presented in the Definitions 10-
12 and are therefore not presented in detail. Besides that, these
elements would very rarely be used explicitly within agent
process definitions. Instead, they are used by implicit background
processes as described in Section 7.3.

7.3. Transparent sensing infrastructure

With the process elements introduced in the end of the last
section, it would be possible to treat local and remote sensing as
explicit agent tasks in the same manner as communication with
other agents. However this would lead to process definitions that
mix core agent logic with infrastructure elements. In fact, it is
closer to common realistic agent architectures to place sensing
facilities into a separate layer and make the sensed information

available in a transparent way. To achieve that, the SALMA
framework automatically installs some background processes:

For each local sensor, an update process is installed at each
agent that owns such a sensor. This process repeatedly executes
Sense, i.e. initiates the sensing process. The actual sensor view
fluent is updated after a delay that depends on the probability
distributions that are set up for the specific sensor. By default, the
update process is set up as periodic with a fixed period that is set up
once in the simulation setup. However, other scheduling schemes
are also possible, e.g. to reflect adaptive sensing strategies that try
to optimize energy consumption.

Similarly, a transmission process is installed for each remote
sensor at each agent of the remote data source type. This process
transmits the most recent value of the configured local sensor
to the remote sensor data sinks in the ensemble. By default,
the transmission process is configured as periodic with a fixed
period that would normally be set significantly longer than for the
monitored local sensor. In addition to the transmission process,
a reception process is created for each data sink agent, i.e. each
owner of a remote sensor. Here, received remote sensor data is
processed as described in Fig. 10. Other than the other background
processes, the reception handler is installed as a triggered process
that is executed as soon as new data becomes available.

With the implicit background processes in place, the modeler
can access the most recent values of local and remote sensors in the
same way as directly available fluents. For instance, Fig. 15 is taken
from the e-mobility example and shows an excerpt from the PLCS
agent process that handles reservation requests by vehicles. Here,
the condition freeSlotsL(self) > O0is used to test whether
free slots are available at a PLCS, and hence to decide whether to
accept or reject a request.

8. Statistical model checking for information transfer

Once a system model has been created and configured in
the way described above, SALMA’s statistical model checker
can be used to approximately assert system properties based
on simulation results (cf. Section 4). These properties are
defined using SALMA's property specification language whose core
grammar is summarized below:

Definition 13 (General SALMA-PSL Expression). Let ¢ represent a
constant, x a variable of any type, T any entity type with finite
domain, t € Ny a number of time units, ~ a comparison operator
(<, <, =, >, >, #), ®© an arithmetic operator, « an action or event,
p a general predicate, and f a general function. Furthermore, let Fr
and Fy stand for a functional and relational fluent, respectively, and
let F comprise both of these categories. Then, an expression ¢ of
the SALMA property specification language (SALMA-PSL) is defined
recursively as follows:

@ = truelfalse|t; ~ tz|not(P)

|and(®q, ..., Py)|or(Pq, ..., Dp)

| implies(®1, @,)|p(t1, ..., Tn)

| Fr(tq, .« .., To)|occur(a(ty, ..., Tn))
| hasChanged(F (t1, ..., Tp))|

forall(x : T, @)|exists(x : T, ®)
| eventually(t, ®@)|always(t, @)|until(t, D)

T = CcX?Uf (T1, ..o, T) [Fr(T1, oo, T)|T1 © T2 (7)
| changeTime(F (tq, ..., Ty))|
lastOccurrence(ct(ty, ..., Ty)). W

134 C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139

If("freeSlotsL(self) > 0", [

[#ELSE

Act("add_reservation", [SELF, vehicle]),

Send("reservation", Term("rresp”, SELF, True), "plcs", vehicle, "veh")],

Send("reservation", Term("rresp”, SELF, False), "plcs", vehicle, "veh")])

Fig. 15. Excerpt from reservation processing process of plcs agents.

The semantics of the logical connectives and of the common
temporal operators always, eventually and until is equivalent to
the common interpretation of time-bounded LTL formulas found,
e.g., in [11]. The significant difference to the traditional use of LTL
is that the SALMA-PSL supports expressions in a multi-sorted first-
order predicate logic. Since the quantifiers are restricted to finite
entity domains, they can be interpreted simply as conjunctions and
disjunctions, respectively. Besides that, the SALMA-PSL adds the
special predicates occur and hasChanged as well as the functions
lastOccurrence and changeTime. The two predicates allow testing
whether an action has occurred or a fluent has changed in the
current time step. Similarly, the mentioned functions return the
time point of the last occurrence of an action or event, or of the last
change of a fluent.

Altogether, the SALMA-PSL makes it possible to refer directly
to entities and agents, and to reason about their properties and
relations. Since messages and connectors are also represented
as entities, this means that all elements of communication
and sensing processes can be examined with fine granularity.
Additionally, the SALMA-PSL provides a set of specialized functions
and predicates that can be used together with the fluents defined in
Section 6.2 and Appendix to create an intuitive way for reasoning
about the content of the information transfers, e.g.:

e messageSent (chan, src, s, dst, rq, msg) is a predicate that is true
if, in the current time step, a message with content msg has been
sent from source agent src to destination dst on channel chan
with the given source and destination roles r; an ry.

e messageAvailable(chan, dst, rs) is a predicate that is true if the
incoming message queue of agent dst for channel chan contains
at least one message that addresses dst with role r.

e src(m), dest(m), and con(m) are functions that return the
source, destination, and the connector of a given message.

e age (sen, a, [a;]) is a function that returns the age of the most
recent value for the local or remote sensor sen of agent a. If sen
is a remote sensor, then age refers to the value transmitted by
the remote agent a,.

Examples for the use of the SALMA property specification
language in the context of information transfer processes can be
found in Fig. 16. The invariant P1 requires that when any vehicle
agent sends an assignment request to the SAM, it will not take
longer than 100 time units until a target PLCS has been set. The
question marks in the predicate messageSent serve as wild-
card arguments for pattern matching, which achieve here that the
recipient of the message, the involved roles, and the content of the
message are ignored.

As other examples, P2 and P3 are invariants that define, for
all measurements acquired by the remote sensor freeS1lotsR, a
maximum value age of 10 time units and a maximum deviation of
1 from the original sensor freeSlotsL.

Finally, property P4 demonstrates how the content of a message
can be used directly in SALMA-PSL expressions. The property,

which refers to the example in Fig. 15, states that every time a
reservation is made by a PLCS agent (action add_reservation),
a positive acknowledgment message must be sent within 10 time
units. In order to test that, the content of the sent message has
to be compared to the expected content according to Fig. 15
(rresp(p, true)).

Altogether, it can be seen that the ability to use typical features
from first-order logic, like quantified variables and term unifica-
tion, greatly facilitates the expression of complex properties. In
particular this has a great benefit for properties that reason about
the details of communication and sensor data propagation.

9. First experiments and preliminary evaluation

In order to test the presented approach and its integration
in the SALMA toolkit, we implemented a reduced version of the
scenario introduced in Section 2. It contains only a simple mock-
up version of the optimization mechanism but realizes the full
communication structure according to the approach presented in
this paper. Both the SALMA toolkit and the model are available at
the SALMA website.?

In the e-mobility model, the map, on which vehicles are moving
around, is represented by a directed weighted graph with three
different node types: crossings, point of interests (POIs), and
parking lots with charging stations (PLCS). The weighted edges
represent roads with a certain length, that lead from a start node to
an end node. Fig. 17 shows the undirected graph that was modeled
as aGraphML][16]file and used to derive the map which in turn was
used for the concrete experiment described below. The undirected
edges were translated to two directed edges in opposite direction
with lengths that were derived from the geometrical information
stored in the original file.

Vehicles are modeled as agents that move around the map to
reach a certain point of interest (POI) that is randomly assigned to
them at the beginning of the simulation. The vehicle agent then
communicates with the super autonomous manager (SAM) and
the PLCS agents according to Fig. 1. First it requests an assignment
of a PLCS that is as close as possible to the vehicle’s POIL In the
current version, the SAM agent only uses a trivial optimization
strategy that merely assigns the first PLCS with free slots. After
the assignment has been made, the vehicle requests a reservation
at the assigned PLCS. Once this reservation has been granted, the
vehicle agent sets its target PLCS and calculates an optimal route to
the assigned PLCS.

The communication between vehicles, the SAM, and PLCS
agents, is performed by agent processes like the ones shown in
Figs. 14 and 15. In contrast, the actual vehicle movement is not
performed by explicit agent processes but encoded directly in the

2 www.salmatoolkit.org.

http://www.salmatoolkit.org

C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139 135

P1 = forall(v:vehicle, implies(messageSent(v, assignment, ?, ?, ?, ?),
eventually(100, currentTargetPLCS(v) \= none)))
P2 = forall(s:plcssam, forall(p:plcs, age(freeSlotsR, s, p) =< 10))
P3 = forall(s:plcssam, forall(p:plcs, abs(freeSlotsR(s, p) - freeSlotsL(p)) =< 1))
P4 = forall(p:plcs, forall(v:vehicle, implies(
occur(add_reservation(p, v)),
eventually(10, messageSent(p, reservation, plcs, v, vehicle,

rresp(p, true))))))

Fig. 16. Example SALMA-PSL properties of information transfer processes.

poi2

pld

Fig. 17. Map used in the e-mobility experiment.

situation calculus model of the simulation. There, the position of
each vehicle is represented either by a current node or by the
current road the vehicle is driving on. The current route followed
by a vehicle is given as a list of roads that in sequence lead from
the current position to the target PLCS. A more exact location on
the road is actually not represented directly in the model. Instead,
the road length is used as a factor for the delay with which events
are scheduled that update make the vehicle move to the next
route segment. This style of sparse simulation with pure event-
scheduling is very well suited for the discussed example, in which
the focus is set on the information transfer aspects rather than
vehicle behavior or traffic.

The simulation of the e-mobility example can be run in three
different modes: visualization, estimation, and hypothesis test. In
visualization mode, the simulation is performed until all vehicles
have arrived at their target PLCS. Meanwhile, the positions of all
vehicles on the map are visualized in each step as annotations
on the map. For instance, Fig. 18 shows a step of a simulation
run with five vehicles (vO-v4) where all vehicles are currently
located on roads, which is shown by labeling edges with the ids
of the vehicles on the corresponding road. Additionally, textual
information about the simulation state in each step is written to
a logfile. Fig. 19 contains the output for the 102nd step of an e-
mobility simulation run. Lines 2-4 show the actions and events
that were performed in this step. It can be seen that transferStarts-
messages occurred for the messages 231 and 228, both without
an error term. The messages that currently exist in the system are

o & e
[R

A

Fig. 18. Visualization of one step in e-mobility simulation.

listed from line 5 to line 18. It turns out that both messages belong
to local sensors of the type freeSlotsL, which is used by PLCS agents
to “measure” the. Each message line in the log output contains
the message specification and the transferred content, separated by
a colon. In this case, the transferred content is set now for both
sensor messages. In fact, the last four lines of the output each
show the confirm that the transferred values coincide with the true
numbers of free slots of the PLCS pl1 and pl3, to which the messages
belong. This conforms closely to the information transfer model for
local sensing described in Fig. 8.

When the simulation is executed in estimation or hypothesis
test mode, then it is run until all vehicles have been granted a
reservation for their target PLCS while the invariant P1 from Fig. 16
is satisfied. The probability that a simulation run succeeds for P1
depends on a wide range of factors within the model. For example,
in one experiment we used a fixed setup with the map from Fig. 17
and 5 vehicles. We only varied the time limit in theuntil operator
of property P1 from 5 time units to 145 time units in steps of 5. For
each of the 28 configurations, 50 simulation runs were performed.
Fig. 20 shows the proportion p of successful simulation runs for
the different time limits. It can be seen that there is no chance for
success below 55 time units while on the other hand success seems
to be certain for time limits over 145. The buckle at around 100
time units shows that the success of a simulation run also depends
on other random factors.

Another question that we examined was the runtime of the
simulations and its dependence on the model complexity. In

136 C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139
1| Step 102 (t = 116)
2 Actions: [(’transferStarts’, (231, None)), (’enterNextRoad’, (’v4’,)),
3 (’transferStarts’, (228, None)), (’arriveAtRoadEnd’, (°v3’,))]
4 #227: msg(’freeSlotsL’, ’sensor’, ’pl4’, ()) : Nonme
5 #228: msg(’freeSlotsL’, ’sensor’, ’pl3’, ()) : 10
6 #229: msg(’freeSlotsL’, ’semsor’, ’pl2’, ()) : None
7 #231: msg(’freeSlotsL’, ’semsor’, ’pli’, ()) : 10
8 v4: r19(c3-c6=193) - [’r29(c6-pl3=170)’] - pl3 / None
9 v0: ¢2 - [’r24(c2-c8=128)’, ’r6(c8-poi2=331)’, ’r32(poi2-pl4=60)’] - pld / None
10 v2: r24(c2-c8=128) - [’r6(c8-poi2=331)’, ’r32(poi2-pl4=60)’] - pld / None
11 v3: ¢cb - [’r26(c5-c1=124)’, ’r2(c1-pl1=193)°] - pll / None
12 vi: pl3 - [’r10(pl3-c4=320)’, ’r16(c4-c8=431)’, ’r6(c8-poi2=331)°,
13 ’r32(poi2-pl4=60)°’] - pl4 / None
14 pll:plcs: real = 10, local = 10, remote = 10
15 pl2:plcs: real = 10, local = 10, remote = 10
16 pléd:plcs: real = 10, local = 10, remote = 10
17 pl3:plcs: real = 10, local = 10, remote = 10
Fig. 19. Log output for one step of an e-mobility simulation run.
1.0 T T 60 T T T T T
50
0.8 | i
a0}
0
0.6 | E °
£
o € 30}
c
0.4} E]
€
20
0.2+ E
10 +
00 -~ -~ L L L L 0 Il Il Il Il Il
0 20 40 60 80 100 120 140 160 5 10 15 20 25 30
time limit vehicles

Fig. 20. Proportion of successful simulation runs for varying time limits.

particular, it is expected that an increasing number of agents
will lead to an increased number of transferred messages, which
increases the simulation complexity since messages are treated
as entities. To analyze this effect, we set the time limit to 500
so that every simulation run is guaranteed to succeed and varied
the number of vehicles from 1 to 30. Simulation batches of 20
repetitions for each vehicle number setting were performed on
a system with Intel® Core™ i7-870 Processor with 2.93 GHz.
The results are shown in Fig. 21. It reveals a dependence that is
nearly linear with a peak of about 59s for 30 vehicles. At the same
time, the memory consumption, which is not shown here, was
not affected significantly. This implies that it is at least possible to
handle simulations with very large agent numbers and parallelize
the gathering of results by running simulations on multiple nodes.
By this, enough data can be collected to achieve the desired level
of exactness for statistical model checking.

Not only the number of vehicles can be varied in the simula-
tion but several other parameters, including PLCS capacity, and

Fig. 21. Mean simulation runtimes for varying vehicle numbers.

the probability distributions for the information transfer events (cf.
Section 6). Additionally, the Python function that realizes the PLCS
assignment can be replaced. Thus, different optimization schemes
can be tested and the impact of factors like delays or transmis-
sion errors can be analyzed. A detailed evaluation of the model
is still ongoing and beyond the scope of this paper. However, ex-
periences gained through experimentation and testing show that
our information transfer model is well applicable also for complex
communication scenarios. In particular, our proposed declarative
high-level language has proven to be able to significantly improve
clarity and conciseness of the model. For instance, the declar-
ative part related to communication and sensing in the model
mentioned above requires only about 30 lines in the style of the
examples in Section 7.1. In contrast, the corresponding part of a
functionally equivalent model that employs a direct axiomatiza-
tion instead of the high-level abstractions, contains 15 fluents and
21 actions and events together with their associated axioms, which
requires more than 200 lines of Prolog code.

C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139 137

10. Related work

As the primary contribution of the paper lies in providing high-
level constructs for modeling and distributed communication of
agents with realistic semantics, the related work can be split
to three main areas: (1) communication models for situation
calculi, (2) coordination languages for distributed agents, and
(3) simulations of network communication in distributed systems.

From the perspective of the communication model for situ-
ation calculi, the information in the situation calculus has tra-
ditionally been viewed from an epistemic perspective, i.e. as
knowledge that agents gain through (communication) actions. Sur-
prisingly enough, there are no systematic approaches that intro-
duce in the frame of a situation calculus a communication model
reflecting properties of real-life computer networks. In this re-
spect, a partial approach is provided by [17], where the epistemic
model has been extended to model inter-agent communication
by means of channels in a similar way as in our model described
above. However, neither time nor stochastic effects are covered.
In contrast to that, the approach presented in [18] combines the
epistemic model with time and concurrency and allows reasoning
about time-related aspects like the age of measurements.

Unlike the approaches mentioned above, our model does
not consider knowledge in the epistemic sense but leaves the
interpretation of transferred information to the agent processes.
While we think that this perspective is better suited in the
particular context of cyber-physical systems, it would be possible
to combine both views in a straight-forward way.

Another perspective is provided by the coordination languages
for distributed agents. These approaches are not based on the
situation calculus. Rather they provide their own process algebras
to define the behavior of distributed agents. These approaches are
primarily represented by SCEL [19] and its indirect predecessor
KLAIM [20]. They feature communication based on structure
knowledge exchange via tuple-spaces. The process algebra they
use for specification of the behavior of agents is typically based on
or at least inspired by s -calculus.

In their original form the coordination languages do not
consider time and communication uncertainty, which makes them
unfit for realistic modeling of network communication. However
extensions exist that feature these concerns forming a relatively
large family of stochastic process algebras like TIPP [21], PEPA [22],
EMPA [23,24], stochastic w-calculus [25,26], StoKlaim [27] or a
unifying framework by Nicola et al. [28]. Targeting the framework
of SCEL, which is closest to our approach, the ideas of stochastic
process algebras are well integrated in [15], where the authors
introduce a stochastically timed process calculus that is centered
around predicate-based communication. Like our model, the most
detailed semantical variant they describe distinguishes between
a preparation and a transmission phase and allows assigning
separate probability distributions for delays and errors to each of
them. However, since the semantics is based on continuous time
Markov chains (CMTC), only exponential distributions can be used
and delays or errors are effectively determined at the start of each
phase. This can be too coarse-grained in very dynamic situations,
e.g. when the movement of agents has significant effect.

Targeting specifically the analysis of communication and pro-
cessing in distributed systems, network simulators, e.g. OM-
Net++ [29], ns-3 [30], provide very accurate estimates. The
simulators feature an agent-like approach, where the simulated
network consists of a number of modules (representing end-
devices and network components) mutually communicating by
exchanging messages. These modules are triggered by a discrete
simulator based on timing needed for message processing, com-
munication latencies, etc. To achieve simulation of environment

when agent mobility is involved, the network simulators can be
integrated with mobility and traffic simulators, e.g. MATSim [31],
Sumo [32].

Compared to our approach, network simulators provide signif-
icantly more precise estimates in terms of network communica-
tion latencies. However, this comes for a price of significantly more
complex (and consequently by few orders of magnitude slower)
simulation. Further, compared to the situation calculus and the
high-level interaction patterns, the simulators lack in providing ab-
stract enough architectural and coordination perspective. Further,
there is no option of LTL-based or similar verification of traces gen-
erated by OMNet++ or ns-3.

The problem of too low level of abstraction and extensive
simulation time of the network simulators is typically addressed
by high-level communication and processing models, such as
(layered) queueing networks [33]. These however do not provide
means for specification of agent-behavior.

11. Conclusion

We have presented a new logic-based approach for model-
ing channel-based communication, sensing, and other kinds of
information transfer within cyber-physical multi-agent systems.
The proposed high-level language provides means to embrace the
stochastic nature of these systems, like transmission delays and
errors. At the same time it has a precise formal semantics based
on the first-order logic situation calculus. Therefore, it can be in-
tegrated in existing logic-based approaches for verification and
validation, in particular SALMA, a framework for simulation and
statistical model checking we have introduced earlier in [1]. A ma-
jor advantage of this combination is that SALMA’s property spec-
ification language, based on a first-order temporal logic, allows
fine-grained reasoning about the inner details of information
transfer processes.

Experiences gained in experiments with a mid-sized case study
show that our approach offers great flexibility with respect to the
level of detail and accuracy with which both the system model
and corresponding requirements are formulated. Altogether,
SALMA exhibits great potential to contribute to practicable
verification and validation of self-adaptive cyber-physical multi-
agent systems.

Acknowledgment

This work has been partially sponsored by the EU project
ASCENS, FP7 257414.

Appendix. Axiomatization of the information transfer model

Definition 14 (Message Life Cycle). The state of a message is
defined by two separate fluents that define whether it is waiting
to be transferred or actually transferring.
awaitingTransfer (m, do(a, s)) = a = requestTransfer (m)

V ((e. a = transferStarts(m, €)) A a # transferFails(m)

A awaitingTransfer (m, s)) (A.1)
transferring(m, do(a, s)) = (¢. a = transferStarts(m, €))

V ((fe. a = transferEnds(m, €)) A a # transferFails(m)

A transferring (m, s)). (A.2)

The action requestTransfer is the entry point with which agents
initiate the information transfer.
Poss(requestTransfer (m), s) = —awaitingTransfer (m, s)

A —transferring(m, s). (A.3)

138 C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139

The actual start of the information transfer is marked by the
event transferStarts.

Poss(transferStarts(m, ¢€), s) = awaitingTransfer (m, s). (A4)

A message has been transferred successfully when transferEnds
occurs. However, source messages of multicast or remote sensor
transmissions are not ended explicitly this way but are removed
when all of their multicast copies have arrived or failed (cf.
Definition 21).

Poss(transferEnds(m, €), s) = transferring(m, s)

A type(m) ¢ {multicastSrc, remoteSensorSrc}. (A.5)

An information transfer can fail at any time after the transfer
has been requested. For multicast and remote sensor transfers, the
same argument holds as for transferEnds.
Poss(transferFails(m), s) = (awaitingTransfer (m, s)

V transferring (m, s))
A type(m) & {multicastSrc, remoteSensorSrc}. (A.6)

Definition 15 (Channel-Based Message Transmission Content). The
content of active messages that are channel-based (including
remote sensors) is defined by the fluent C.q,s Whose content is
set when a transferStarts event for the message occurs. For remote
sensors, the content is received from the corresponding source
sensor, while for directly sent messages, the content is received
from the message constant C,,; that is set during a Send action.
Vm, s. domain(Msg, s) => Cyans(m, do(a, s)) =y
= (Je.a = transferStarts(m, ¢)

A ((m € MSgremSenSrc

A locSen(connector (m)) = fj

Ny = fi(sre(m), s) + €)

\% (m ¢ MSgremSenSrc

ANy = Coue(m, s) + 8)))

\% (ﬂs.a = transferStarts(m, €)

AY = Cirans(m, 5)). (A7)

For multicast destination copies, it holds that their content is
always equal to the content of the original message. Deviations that
are inflicted on individual message paths are aggregated when the
message arrives at the destination (cf. Definition 16).
VYm € MSgnulticastpest - VS. M € domain(Msg, s)

g C[rans(m» 5) = Ctrans(srCMSg(m)7 5) (AS)

Definition 16 (Incoming Message Queue).

queue;,(c, do(a,s)) =y
= (Im, €. a = transferEnds(m, €)

A chan(m) = ¢ Ay = {msg(sender(m), srcRole(m),
dest (m), destRole(m),
time(m, S), Cyans(m, s) + €)} U queuey, (c, 5)
V ((3ag, r.a = cleanQueue(ag, c, 1))
Ay = {e | e € queue,(c, s) A dest(e) # ag
A destRole(e) # r})
V ((Vm, ¢. a # transferEnds(m, ¢€))
A (Yag, r.a # cleanQueue(ag, c, 1))

Ay = queuei(c, S)). (A.9)

Definition 17 (Local Sensor View). Let sen be the name of a local
(direct) sensor. Then the model contains a corresponding fluent
with the same name that stores the result of the last measurement
as defined below. The notation «sen» is used below as a placeholder
for the actual sensor name.

«sen» : Agent x Sit - T € Fluents (A.10)
«semn(ag, do(a, s)) =y
= (dm, e. ®(ag,a,m, &) Ny = Senygns(M, s) + &)
Vv ((Fm, e.®(ag, a, m, €)) Ay = «sen»(ag, s)) (A.11)
where
@ (ag, a, m, g) = a = transferEnds(m, €) A con(m) = «sen»
Asrc(m) = ag. (A.12)

Definition 18 (Transmitted Local Sensor Data). The information
that is transferred by a local sensor is defined in the fluent sengqs
and derived from the sensor’s source fluent.
Vm, s. m € domain(Msg, s) = seNyqns(M, do(a, s)) =y
= (de.®(m, a, ¢) A f = srcFluent(sensor(m))
Ay = f(src(m),s) +¢)
V ((fe.®@(m,a,&)) Ay = SeNygns(m,s)) (A.13)

where

@(m, a, €) = a = transferStarts(m, €) A m € MSgocsen- (A.14)

Definition 19 (Remote Sensor View).

«rsen»(aq, as, do(a, s)) =y
= (a = updateRemoteSensor (ag, «rsen»)
A dm. m € queue;,(«rseny, s)
Adest(m) = ag A src(m) = ag
A (@m'. m' e queue;,(crsen», s)
A tstamp(m’) > tstamp(m))
Ay = content(m))
V (a # updateRemoteSensor (aq, «rsen»)

Ay = «rsen»(dy, ds, S)). (A.15)

Definition 20 (Multicast Copy). The predicate multicastCopy re-
lates a source message sent on a multicast or remote sensor chan-
nel to a copy of this message for a given destination.

multicastCopy C Msg x Msg x Agent (A.16)

multicastCopy(m’, m, d) = con(m) = con(m’)
AM € MSgnuiticastest A dest(m’) = d A src(m) = src(m')
AsrcMsg(m') = m A destRole(m’)

= oppositeRole(con(m), srcRole(m)). (A17)

Definition 21 (Active Message Domain). The representation of
messages as entities requires that they can be created and removed
dynamically as effect to actions and events. Unlike traditional
realizations of the situation calculus, SALMA supports this by using
a special (meta-)fluent domain(sort) to store the sets of entities
that manifest the current domains of all sorts in the model. Creation
and destruction of entities can therefore be controlled through
regular successor state axioms. For the sort Message, the following

C. Kroif3, T. Bures / Future Generation Computer Systems 56 (2016) 124-139 139

SSA is defined:

domain(Msg, do(a, s)) = D
= (dm, e. ®1(a, m, ¢)
A((me Msgmuiticastpest A D
= domain(Msg, s)\{m, srcMsg(m)})
vV (m ¢ Msgmutticastpest A D = domain(MSg’ s)\{m})))
VvV (dm, e. dy(a,m, €)
A D = domain(Msg, s)
U{m' | d € Agents A multicastCopy(m’, m, d)
A ensemble(con(m), src(m), d)})
V ((dm, . @1(a, m, &) Vv @y(a,m, g)) AD

= domain(Msg, s)) (A.18)
with
®1(a,m,e) = a = transferEnds(m,) V a
= transferFails(m) (A.19)
®,(a, m, e) = a = transferStarts(m, ¢)
A M € Msgnutticastsre Y MSZremotesensorsre - (A.20)
References

[1] C. KroiR, Simulation and statistical model checking of logic-based multi-
agent system models, in: 8th International Conference on Agent and Multi-
Agent Systems: Technologies and Applications, KES-AMSTA 2014, 2014,
pp. 151-160.

[2] A. Legay, B. Delahaye, S. Bensalem, Statistical model checking: An overview,
in: Runtime Verification, Springer, 2010, pp. 122-135.

[3] R. Reiter, Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems, MIT press, 2001.

[4] E.A.Lee, Cyber physical systems: Design challenges, in: 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing, ISORC
2008, 2008, pp. 363-369.

[5] R.B. Scherl, HJ. Levesque, Knowledge, action, and the frame problem, Artif.
Intell. 144 (1) (2003) 1-39.

[6] T. Bures, et al., A life cycle for the development of autonomic systems: the
e-mobility showcase, in: 3rd Workshop on Challenges for Achieving Self-
Awareness in Automatic Systems, IEEE, 2013, pp. 71-76.

[7] HJ. Levesque, et al., Golog: A logic programming language for dynamic
domains,]. Log. Program. 31 (1) (1997) 59-83.

[8] M. Fowler, Domain-Specific Languages, Pearson Education, 2010.

[9] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley & Sons,

2009.

[10] J. Banks, J.S. Carson II, B.L. Nelson, D.M. Nicol, Discrete-Event System
Simulation, fourth ed., Prentice Hall, Upper Saddle River, NJ, 2004.

[11] A. Pnueli, The temporal logic of programs, in: Foundations of Computer
Science, SFCS'77, IEEE Computer Society, Washington, DC, USA, 1977,
pp. 46-57. http://dx.doi.org/10.1109/SFCS.1977.32.

URL http://dx.doi.org/10.1109/SFCS.1977.32.

[12] A. Wald, et al., Sequential tests of statistical hypotheses, Ann. Math. Stat. 16
(2)(1945) 117-186.

[13] L.D.Brown, T.T. Cai, A. DasGupta, Interval estimation for a binomial proportion,
Stat. Sci (2001) 101-117.

[14] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, Cambridge,
Massachusetts, 2008.

[15] D. Latella, et al. Stochastically timed predicate-based communication primi-
tives for autonomic computing, Tech. rep., QUANTICOL Project (2014).

[16] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, M.S. Marshall, Graphml
progress report structural layer proposal, in: Graph Drawing, Springer, 2002,
pp. 501-512.

[17] D. Marcu, et al. Distributed software agents and communication in the
situation calculus, in: International Workshop on Intelligent Computer
Communication, 1995, pp. 69-78.

[18] R.B. Scherl, Reasoning about the interaction of knowledge, time and
concurrent actions in the situation calculus, in: 18th International Joint
Conference on Artificial Intelligence, [JCAI-03, 2003, pp. 1091-1098.

[19] G. Cabri, N. Capodieci, L. Cesari, R.D. Nicola, R. Pugliese, F. Tiezzi, F.
Zambonelli, Self-expression and dynamic attribute-based ensembles in
SCEL, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change,
in: Lecture Notes in Computer Science, vol. 8802, Springer, Berlin Heidelberg,
2014, pp. 147-163. URL http://link.springer.com/chapter/10.1007/978-3-662-
45234-9_11.

[20] L. Bettini, V. Bono, R.D. Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, B. Venneri, The klaim project: Theory and practice,
in: C. Priami (Ed.), Global Computing. Programming Environments, Languages,
Security, and Analysis of Systems, in: Lecture Notes in Computer Science, vol.
2874, Springer, Berlin Heidelberg, 2003, pp. 88-150.

URL http://link.springer.com/chapter/10.1007/978-3-540-40042-4_4.

[21] N. Gotz, U. Herzog, M. Rettelbach, Multiprocessor and distributed system
design: The integration of functional specification and performance analysis
using stochastic process algebras, in: Performance Evaluation of Computer
and Communication Systems, Joint Tutorial Papers of Performance '93 and
Sigmetrics '93, Springer-Verlag, London, UK, UK, 1993, pp. 121-146. URL
http://dl.acm.org/citation.cfm?id=647339.721059.

[22]]. Hillston, A Compositional Approach to Performance Modelling, Cambridge
University Press, New York, NY, USA, 1996.

[23] M. Bernardo, R. Gorrieri, A tutorial on EMPA: A theory of concurrent
processes with nondeterminism, priorities, probabilities and time, Tech.
Report, University of Bologna, 1996.

[24] A. Aldini, F. Corradini, M. Bernardo, Stochastically timed process algebra, in: A
Process Algebraic Approach to Software Architecture Design, Springer, Lon-
don, 2010, pp. 75-124. URL http://link.springer.com/chapter/10.1007/978-1-
84800-223-4_3.

[25] C. Priami, Stochastic 7 -calculus, Comput. J. 38 (7) (1995) 578-589.
http://dx.doi.org/10.1093/comjnl/38.7.578.

URL http://comjnl.oxfordjournals.org/content/38/7/578.

[26] L. Cardelli, R. Mardare, Stochastic pi-calculus revisited, in: Z. Liu, J. Woodcock,
H.Zhu (Eds.), Theoretical Aspects of Computing—ICTAC 2013, in: Lecture Notes
in Computer Science, vol. 8049, Springer, Berlin Heidelberg, 2013, pp. 1-21.
URL http://link.springer.com/chapter/10.1007/978-3-642-39718-9_1.

[27] R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, M. Massink, Model checking
mobile stochastic logic, Theoret. Comput. Sci. 382 (1) (2007) 42-70.
http://dx.doi.org/10.1016/j.tcs.2007.05.008.

URL http://dx.doi.org/10.1016/j.tcs.2007.05.008.

[28] R.D. Nicola, D. Latella, M. Loreti, M. Massink, A uniform definition of stochastic
process calculi, ACM Comput. Surv. 46 (1) (2013) 5:1-5:35.
http://dx.doi.org/10.1145/2522968.2522973.

URL http://doi.acm.org/10.1145/2522968.2522973.

[29] OMNeT++ discrete event simulator—home. URL http://omnetpp.org/.

[30] ns-3.URL http://www.nsnam.org/.

[31] Agent-based transport simulations | MATSim. URL http://www.matsim.org/.

[32] DLR - institute of transportation systems - SUMO-simulation of urban
MObility.

URL http://www.dIr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-
41000/.

[33] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi, Enhanced modeling
and solution of layered queueing networks, IEEE Trans. Softw. Eng. 35 (2)
(2009) 148-161. http://dx.doi.org/10.1109/TSE.2008.74.

Christian Kroif§ is a Ph.D. student and research assistant
at the Department for Informatics of LMU Munich. During
the recent years, he has been working on the EU project
ASCENS (Autonomic Service-Component Ensembles).

Tomas Bures is Associate Professor at the Department of
Distributed and Dependable Systems of Charles University
in Prague. During the recent years, he has been working
on the EU project ASCENS (Autonomic Service-Component
Ensembles).

http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref1
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref2
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref3
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref4
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref5
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref6
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref7
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref8
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref9
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref10
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref12
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref13
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref14
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref16
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref18
http://link.springer.com/chapter/10.1007/978-3-662-45234-9_11
http://link.springer.com/chapter/10.1007/978-3-662-45234-9_11
http://link.springer.com/chapter/10.1007/978-3-662-45234-9_11
http://link.springer.com/chapter/10.1007/978-3-540-40042-4_4
http://dl.acm.org/citation.cfm?id%3D647339.721059
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref22
http://refhub.elsevier.com/S0167-739X(15)00293-9/sbref23
http://link.springer.com/chapter/10.1007/978-1-84800-223-4_3
http://link.springer.com/chapter/10.1007/978-1-84800-223-4_3
http://link.springer.com/chapter/10.1007/978-1-84800-223-4_3
http://dx.doi.org/10.1093/comjnl/38.7.578
http://comjnl.oxfordjournals.org/content/38/7/578
http://link.springer.com/chapter/10.1007/978-3-642-39718-9_1
http://dx.doi.org/10.1016/j.tcs.2007.05.008
http://dx.doi.org/10.1016/j.tcs.2007.05.008
http://dx.doi.org/10.1145/2522968.2522973
http://doi.acm.org/10.1145/2522968.2522973
http://omnetpp.org/
http://www.nsnam.org/
http://www.matsim.org/
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
http://dx.doi.org/10.1109/TSE.2008.74

	Logic-based modeling of information transfer in cyber-physical cyber--physical multi-agent systems
	Introduction
	Example: optimized parking lot assignment
	Background: situation calculus
	The SALMA approach
	SALMA simulation semantics
	A generic situation calculus model for information transfer
	Information transfer phases
	Information transfer paradigms
	Predicate-based addressing
	Influence of the choice of probability distributions

	Modeling abstractions for information transfer processes
	Connector declaration macros
	Specialized process elements for information transfer
	Transparent sensing infrastructure

	Statistical model checking for information transfer
	First experiments and preliminary evaluation
	Related work
	Conclusion
	Acknowledgment
	Axiomatization of the information transfer model
	References

