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A B S T R A C T

Operating in a body area network around a smartphone user, wearables serve a variety of commercial, medical
and personal uses. Depending on a certain smartphone application, a wearable can capture sensitive data about
the user and provide critical, possibly life-or-death, functionality. When using wearables, security problems might
occur on hardware/software of wearables, connected phone apps or web services devices, or Bluetooth channels
used for communication. This paper develops an open source platform called SecuWear for identifying vulner-
abilities in these areas and facilitating wearable security research to mitigate them. SecuWear supports the cre-
ation, evaluation, and analysis of security vulnerability tests on actual hardwares. Extending earlier results, this
paper includes an empirical evaluation that demonstrates proof of concept attacks on commercial wearable de-
vices and shows how SecuWear captures the information necessary for identifying such attacks. Also included is a
process for releasing attack and mitigation information to the security community.
1. Introduction

Wearables are emerging as the next major ubiquitous computing area.
The $9 billion market in 2014 was expected to surge forward to over $30
billion by 2018 and upwards to $70 billion by 2024 [1]. Vast permeation
of wearables into the consumer, medical and business electronics mar-
kets is coinciding with improved form factors that decrease the size and
increase the computational ability and battery life of wearable devices.
Wearables operate in body area networks using the Bluetooth Low Energy
(BLE) protocol to pair with and transmit data to a user's smartphone and
often interact with web services on the internet.

Wearable devices come in three varieties: sensors, actuators and
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hybrids. Wearable sensors collect biometrics and/or environmental
interaction data, such as pulse rate [2–4], O2 saturation [4], blood
glucose levels [4,5], accelerometer data for remote controllers or impact
assessments for sport players [2,3,6], exercise metrics (e.g., running
distances [2,3,6,7]), visual data [8], and weather information [9] etc.
Wearable actuators provide application developers and users with feed-
back mechanisms [6,7], augmented reality capabilities [8], and/or
additional User Interfaces (UIs) for software outputs [3,6–8], such as
email viewers or media players. Most wearable devices are hybrids,
containing both sensors and actuators.

There are many challenges with using and applying wearable tech-
nologies, e.g. extending battery life, creating rich functionality with
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minimal computational resources, minimizing size and breaking other
form constraints, and solving problems concerning human-computer
interaction. While there are many engineers and researchers focusing
on these problems, security is an area often left behind. Despite the large
upward trend for the development of wearables, data security and pri-
vacy concerns abound [10–12]. Concerns stem from using wearables in
insecure environments where body area networks are prone to
Man-in-The-Middle (MiTM) attacks such as Bluesnarfing [10], eaves-
dropping [10] and packet injection [11]. Such attacks allow attackers to
co-opt wearables so as to misuse the functionality of actuators and/or
steal data from sensors.

Since wearable devices use proprietary hardware and closed APIs,
finding some common ground to test, explore and analyze the security of
wearables is a difficult task. Researchers seek to explore, exemplify and
categorize security vulnerabilities generally for distribution in re-
positories, such as the National Vulnerability Database (NVD) [13], the
Common Vulnerability Exposures and the Common Weakness Enumer-
ation (CVE [14] and CWE [15], respectively), and map these vulnera-
bilities to specific devices. The goal is to identify vulnerability patterns to
prevent future development efforts from repeating existing mistakes and
to modify existing wearable applications with effective software/firm-
ware patches.

We previously described a multi-component research platform called
SecuWear to take the first steps forward toward addressing this goal [16].
SecuWear is a toolkit that security researchers and application developers
can use for testing, analyzing and mitigating vulnerabilities in wearables.
It is designed with transparency and openness to give researchers full
knowledge and control over the components in the wearable architecture
to better understand and assess vulnerabilities. To achieve transparency,
SecuWear is built upon five core open source technologies, namely
MetaWear [17,18] (the device), Apache Cordova [19–21] (for rapidly
prototyping mobile apps) on top of Android [22,23] and iOS [24],
Ubertooth One [11,25] (for conducting attacks over the air between the
smartphone and the wearable), and Django [26] (a web-app framework
for logging data from the mobile app).

These technologies span three domains of interest: wearables, mobile
devices and web services. SecuWear allows researchers to consider se-
curity challenges for wearable applications in each domain individually
and across domains. Within the wearable domain, there are questions
related to how data is collected and how it is made available to paired
mobile devices. In the area of mobile device, there are concerns that data
in a certain app may leak out to other less secure apps that may capture
and abuse such data (e.g. medical data viewable by a freeware game). In
the domain of web service, there are concerns that data may be either
attacked, e.g. Cross Site Scripting (XSS) and SQL-injection, or inadver-
tently reveal personally identifiable information if presented in a poorly
aggregated form. In addition, there are concerns over problems between
domains. A particular area of interest explored in this paper is the space
between the wearable and the mobile app, where the data is transferred
using BLE and is open to eavesdropping and other MiTM attacks.

In our prior work, we evaluated the effectiveness of SecuWear plat-
form and solved two core problems. We firstly contrasted the research
approach and open source components used by SecuWear against other
alternatives and made an evaluation by comparative analysis. The second
question looked at the platform's ability to investigate vulnerabilities and
capture relevant data needed for analysis. To answer this question,
experimentes were conducted and data actually captured were shown
and analyzed.

In this paper, we expand our initial research in Ref. [16] by 1)
expanding the original study to identify and exemplify additional attack
vectors, which are proof of concepts that affect commercial wearable
products, and some mitigation suggestions; 2) demonstrating that vul-
nerabilities associated with the MetaWear component in SecuWear can
be generalized to other commercially available consumer wearable
products; and 3) providing a template and process for the creation of
wearable-centric CVE and CWE entries. For point 2), we specifically
2

capture and analyze packets of several commercial wearable products,
including Pebble Watch [6] and Jawbone UP 2 [27], to show that the
data structure and transmissions are comparable to (and therefore
generalizable from) MetaWear.

The rest of the paper is organized as follows: Section 2 covers the
background of wearable applications, mobile security, Bluetooth LE and
wearable security. Section 3 overviews the design and components of
SecuWear and explores the wearable security in SecuWear. Section 4
juxtaposes the original comparative analysis and empirical study in
Ref. [16] with the new extended work on attack vector identification.
Section 5 demonstrates the process of applying SecuWear. We show the
efficacy of the approach by assessing the results of several commercially
available products using SecuWear. Section 6 concludes the paper.

2. Background

2.1. Wearable device applications

Wearable devices and their accompanying smartphone applications
include a variety of medical and commercial grade electronics. Fitbit [2]
targets fitness, providing a pedometer, accelerometer and other types of
fitness tracking sensors. Nike Fuelband series include fitness tracking
sensors as well as a heart rate monitor in its Nike þ Sportband line [3].
The last major pillar in the fitness wearable market is Jawbone UP [27]
which includes motion, sleep and calorie tracking algorithms.

Other commercial grade wearables include Samsung Gear [7], Apple
[28] and Pebble Smartwatches [6], etc.. Many of them have the same
sensors and tracking capabilities as fitness tracking bands and also offer
small touch screen UIs. Smart watch use cases include receiving push
notifications and sending user inputs to a controlling smartphone for
applications such as mp3 players and email clients. Head-mounted dis-
plays are an emerging class of wearables (previously piloted by the
Google Glass explorer program [8]). Although discontinued, Glass
enabled augmented reality [8] in real time by using video analysis al-
gorithms and UI overlays. Projects like Glass bring about new in-
novations but also significant security concerns.

The last major type of wearables are medical grade products. These
wearables may transmit sensor information to a smartphone app and
then the wider internet for the analysis of patient data by medical pro-
fessionals for home health care purposes such as surgical recovery, ge-
riatrics, diabetes and heart disease. Medical wearables using BLE include:
AliveCor ECG [29] that measures electrical activity in a patient's heart
and communicates the data to a doctor, the Withings blood pressure
monitor [30], and the iHealth pulse oximeter and heart rate monitor
[31]. Next generation's pacemakers and insulin pumps may also rely on
Bluetooth [5,32]. This prospect raises the bar for security requirements as
the price of failure could be death.

2.2. Mobile application security

Reasearch on mobile security falls into several categories. Over-
viewed here are privacy and policy research [33–35] which focuses on
the societal, cultural and individual factors that affect how users trust and
use mobile apps; operating system research [35,36] that looks into the
capalibilities, vulnerabilities and technical mitigations of the Operating
System (OS); and application level research [37,38] that targets the top
of the mobile stack to affect processes in web and/or native mobile app
development.

In the domain of privacy and policy research, Hurlburt et al. [33]
focused on user awareness deficiencies and a range of issues that affect
trust decisions when users install new apps. They showed that users are
rarely aware of what apps are actually capable of and are increasingly
trading conveniences afforded by mobile apps with data and personal
privacy protections.

Contrast to this direction, authors of Ref. [34] examined the ways in
which application developers can be encouraged to develop apps that
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support basic privacy protections. They discussed how the economic
pressures and time constraints that encourage app developers to push
products to the market can be offset by developments in privacy guide-
lines, education and platform modifications. Of the three, they suggested
that privacy protecting Application Programming Interfaces that force
developers to “dig for the more specific privacy-invasive information” are
much better than APIs that mix sensitive and public data [34].

Hunt [36] examined OS-level vulnerabilities that could potentially
allow for data leakage and/or file stealing by malicious entities or other
apps running on a user's smartphone. Specifically, he looked at malware
that poses as legitimate software in the google play store, but, when
downloaded and executed, runs malicious scripts behind a seemingly
legitimate veneer to steal data. One example is a malicious weather app
that uses OS level vulnerabilities to bypass access permissions to iterate
over the file system to gather and upload the user's photos to a malicious
web server.

At the application level, Jain and Shanbhag [38] have identified some
big security issues that affect mobile apps, such as client-side injection of
malicious content, improper session handling, acceptance of untrusted
input, side-channel data leakage, and insecure data storage. Side chan-
nels, a problem where one app reads from a space that another app has
access to, are particularly relevant to wearables. Secure coding practices
were suggested to reduce these problems, including avoiding the storage
of data in spaces accessible to other apps, using device-based cryptog-
raphy, and avoiding OS cut-copy-paste and auto-completion features.
2.3. Bluetooth Low Energy

Bluetooth Low Energy (BLE) [11,39,40], or “Bluetooth Smart”, is a
scaled down version of the standard Bluetooth protocol designed for
communication with small and power-constrained hardware. Largely
due to the miniscule power requirements, BLE is the go-to standard for
wearable devices to communicate with mobile apps on the higher pow-
ered smartphones. BLE is supported by hardwares with Bluetooth
running modern OSs (e.g. iOS5þ, Android 4.3þ, Apple OS X, Windows 8,
and most Linux distributions).

Central to the BLE protocol are two concepts: GAP, short for Generic
Access Profile [22,40], and GATT, short for Generic Attribute Profile [22,
40]. GAP is an enabling functionality that makes BLE enabled devices,
such as wearables, visible to other Bluetooth capable devices. GAP de-
fines two roles for wearables: peripheral, which indicates that the device
is small, low powered and resource constrained (i.e., the wearable); and
central, which indicates that a device is a more powerful base station,
e.g., a smartphone. GAP provides a protocol for pairing [40] a peripheral
with a central device. During the process, just as illustrated in Fig. 1, a
peripheral will set a specific advertising interval to transmit an adver-
tising packet [40]. If a central device is within the range and interested in
the advert, it can send a scan response request [40] to ask for more in-
formation or initiate a connection to the peripheral. If additional infor-
mation is requested, the peripheral may respond with a scan response
packet. If a connection is initiated, the two devices will pair following the
parameters specified in GAP. This may include cryptographic key for-
mation [11,40] and other handshaking processes [11,40].

Once a connection is established, GATT is used to transfer data back
and forth. GATT uses two core concepts: service and characteristics. A
Fig. 1. GAP Bluetooth LE advertising process showing advertising
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service is an object that encapsulates the behavior of a device function
using chunks of data called characteristics. Characteristics are objects
of the lowest level in GATT. They encapsulate a single variable, such as
an array, an integer, or a string. Services are pre-defined formats
curated by the Bluetooth GATT Specification [41] for representing
different types of device data. For instance, the heart-rate service [41]
includes three characteristics: heart-rate-measurement for collecting
beats per minute, body-sensor-location for identifying position, and
heart-rate-control-point for resetting meta data.

In addition to defining data encapsulation profiles for different types
of data, GATT provides a transactional server client protocol [22,40] for
transmitting data between the peripheral (server) and central (client)
devices. GATT transactions [22,40] communicate service information
following a Master (client) to Slave (server) request/response cycle. In
addition, a slave (server) can asynchronously notify the GATT client
when events occur on the device. This process is shown in Fig. 2.
2.4. State of wearable security and privacy

There are a number of security and privacy conerns with body area
networks of devices communicating over BLE channels [10–12]. These
concerns can be generally categorized as related to man-in-the-middle
enabling vulnerabilities [10,11], privacy and visibility of data to unau-
thorized apps or users [12], and disclosure of information by apps with
poorly configured policies [42].

Ryan [11] highlighted some profound security shortcomings of BLE
transmissions. In particular, Ryan developed a BLE sniffing device
capable of following a GATT communication process to reveal the con-
tents of transmitted master/slave packets. The device, called Ubertooth
One [25,43], is open sourced and comes with a toolset for following
connections. He demonstrated that the sniffer can passively eavesdrop or
actively inject packets into BLE communications on unencrypted chan-
nels. For encrypted channels (default on most device pairings), Ryan was
able to make use of a protocol weakness in the BLE key exchange process
to bypass encryption. This means that if the sniffer is able to observe the
key exchange process during device pairing, then it can passively
eavesdrop or actively inject packets into the encrypted BLE channels as
well. This indicates the need for policies that ensure all BLE communi-
cations are encrypted and to disable pairing in untrusted environments.

In a report by Cyr, Horn, Miao, and Specter [44] fromMIT, Ubertooth
One was applied to analyze the security features of a Fitbit [2]. They
showed that Fitbit uses a proprietary encryption process different from
the standard investigated by Ryan in Ref. [11], but still exposes cre-
dentials in the clear over BLE during pairing.

3. The SecuWear platform

Combatting security and privacy risks of wearables is an emergent
concern. A core motivating design principle of the SecuWear platform is
to provide security researchers the ability to step back from particular
wearable devices or apps and to conceptualize and investigate vulnera-
bilities more generally in terms of how and where they present them-
selves in the multi-domain workflow. SecuWear provides a generalized
application testing workflow that supports security investigations span-
ning three domains and the communication channels between them. The
data, scan request, scan response, and gap initiation packets.



Fig. 2. GATT Protocol showing transactions and intermixed asynchronous event notifications. This process begins after initial pairing is established using the process
in Fig. 1.
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approach is vendor and product agnostic, making it suitable to a variety
of IoT and wearable products. The supported domains are wearable (the
software and hardware on the actual wearable device), mobile (the
smartphone or tablet and their applications communicating with the
wearable), and web (online components that connect and communicate
with the mobile domain).

Testing efforts in SecuWear are separable by domain, as shown in
Fig. 3, to help researchers isolate problems to particular domains and
generalize discovered vulnerabilities to other commercially available
products by category. For instance, if a vulnerability or weakness is found
in the mobile domain, researchers can publish their results, allowing
security engineers at other organizations to determine how relevant the
vulnerability or weakness is for their own products. Thus, the guiding
principle behind SecuWear is to enable core understanding and analysis
of common weaknesses of wearables across three domains. This effort is in
line with efforts to enumerate and catalog weaknesses and vulnerabil-
ities, e.g. CWE [15] and CVE [14]. Given these goals, the inner workings
of the SecuWear platform must be transparent so that researchers can
clearly understand how different types of attacks affect different
domains.

Addressing this requirement, SecuWear uses five core open-source
technologies: Metawear [17,18] (the wearable device), Apache Cor-
dova [19–21] on top of Android [22,23] and iOS [24] (for building a
prototypical mobile app), Ubertooth One [11,25] (for conducting attacks
over the air between the mobile and wearable domains), and Django [26]
(a web-app framework for logging data collected from the mobile app to
the web domain). In the spirit of openness, SecuWear will also be open
source. Fig. 3 shows the domains (wearable, mobile, web), the commu-
nication channels between them, and the attack vectors targeting each.
On the left is the wearable domain provided by MetaWear, in the middle
is the SecuWear mobile app and on the right is the Django web app.
The sections below cover each component in detail, providing specifi-
cations and motivations for their usage. Also covered is Ubertooth one,
which can sniff BLE data packets between the wearable and mobile
domains.
Fig. 3. Domains and open source technologies in SecuWear include the
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3.1. MetaWear

MetaWear [17,18] is an open-source wearable hardware and software
package developed by MbientLab. MetaWear offers a tiny form factor
that is roughly the size of a US Quarter with a weight of approximately
4 g including the battery. The MetaWear chip packs a tiny MCU ARM
Cortext-M0 processor [18] for handling small instruction sets, and a
variety of sensors including: an ultra-bright LED, a temperature sensor, a
three-axis accelerometer, a push button, and extensible pins for addi-
tional GPIO (General Purpose Input/Output) sensors or devices which
can be anything from optical pulse readers to miniature vibrating motors
for haptic feedback [18]. Also on the board is a USB charger and a
Bluetooth LE antenna. A reference diagram from Ref. [18] is shown in
Fig. 4.

MetaWear provides developers and companies with a scalable
turnkey hardware platform for creating quick-to-market wearables.
Included in the hardware is an onboard firmware package that makes the
various sensor data available to smartphones and tablets via an open BLE
API available in Android and iOS [17].

SecuWear greatly benefits from both the feature richness and
Wearable, Mobile, and Web Domains and the areas between them.

Fig. 4. Annotated MetaWear hardware diagram from Ref. [18].



Fig. 5. SecuWear mobile app architecture.

Fig. 6. Simple SecuWear JSON API for logging data.
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openness of MetaWear. The features allow security researchers to study a
variety of different general use cases often seen in commercial and
medical wearable applications. The openness, through code release and
good documentation, makes the inner workings of wearable applications
transparent, a quality that is important in vulnerability assessment and
analysis.

3.2. SecuWear mobile app built with Cordova

Acting as a base station for Bluetooth LE wearables to communicate
with, mobile apps are often central to many wearable applications.
Shown at the center of Fig. 3, the mobile app in SecuWear is built with
another open source technology called Apache Cordova [19–21]. Cor-
dova is a framework for building hybrid mobile apps (or simply hybrid
apps). The beauty of hybrid apps is that they are cross-platform, meaning
that they are built only once and then ported to different smartphone
platforms (such as Android or iOS) with relative ease. Hybrid apps are
built as web applications using HMTL5, CSS, and JavaScript. These web
applications are then wrapped in platform-specific code using thin native
containers that provide all of the device-specific functionality exposed to
native apps (such as Geolocation, accelerometer and Bluetooth capabil-
ities, to name a few). The thin native container wrapping process is
supported in Cordova for both iOS and Android. It works by using
pre-built open-source libraries in objective C (iOS) and Java for Android
that provide off-the-shelf application shells with native drivers. In the
shell, the hybrid app core (i.e. the developer-written web app) is
executed as a WebView (a type of process that runs in both iOS and
Android) to run web application code.

Choosing Cordova for SecuWear allows security researchers to build
their apps in well-understood web languages and then port them to
different platforms to explore how vulnerabilities may present them-
selves differently across different hardwares and operating systems. To
make the SecuWearmobile appwork withMetaWear, we have developed
modular plugins following established Cordova plugin development
standards [19,20] to map the Bluetooth API in MetaWear's Android and
iOS interfaces to web apps built in Cordova. This allows security re-
searchers to get first-class object handles on MetaWear's sensors using
JavaScript, e.g. metawear accelerometer. When completed, these libraries
will be open sourced for the benefit of security and MetaWear
communities.

In addition to the Cordova plugins developed specifically for exposing
the MetaWear API, SecuWear currently supports custom Bluetooth
characteristic calls (see Ref. [41]) that allow security researchers to
directly form and send raw data using the Bluetooth adapter on smart-
phones. This functionality is supported by an open-source Cordova plu-
gin available at Ref. [45] and affords researchers a great deal of control
that can be used to craft customized packets to help reveal certain types
of vulnerabilities or aid in specific assessments. Finally, SecuWear in-
tegrates all of the official Apache Cordova plugins [19] that provide ac-
cess to other device features such as the phones geolocation functionality,
accelerometer, file system, camera, etc. Thus, SecuWear can store
wearable data in a phone's file storage, allowing side channels (such as
another app reading the storage) to be examined. This provides the
SecuWear app with access to the Bluetooth log (for Android devices).
These components are included in the SecuWear mobile app architecture
diagram shown in Fig. 5.

Here the web app core is provided with first-class objects functions
and data implemented by the Cordova plugins through the rendering
engine. The plugins map to underlying mobile OS-specific libraries (e.g.
Android and iOS APIs). The rendering engine wraps the web app into a
native executable runnable on the mobile OS.

3.3. Ubertooth One

Whether in this wearable domain or in more traditional environments
such as web servers, vulnerability testing requires an understanding of
5

the network that applications are running in. In wearable applications,
where data is sent over the air through BLE, there is the potential for an
attacker to listen to specific segments of the Radio Frequency (RF)
spectrum and sniff (i.e. spy on) data exchanges. Ubertooth One [11,25] is
an open source hardware component and software package that provides
spectrum analysis of the 2.4 GHz ISM (industrial, scientific and medical)
radio band in a USB dongle. In practical terms, it is a Bluetooth antenna
that functions like a Wi-Fi spectrum analysis tool (e.g. Wi-Spy [46]) that
sniffs IP traffic.

SecuWear requires the use of an Ubertooth within the range of the
SecuWear mobile app and the MetaWear hardware. A Ubertooth is
connected to a *-nix based system and is configured, following the in-
structions in Ref. [43], to capture packets into PCAP (Packet Capture)
files that can be analyzed in Wireshark. Ubertooth allows security re-
searchers to explore vulnerabilities with the channel between mobile
apps and wearables ( e.g. eavesdropping) and to conduct active MiTM
attacks through packet insertion.

3.4. Django and the web service API

The last component of the SecuWear architecture is an online web
service that exposes a RESTful API to allow data from the SecuWear
mobile app and PCAPs from Ubertooth to be logged online for viewing
and/or analysis. The SecuWear web service uses Django [26], a
python-based web application framework, its out-of-the-box admin ca-
pabilities, and a third party open source plugin called Django REST
Framework [48]. The data accepted by the simple API is shown below in
JSON (JavaScript Object Notation) format in Fig. 6. The experiment_id is a
foreign key to an experiment object that groups events and collects
PCAPs related to a single test. The other fields are self-explanatory by
name. All fields are captured as strings. In Fig. 7, some captured data is
shown as viewable in the Django admin panel.

3.5. Exploring wearable security

Many security problems exist in a multi-domain wearable application.
This section highlights some interesting data that can be collected by
SecuWear in each domain and discusses how it can be used to analyze
and investigate security vulnerabilities. A particular focus is placed on
the space between the wearable device and the mobile app. Research by
Zhou and Chao [49] has called attention to the types of data generated



Fig. 7. Sample of collected event data in admin panel.
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and processed by different domains in the internet of things. They
identified sensor nodes, transmission systems, and service ecosystems as
particular areas of interest in common IoT applications. In separate work
[50], they also identified performance requirements and scheduling
schemes to convey security data of interest to the forensic or analysis
platform in use by applications.

SecuWear can capture many types of data such as those identified in
Ref. [49] and uses in-application audit hooks to do so, helping developers
to have control over the performance of the security data capture ele-
ments within their applications. First, the SecuWear mobile app works
with the MetaWear API to gather streaming wearable events. These events
are temporarily stored locally within the SecuWear app before being
forwarded on to the SecuWear RESTful web service. Sample events
collected via this method are shown in the web service admin panel in
Fig. 7. Each event includes the fields in the JSON API from Fig. 6.

In addition to capturing wearable data through this typical applica-
tion workflow, SecuWear can also capture individual packets sent be-
tween the wearable and the mobile app in two different ways. First, if an
Android device running Android 4.4þ (Kit Kat) is used, then SecuWear
can grab Bluetooth packets from the btsnoop_hci log [23] and send them
to the web service as a PCAP file. Second, the main form of capturing
involves over-the-air collection using the Ubertooth One component.
Ubertooth allows researchers to conduct eavesdropping attacks to
analyze the 2.4 GHz Bluetooth spectrum that wearables operate in,
examine the packets exchanged during the advertising and pairing pro-
cesses (shown in Figs. 1 and 2), observe actual data exchanged after
pairing, and even perform packet insertion. Fig. 8 shows the state of the
Bluetooth spectrum during data exchange. The ubertooth-specan-ui
package [43] was used to capture this data. In the next section, Fig. 11
shows actual packets captured during the same time interval.

These different data collections, coupled with the complete control
that security researchers have over each SecuWear component, facilitate
the investigation of many security vulnerabilities ranging from MiTM
attacks between the device and the mobile app, to application vulnera-
bilities in the wearable, mobile app and web service.

4. Evaluation of the platform

4.1. Comparative component analysis

It is important to critically examine the strengths and weaknesses of
using SecuWear compared to other possible options for exploring wear-
able security. SecuWear seeks to unify different domains in the
Fig. 8. Spectrum analysis in the 2.4 GHz range during the time when the events
in Fig. 7 were captured.
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application of wearables and represents them in a generic way that al-
lows researchers to generalize vulnerability assessment findings. This
approach stands in contrast to many vulnerability assessment strategies
[51] that emphasize targeting a specific hardware or software, but aligns
with efforts to categorize and classify common security issues in CVE
[14] and CWE [15]. The list below provides a look at the relative ad-
vantages and disadvantages of the SecuWear approach compared to
hacking at specific hardware or software components.

4.2. Advantages

þ It facilitates assessment of vulnerabilities that span different
domains.
þ Its results describe categorical (common) issues that may affect
multiple hardware or software products.
þ Components are open source and interactions are transparent.
þ It provides multiple data collection streams for a multi-factor
analysis and to report to isolate identified issues.

4.3. Disadvantages

- Wearable vendors may be less likely to accept results as their products
are not specifically targeted.

- Identified vulnerabilities still need to be investigated against com-
mercial products to determine if they apply.

- Vulnerabilities may be specific to selected open-source components,
resulting in false positives when identifying security issues as com-
mon problems.

Given these disadvantages, it is important to understand that the role
of SecuWear is not to replace specific product assessments, but to act as a
first step towards identifying and categorizing wearable security vul-
nerabilities. The vision is that researchers can examine problems gener-
ally with SecuWear and distribute results via a CVE/CWE-like method,
and then vendors and other researchers can follow up with additional
product-specific assessments to better classify and contextualize the in-
formation to their products.

Table 1 weighs the pros and cons of using the selected components in
SecuWear against competing alternatives. The range of options available
in the wearable and mobile SecuWear domains are listed as columns and
each feature is color coded from dark brown (bad) to light brown
(decent) to green (good). Variant cells are simply shaded white. Since the
web service just provides a REST API, competing options are not
analyzed closely. Wearable products examined include: Adafruits Flora
[52], an Arduino-compatible electronics board for GPIO functionality;
WARP [53], a small IoT and wearable app development platform; and
typical consumer commercial products (Comm. Products for short).
Typical consumer products lumped together in the table include: Apple
Watch [28], Fitbit [2], Pebble [6], Jawbone UP [27], Samsung Gear [7],
and Nike þ Sportbands [3]. Different mobile app development technol-
ogies are also compared below according to the desirability of their
features.

A firmware is considered programmable if developers are given access
to the firmware source code by the device manufacturer; closed, cus-
tomizable if device manufacturers are willing to provide alternative
firmware per developer request; but the source is closed if its source code
is not accessible and device manufacturers are unwilling to customize the
firmware for alternative uses aside from those provided by the release.
Community size is estimated according to the number of mobile app users
on Google Play and Apple App stores for each type of device and the
number of contributors/downloads/activities on their GitHub re-
positories, if available. By the time of writing, the mobile app used by
Flora, the Adafruit Bluefruit LE connect app, has approximately 10
thousand downloads (note that the app is not exclusive to Flora) on the
Play Store and an unknown amount on iOS. MetaWear has approximately
8 thousand across GitHub, Play store and App store and has active source



Table 1
Comparative analysis of SecuWear Components.
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code repositories. We could not determine app counts for the Warp at the
time of writing and there was little or no activity on GitHub. Commercial
wearables ranged from millions of downloads (e.g. 10 million for Fitbit
on Play) to hundreds or thousands depending on the product. Simplicity
refers to the ease with which developers can use and write code for their
apps using the product. Flora and Metawear are easy to use given their
well-documented APIs and modular design, whereas commercial prod-
ucts are less simple, depending on the device because of no or little
documentation. The number of sensors is considered High if the device
possesses 4 or more sensors,Medium if it contains 2 or 3 sensors, and Low
if it only contains 1 sensor. Commercial products vary widely, with most
having medium or high numbers of sensors. The comparisons of Cordova,
iOS, Android, andWeb technologies are based on prior work in Refs. [16,
47,54].
Fig. 9. Packet captured during GAP advertising process.
4.4. Studying attack vector types in SecuWear

This section reports the findings of two empirical studies on attack
vectors that can be identified and mitigated in SecuWear. The first study,
conducted initially in Ref. [16] and extended in this work, demonstrates
that eavesdropping attacks affect three different types of wearable use
cases. The second study conducted firstly in this work exemplifies a
denial of service attack that can affect wearable devices and demon-
strates a mobile app memory attack.

While the attack vectors examined in the studies are interesting in
their own right, the goal of both studies is to show that SecuWear has the
logging functionality and multi-domain perspective necessary to capture
and analyze attack data for use during vulnerability assessment and
mitigation strategy synthesis. Below we summarize the attacks investi-
gated in both studies and use these results to enumerate the other types of
attacks that can and cannot be investigated in SecuWear.

4.4.1. Eavesdropping attacks on bluetooth
In Ref. [16] we investigated passive eavesdropping attacks in three

use case scenarios commonly seen in all wearables that use Bluetooth for
wireless communication. The first scenario involves the wearable
advertising its availability to BLE enabled smartphones. The second in-
volves the wearable connecting and pairing with an app on a mobile
device. The third examines actual BLE GATT data having passed from the
wearable to a smartphone. Each scenario, the resulting data captured by
SecuWear, along with the new mitigation techniques added in this paper
are discussed below. In each case, packets were captured using the
ubertooth-btle f c command to follow (f) connections and dump (c) data to
a FIFO (First In, First Out) pipe. Using this approach, data flows directly
into Wireshark in real time, allowing researchers to use Wireshark filters
and plugins, such as libbtbb [43], to analyze the data.

The first scenario (advertising) begins when the MetaWear compo-
nent is powered on and connectable, but not paired. During this time, it
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broadcasts advertising packets constantly, following the process
described in Fig. 1. Consistent with expectations based on results from
Ref. [11], Ubertooth was easily able to capture the advertising packets.
Fig. 9 shows an advertising packet (type ADV_IND) that includes the MAC
address and device name of the wearable. Since ADV_IND packets are
broadcasted, this type of capture is not very malicious.

Clearly, SecuWear is able to capture relevant attack data for assess-
ment in this case. In terms of mitigations, there is no compelling reason to
counter this type of eavesdropping, for this type of observation is
intended by the wearable to broadcast its advertising packet. If one does
want to prevent announcements, mitigation would entail: a) pairing the
wearable before entering a publicly accessible wireless space (e.g. pairing
the device at home); b) putting the device in a faraday cage to prevent all
outside communications; or, c) shutting the device off.

The second use case (pairing) involves a smartphone running the
SecuWear mobile app and pairing with MetaWear. In this use case, the
mobile app gets the advertising packets broadcasted in the first use case
and then sends a scan request (SCAN_REQ) packet to ask for more in-
formation, such as its Bluetooth address and device clock. When Meta-
Wear gets the request, it sends back a scan response (SCAN_RES) packet
using the same channel. Next, the user selects “Connect” in the mobile
app. This generates a connection request (CONNECT_REQ) packet which
identifies the pairing information, such as hop patterns and data channels
to use.

SecuWear, using Ubertooth, captures all three types of packets as
shown in Fig. 10. It also captures data (not shown) across the mobile app
(Bluetooth log) and the wearable (event data log). This data provides a
three-perspective audit log of events allowing researchers to understand
the attack from the originator, destination, and attacker perspectives.
This particular attack is interesting because given a CONNECT_REQ
packet, the attacker can then follow the pairing process and continue to
sniff data even during channel hopping (as shown in the next use case
scenario). This allows the attacker to follow data sessions and makes this
attack particularly harmful.

When pairing, there are three types of Secure Simple Pairing



Fig. 10. Packets captured during the pairing process.

Fig. 11. Packets turning on thermometer and sending data.

Fig. 12. SecuWear packet capture showing a denial of service attack executed
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strategies (SSPs) [55]. The first, used by MetaWear and a majority of
wearable devices, is called just works pairing. As its name suggests, this
pairing strategy does not require any user interaction and does not pro-
vide any MiTM protection. The other two types are called numerical
comparison and passkey entry. They both require a wearable device to
have a display. In the former type, both the wearable and the mobile
phone generate a 6 digit numeric code and the two are compared before
the user pairs the device. In the latter case, one of the two devices gen-
erates a code and the user must enter it on the other device. Both pairing
strategies claim that they provide MitM protections.

In the original study in Ref. [16], we've only examined just works
pairing. In this work we extend this by examining other two SSPs. Since
the Bluetooth specs [40,41,56] claim that they provide MiTM pro-
tections, we expect that the connection packets would not be discover-
able. However, surprisingly, our results show that passive eavesdropping
attacks attempting to identify the connection packet are NOT limited to
just works pairing as suggested by the Bluetooth LE documentation. In
fact, we have captured the CONNECT_REQ packets for both Fitbit [2] and
Pebble Watch [6] as shown later in Fig. 17 and Fig. 19 respectively.
Pebble uses numerical comparison, while Fitbit uses passkey entry.

Given these findings, it is clear that mitigating this type of attacks
requires more than simply using an alternative SSP strategy. Existing
mitigation approaches focus not on preventing the attacker from viewing
the connection packet (and by extension the data packets) but instead on
encrypting the data packets to prevent the attacker from actually viewing
the contents. This approach can be thwarted if attackers have the CON-
NECT_REQ, by reverse engineering the encryption method and decrypt-
ing the data packets that follow successful pairing. In fact, Mike Ryan has
demonstrated such an attack on the core Bluetooth encryption capabil-
ities [11]. For these reasons, encrypting packets after the initial
connection is not sufficient. Our results suggest that the Bluetooth LE
protocol itself needs to be reexamined for alternative SSP strategies that
do not involve in-the-clear CONNECT_REQ packets.

The last eavesdropping attack (data transfer) we examined involves
an attacker intercepting and viewing data transmissions after successfully
capturing the CONNECT_REQ. In this use case, an end user is sending
signals to a wearable (via a paired mobile app) to evoke functionality, or
the wearable is capturing data and sending it to the paired mobile app for
viewing. Since functions and data on wearables could be life critical, such
as in medical applications, it is vitally important that the communication
channels are not visible or tamperable.

To examine this, MetaWear is paired with the SecuWear app and
several functions are turned on (LED, accelerometer, temperature
sensor). These events are logged to the app and then to the web service,
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as shown previously in Figs. 6 and 7. Fig. 11 shows the actual packets
signaling MetaWear to read and send temperature data back to the paired
device. Packet 81 specifically sends an opcode using a Write Request to
turn on the thermometer. After acknowledging the request in packet 83
and receiving a subsequent read request for data (packet 84), MetaWear
sends back the temperature data in a Read by Type response in packet 90.
This data can be decoded by anyone who happens to have seen the
connection requests or is listening to the channel when the data is being
transmitted on. SecuWear includes, again, three different types of in-
formation for security analysts to reason over and to understand the
specifics of the attack.

To mitigate this type of passive eavesdropping, vendors should use
either numerical comparison or passkey entry SSP techniques and then
encrypt all critical or personally identifiable data transmitted after
pairing. Currently (as of the time of writing) the standard encryption
technique of Bluetooth LE is not secure, as shown by Ryan [11]. For this
reason, vendors such as Fitbit [2] are tending to use proprietary
encryption techniques. But this is not a feasible or advisable solution in
long term. Thus, we suggest that open source modification, such as those
proposed by Ref. [11], could be adopted into the Bluetooth LE standard.

In addition to the eavesdropping attacks shown above, attackers
could, using the same mechanisms demonstrated here, spoof themselves
and inject malicious packets in either direction. This means that an
attacker could take control of a wearable and do many bad things,
including invoking functionality to cause error states or injecting mali-
cious code/data into the mobile app or the wearable's firmware. In any of
these cases, SecuWear offers a valuable set of integrated components to
test security vulnerabilities, perform assessments and aid mitigation
efforts.

4.4.2. Denial of service attacks on bluetooth
Another type of attack we have explored in addition to eavesdropping

is Denial of Service (DOS). We examined two specific types of DOS. The
first simply involves spamming connection requests to any advertising
device in range to prevent other (legitimate) apps from pairing with the
device. The second (more interesting) type involves spamming devices
that allow multiple connections until their connection limit is exceeded.

In the first case, we find that a malicious entity with a USB Bluetooth
adapter and a python script rapidly scanning and connecting to any de-
vice in range could effectively prevent a user from connecting to their
device. Fig. 12 shows the connection (as captured by SecuWear) between
the intercepting computer and the passive Bluetooth device, a pair of LG
HBS800 headphones. The first two lines are beacon packets sent by the
headphones, followed by the initial pair of connection request packets
from a python script.



Table 2
Coverage and Limitations of SecuWear Investigative Capacity by Attack Vector
Type on each Domain.

Domain Eavesdropping DOS Injection Overflow

Wearable Medium N/A High Medium
Bluetooth High High High N/A
Mobile Medium Low Low Low
Network:
4G/Wifi

None None None N/A

Web out of Scope – – –
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(AUX1). This is followed by the handshake, linking the hop pattern in the
Frequency Hop Synchronization (FHS) packets. Once the hop pattern is
synchronized, normal operation of the device can begin. At this point an
attacker can either stay connected or disconnect and reconnect again.

This type of attack is also of concern for Bluetooth devices that receive
firmware updates from their apps. Using this attack, an attacker can
prevent legitimate usage and coopt the device, or upload malware-laced
firmware after the attacker has connected to the device. Many com-
mercial products, including all of the major fitness trackers (Fitbit,
Jawbone UP2, Pebble, etc), accept firmware updates via Bluetooth,
usually through their mobile apps.

The second type of attack we've investigated targets at Bluetooth
devices that support pairing with multiple apps at once. In this case, an
attacker using the single connection approach in the first case can con-
nect once, but is unable to stop the original device from connecting.
These types of Bluetooth devices generally support a maximum of 7
active connections (due to the limitation of a 3bit address space) in a
single piconet.

While we are able to modify the script used in the first attack to create
7 simultaneous connections, none of the wearables we test it on (Pebble,
Jawbone UP2, MetaWear, and Fitbit) support multiple simultaneous
connections. Therefore, it is unclear whether or not this type of attack
could prevent legitimate usage of a multi-connecting device. Overall,
Bluetooth DOSsing is feasible and SecuWear is able to capture relevant
information to identify such attacks.

4.5. Limitations of SecuWear investigaive capacity

Up to this point, specific examples of attacks detectable by SecuWear
have been shown. This section takes a step back to summarize the domain
areas that are investigable by SecuWear and to define the types of attacks
that cannot be captured by SecuWear. Going back to Fig. 3, we identify
three large domains (the wearable, the mobile app, and the web) and the
areas between them (Bluetooth, Wi-Fi/4G). The attacks shown above
focus on the wearable and the Bluetooth domains. SecuWear is particu-
larly well suited to identifying these types of attacks because of the level
of event logging on the wearable device (MetaWear), the collection
capability of the Bluetooth Antenna (Ubertooth), and the built-in logging
framework in the SecuWear mobile app.

The limitations of SecuWear start to arise on the paired mobile apps.
SecuWear only has access to data in its app and the shared file space on
the mobile OS (Android or iOS). Based on this fact, SecuWear can identify
attacks targeting shared memory exploitation (for instance, a malicious
mobile app is accessing memory that the SecuWear app is using in the
clear). However, SecuWear cannot look into the protected file or memory
spaces of other apps (that may be malicious). This means that third party
malicious apps that connect with paired Bluetooth devices are not
entirely logged by SecuWear in the mobile domain.

SecuWear also provides no coverage for attacks targeting the 4G
domain. It is illegal in the US to monitor the frequency range involved in
wireless cellular communications, so SecuWear cannot do so either for
legal reasons. SecuWear is also not currently equipped with a Wi-Fi
monitoring component to examine attacks between the mobile app and
the web domain over Wi-Fi. Since SecuWear is primarily focused on the
wearable and its mobile app, it is also not currently equipped for exam-
ining web attacks on the web domain that connects with the mobile app
as shown in Fig. 3. While one can certainly extend the SecuWear logging
infrastructure to examine such attacks, it is beyond the scope of concern
in SecuWear and covered much better by many other web vulnerability
and forensics analysis frameworks such as w3af [57], Metasploit [58],
sqlmap [59], and others. Table 2 summarizes the coverages and coverage
limitations discussed above.

5. SecuWear in practice

How do the components in SecuWear compare to commercial
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products in the real world and how are the results useful in practice?
After all, if the investigations conducted in SecuWear to explore attack
vectors and identify vulnerabilities are not representative of any com-
mercial wearable products, then the efforts are futile and in vain. We
address these questions head on to show that a) there is a path from
SecuWear analysis to safer end users; and b) vulnerabilities found in
SecuWear can also be applied to commercially available products,
including Fitbit [2], Pebble Steel [6], and Jawbone UP2 [27], given the
structural similarities between the interoperation of components in
SecuWear and those of the real world products.

5.1. From lab vulnerability discovery to end-user

Fig. 13 addresses claim a) by laying out a 5-step iterative process that
1) discovers and catalogs wearable vulnerabilities (in one or more do-
mains), 2) investigates and tests mitigations to combat them, 3) dis-
seminates findings as CVEs to vendors, 4) encourages vendors to test
their individual products (using SecuWear or internal testing tools), 5)
ends with patches being deployed to make end users safer. In the eval-
uation section (Section 4), we've showed a few example attack in-
vestigations and possible mitigations that cover steps 1 and 2.

Step 3 in the 5-step process involves following the MITREs process to
create and report CVEs. Since SecuWear users might include independent
testing firms, other researchers in academia and firms with commercially
or internally available wearable devices, there are two processes
involved in creating and reporting a new CVE.

In general, CVEs can only be created by an authorized CVE
Numbering Authority (CNA). Hence, SecuWear users operating in a firm
with CNA status can create and submit a CVE internally. CNAs include
well established firms such as IBM, Microsoft, Apple HP, Google, and
large open source product makers such as Ubuntu and Debian GNU.

For most SecuWear users, step 3 means contacting an authorized
third-party coordinating CNA in the form of a CERT (Computer Emer-
gency Response Team). There are four options for this: the original
CERT/CC [60] that begins as a part of CMUs Software Engineering
Institute, US-CERT [61] which coordinates with CERT/CC on vulnera-
bilities affecting the national security of the United States, ICS-CERT [62]
which is primarily concerned with industrial control systems in the US,
and JP-CERT/CC [63] which is Japan's analog to CERT/CC. At this point,
the choice of a CERT will handle the dissemination and vendors can
choose to follow steps 4–6.

5.2. Generalizing SecuWear vulnerabilities

To demonstrate, at least by way of example, that vulnerabilities
identified in SecuWear can also be found in commercially available
wearable products, we've evaluated a representative sample of products
from three different vendors (Fitbit Charge HR, Pebble Steel and
Jawbone UP2) to see if they also exhibite the same vulnerabilities
described in Section 4. The answer is a resounding yes as we show in the
packet captures and collected data below for the devices tested. Note that
in all tests we've used the listed device (one of the three above) with its
associated mobile app (from the Android App store) and online API to
capture data analogous to that of what SecuWear provides. In some cases
such as Fitbit and Jawbone, the API does not provide any data on the



Fig. 13. Overall process for applying SecuWear in practice. This process includes discovering and cataloging wearable weaknesses.

Fig. 15. Same type of packet captured from Jawbone UP 2.

Fig. 16. Similar ADV_IND packet from Pebble.
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operation of the wearable device, but instead only the data captured. To
capture the over-the-air Bluetooth data, we've also used an Ubertooth.

5.2.1. Similarities of advertising use cases
All of the three devices tested exhibite advertising packets that look

very similar to those produced by MetaWear operating as part of the
SecuWear platform. Fig. 14 shows a SCAN_REQ and ADV_IND packet
from a Fitbit Charge HR that closely resembles the structure of those sent
fromMetaWear as shown in Fig. 9. Similarly, Fig. 15 and Fig. 16 show the
same types of packets as captured from Jawbone UP 2 and Pebble Steel,
respectively. Note that the UP and Fitbit place their info in a SCAN_RSP
(i.e. the user must request more information about the ADV_IND)
whereas bothMetaWear and Pebble place their information directly in an
ADV_IND packet, which avoids the scan request/response steps.

From the three captures, one can see that an attacker's ability to
observe the advertising packet of each of the devices is the same as what
was discovered by MetaWear in SecuWear. The only difference is that in
SecuWear a researcher has more information (specifically the informa-
tion from the device and mobile app perspectives) that is not available on
the commercial products. This fact again reinforces the motivating goals
behind SecuWear, namely, to explore attack vectors and then let vendors
and other third parties (like a CERT) deal with specific commercial
products.

5.2.2. Similarities of pairing use cases
Just like the first use case, we've examined three products to see how

closely the next much more important (from the perspective of security
Fig. 14. Advertising packets from Fitbit Charge HR showing very close simi-
larities with MetaWear capture.
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risk) use case correspond to what we've found in MetaWear. Fig. 17
shows the CONNECT_REQ packet from the Fitbit Charge HR, while
Fig. 18 and Fig. 19 show the same packet types captured from Jawbone
UP2 and Pebble Steel, respectively.

It is important to note, as we alluded to earlier, that the three devices
use different SSP strategies rescpectively: Fitbit uses passkey entry,
Pebble uses numerical comparison, and Jawbone uses just works. It is
clear from our results that all three expose their connection forming
packets when pairing to would-be attackers. To reiterate, these packets
allow an attacker to follow a connection after it is initiated. These results,
although troublesome, support our claims presented above and
encourage vendor and researcher to adopt a process like the one in
Fig. 13. Also it is important to note that, at the time of writing, the
findings detailed above are being submitted to CERT/CC for



Fig. 18. Similar packet from Jawbone using just works SSP.

Fig. 19. Same packet from Pebble using numerical comparison.

Fig. 20. Handle data being sent by Fitbit to its mobile app.
Fig. 17. Fitbit CONNECT_REQ packet captured under the Passkey entry Secure
Simple Pairing Strategy.

Fig. 21. Jawbone UP2 mobile app reading some kind of data from its paired
wearable device.
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consideration as a CVE.

5.2.3. Similarities of data use cases
Our last examination explored what happened after the connection

was established. This step is where the devices vary widely in terms of
what is transferred. Fitbit, as investigated by others [44], uses a pro-
prietary encryption protocol after the connection is established. We were
able to find specific Bluetooth handles (which operate in a manner
similar to registers in low level CPU architectures) where data resided,
but the data was encrypted and we did not attempt to reverse the
encryption method as this is well out of scope of the work. The captured
data shows a handle change notification in Fig. 20.

With Jawbone UP2, we also found that it was using a proprietary
encryption protocol. This is consistent with work in the reverse engi-
neering community, such as that by Stefano Brilli [64]. This author also
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has demonstrated a hacked mobile app (apart from the app provided by
the vendor) that can control the device. For this app to work, he reversed
the proprietary encryption protocol. We did not investigate the specifics
of his work, but, given his results, it is reasonable to assume the
encryption method is not absolutely secure. Fig. 21 shows some data
being read on a specific data handle. The data itself was likely encrypted,
but we did not investigate it further or attempt to reverse it.

Lastly, Fig. 22 shows a capture of a Pebble Steel post pairing as several
pieces of data are established on Bluetooth handles. The Fig. shows a
specific packet that is setting the initial value of the device name handle
to the device name of the wearable. Like the others, Pebble also has
encrypted exchanged data, but still suffered from the same problems of
insecure key establishment. With the wide variety of features on Pebble,
it was difficult to determine what was occurring after the initial handles
were established, but we were able to detect read and write requests post-
pairing just as seen in other devices.

Collectively, these results in combination with the results of pairing
and advertising use cases suggest that the SecuWear philosophy as
espoused in Fig. 13 is a realistic approach for discovering (at a minimum)
air vulnerabilities in wearable applications and generalizing them in a
way that can be investigated for many different vendor-specific products.

5.2.4. End-to-end case study
Demonstrating the entire capability set of SecuWear requires more

than just analyzing one particular domain. Therefore, we considered an
end-to-end attack case as shown in Fig. 23. In this example, a wearable
application includes a MetaWear device being used to gather fitness data
(such as gait and heartrate data). The mobile app, created in Cordova, is



Fig. 22. Initial handle setup established post-pairing on a Pebble Steel.

Fig. 23. Code-injection attack allows malicious Javascript to exfiltrate sensor
data to an attacker's server.

Fig. 24. Audit log of events gathered by SecuWear from the case study scenario.
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interacting with a data aggregator service and an advertising service. The
fitness data service simply gathers and aggregates data coming from the
mobile app and its associated wearable. The advertising service displays
ads within the app. In a real-world scenario, the advertising service
would likely be a third-party service integration. In this particular case,
the advertising service is vulnerable to Cross Site Scripting (XSS). An
attacker exploits the vulnerability in the advertising service to persist an
attack displayed on the Cordova mobile app. When the user loads the
app, their fitness data begins to stream into the local database on the
mobile phone and is displayed in the fitness data UI. However, at this
point, the app loads an advertisement from the advertising service and
gets the attacker's XSS attack. Assume that the Cordova app does not
follow the principle of least privilege and has provided the advertisement
webview with permissions that allow it to observe and interact with any
data in the app. In this case, the XSS attack executes and begins exfil-
trating data from the Cordova app and sending it to the attacker's
database.

Cases such as this illustrate the usefulness of a tool such as SecuWear.
SecuWear collects events from MetaWear, the Mobile App, associated
services, and interfaces of communication. Hence, the original XSS attack
generates an audit record of an HTTP POST with the XSS attack
embedded in it on the advertising service. Next, the platform would
capture the network request made by the mobile app for the advertising
service with the malicious advertisement payload. It would also capture
internal events generated within the Cordova app at any place where an
audit hook exists. Next it would see network traffic destined for the at-
tacker's database server. This audit log allows for the detection of
domain-spanning security problems.

We investigated this scenario by implementing each component in
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the architecture and then capturing data in SecuWear to examine the
audit log. Simple services were mocked by using WireMock [65] to
gather and transmit data as shown in Fig. 23. The same MetaWear app
described in 3.2 was modified to include a new webview which makes a
request to the advertising server for an advertisement. To implement the
case, we gave the webview access to the full scope of the Cordova app,
including its data store. A snippet of the resulting audit log gathered by
SecuWear is shown in Fig. 24.

One can see a series of events in the audit log capture that highlight
abberant behavior in the Cordova app where the advertisement is
rendered. Once rendered, the app begins to log wearable data to the
attacker's webserver. This is detected by the audit hook in the app and
can be used to pinpoint the first time and place where the attack occurrs.
This log snippet does not show other events - such as the read/write
behavior on the wearable occurring after the XSS attack, but such data is
loggable by SecuWear.

6. Conclusion

This paper discusses the design and usefulness of a multi-domain
wearable test bed platform called SecuWear. SecuWear facilitates wear-
able security research by collecting data and enabling researchers to
conduct attacks on wearable apps to identify security vulnerabilities in
hardwares and softwares. Several types of evaluation are used to assess
SecuWear. First, the selected SecuWear components are compared
against alternatives. Second, through experiments, we show how several
attack vectors present themselves in a generic wearable application and
how SecuWear capture the information relevant to identifying and
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combating attacks. Lastly, we examine the identified attacks on
commercially available wearable products to show that the attack vectors
investigated in SecuWear present themselves in the same way as in the
commercial products. Overall, the work shows that SecuWear offers a
step forward for security vulnerability detection in the current wild-west
atmosphere of the wearable computing revolution.
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