
Solar Energy 134 (2016) 366–374
Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier .com/locate /solener
Application of the Hybrid Big Bang–Big Crunch algorithm for optimal
sizing of a stand-alone hybrid PV/wind/battery system
http://dx.doi.org/10.1016/j.solener.2016.05.019
0038-092X/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ahmadis@ripi.ir (S. Ahmadi), sh.abdi@edu.ikiu.ac.ir (S. Abdi).
Saeedeh Ahmadi a,⇑, Shirzad Abdi b

aDepartment of Process and Equipment Technology Development, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
b Faculty of Engineering and Technology, Imam Khomeini International University (IKIU), Qazvin, Iran

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 January 2016
Received in revised form 17 April 2016
Accepted 13 May 2016

Keywords:
Hybrid power system
PV/wind/battery
Optimal sizing
Big Bang–Big Crunch optimization
Energy not supplied
In this paper an efficient method based on Hybrid Big Bang–Big Crunch (HBB–BC) algorithm is presented
for optimal sizing of a stand-alone hybrid power system including photovoltaic panel, wind turbine and
battery bank. The optimization is carried out to continuously satisfy the load demand with minimizing
the total present cost (TPC) of the system. TPC includes all the costs throughout the useful life of the
system, which are translated to the initial moment of the investment. In the optimization problem, the
reliability index of energy not supplied (ENS) is also considered to have a reliable system. The HBB–BC
algorithm is an effective and powerful method that has high accuracy and fast convergence as well as
its implementation is easy. This algorithm using the Particle Swarm Optimization (PSO) capacities
improves the capability of the Big Bang–Big Crunch (BB–BC) algorithm for better exploration. In addition,
the HBB–BC uses a mutation operator after position updating to avoid local optimum and to explore new
search areas. This study is applied to a village in Qazvin, Iran that still lacks access to grid electricity due
to economic and geography issues. The performance of the proposed algorithm is compared with PSO and
Discrete Harmony Search (DHS) algorithms. Simulation results confirm that HBB–BC algorithm with high
accuracy can find the optimal solution and it has the best performance in comparison with two
mentioned algorithms.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The need for energy-efficient and reliable electric power in
remote rural villages is a driving force for research in this area. Fuel
transportation problems, high operating costs, fluctuation in fuel
cost, the depletion of the fossil fuel resources and environmental
problems have forced many utilities to explore hybrid energy sys-
tems for inexhaustible energy development and environmental
pollution prevention. Photovoltaic (PV) panels and Wind turbines
(WTs) are the most promising technologies for supplying load
demand in remote areas. Because of unpredictable nature of these
power sources and dependence on environmental conditions,
hybrid energy systems must be used by combining the wind and
solar energies along with battery storage. Hybrid systems have
greater reliability and lower cost than a PV-only system or a
wind-only system. In order to have a cost-effective hybrid system,
optimal sizing is necessary.

In previous studies, different methods have been presented for
the optimal sizing of hybrid power systems. Kellogg et al. (1998)
presented a simple numerical algorithm for generation unit sizing.
It has been used to determine the optimum generation capacity
and storage needed for a stand-alone, wind, PV, and hybrid wind/
PV system for an experimental site in a remote area in Montana
with a typical residential load. Dufo-López and Bernal-Agustín
(2005) have developed a program that uses the Genetic Algorithm
(GA) for sizing and operation control of a PV–Diesel system. The
program has been developed in C++. Nelson et al. (2006) performed
an economic evaluation of a hybrid wind/photovoltaic/fuel cell
(FC) generation system for a typical home in the Pacific Northwest.
In this configuration the combination of a FC stack, an electrolyser,
and hydrogen storage tanks is used as the energy storage system. A
new method for optimization of a wind–PV hybrid system for a
specific location employing an iterative scheme has been
addressed by Prasad and Natarajan (2006). Yang et al. (2008)
presented an optimal sizing method for a stand-alone hybrid
solar–wind system employing battery banks Based on the genetic
algorithm. This method can achieve the desired loss of power sup-
ply probability (LPSP) with a minimum annualized cost of system.
A triple multi-objective design of isolated hybrid systems minimiz-
ing, simultaneously, the total cost throughout the useful life of the
installation, pollutant emissions (CO2) and unmet load is presented
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Nomenclature

Aðk;jÞ
i ith component of the jth candidate generated in the kth

iteration
AcðkÞ
i ith component of the center of mass in the kth iteration

AgbestðkÞ
i the global best position up to the iteration k

Albestðk;jÞ
i the best position of the jth particle up to the iteration k

Aimax upper limit for the ith control variable
Aimin lower limit for the ith control variable
CBA unit cost of battery bank ($)
CBA,M annual maintenance cost of battery ($/year)
CCON unit cost of converter ($)
CINV unit cost of inverter ($)
CPV unit cost of PV panel ($)
CPV,M annual maintenance cost of PV panel ($/year)
CREC unit cost of rectifier ($)
CREG unit cost of charge regulator ($)
CWT unit cost of wind turbine ($)
CWT,M annual maintenance cost of wind turbine ($/year)
CPV( ) cumulative present value
DOD maximum depth of discharge
ENS energy not supplied during the year (kW)
ENS(%) percentage of energy not supplied during the year
ENSmax(%) allowable percentage of energy not supplied during

the year
fj fitness function value of candidate j
G perpendicular radiation at array’s surface (W/m2)
InfR inflation rate
IntR interest rate
INVESTC investment cost ($)
m number of control variables
MAINC maintenance cost ($/year)
N population size
NBA number of battery bank
NCON number of converter
Ni number of component i

Ni-max maximum number of the component i
Ni-min minimum number of the component i
NINV number of inverter
NPV number of PV panel
NREC number of rectifier
NREG number of charge regulator
NWT number of wind turbine
PBA charge quantity of the battery bank (kW h)
PBA-max maximum charge quantity of battery bank (kW h)
PBA-min minimum charge quantity of battery bank (kW h)
PLoad load demand (kW)
Pm mutation probability
PPV output power of each photovoltaic panel (kW)
PPV-rated rated power of each PV panel (kW)
PWT output power of each wind generator (kW)
PWT-rated rated power of each wind generator (kW)
rj random number from a standard normal distribution
REPLACEC replacement cost ($)
SBA nominal capacity of battery bank (kW h)
T economic life cycle of the hybrid system (year)
TPC total present cost of the system ($)
v wind speed (m/s)
Vci cut-in speed of the wind turbine (m/s)
Vco cut-out speed of the wind turbine (m/s)
Vr rated speed of the wind turbine (m/s)
a1 parameter for limiting the size of the search space
a2, a3 adjustable parameters
gBA charge efficiency of the battery bank
gCON efficiency of the converter
gINV efficiency of the inverter
gMPPT efficiency of MPPT system
gREC efficiency of the rectifier
r hourly self-discharge rate
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by Dufo-López and Bernal-Agustín (2008). For this task, a multi-
objective evolutionary algorithm (MOEA) and a genetic algorithm
have been used in order to find the best combination of compo-
nents of the hybrid system and control strategies. An advanced
variation of Particle Swarm Optimization algorithm is used by
Kashefi Kaviani et al. (2009) to optimal design of a hybrid wind/
photovoltaic/fuel cell generation system to reliable supply of the
demand. The aim of the design is minimization of annualized cost
of the hybrid system over its 20 years of operation. Hakimi and
Moghaddas-Tafreshi (2009) used the particle swarm optimization
algorithm for optimal sizing of a stand-alone hybrid power system.
This study is performed for Kahnouj area in south-east Iran. Ekren
and Ekren (2010) performed Simulated Annealing (SA) algorithm
for optimizing size of a PV/wind integrated hybrid energy system
with battery storage. The proposed methodology is a heuristic
approach which uses a stochastic gradient search for the global
optimization. Mohammadi et al. (2012) presented an optimized
design of microgrid in distribution systems with multiple dis-
tributed generation units under different market policies such as
pool/hybrid electricity market. Proposed microgrid includes vari-
ous energy sources such as photovoltaic array and wind turbine
with energy storage devices such as battery bank. The particle
swarm optimization algorithm has been implemented for the opti-
mization of the microgrid cost. A discrete simulated annealing
algorithm (DSA) for finding the optimum design of hybrid PV/wind
system is presented by Askarzadeh (2013b). The DSA algorithm is
then expanded by using the merits of two other heuristic algo-
rithms, namely, harmony search and chaotic search. Kazem et al.
(2013) presented a method for optimal sizing of a standalone PV
system for remote areas in Sohar, Oman. PV array tilt angle as well
as the size of the system’s energy sources are designed optimally
for better performance and lower energy cost. A methodology
based on iterative technique is presented by Smaoui et al. (2015)
to perform the optimal sizing of a stand-alone hybrid photo-
voltaic/wind/hydrogen system supplying a desalination unit which
feeds the area’s inhabitants with fresh water. The methodology
aims at finding the optimal technical–economic configuration
among a set of systems components. Fetanat and Khorasaninejad
(2015) employed ant colony optimization (ACO) for continuous
domains based integer programming for size optimization in a
hybrid photovoltaic–wind energy system. The objective function
of this system design is the total design cost. The optimal sizing
and tilting of a hybrid photovoltaic/battery/diesel generator sys-
tem are performed by Jeyaprabha and Selvakumar (2015) for the
remote locations in India, using artificial intelligence techniques
(AIT) without the metrological data. Maleki et al. (2015) evaluated
the performance of different variants of particle swarm optimiza-
tion algorithms on the sizing problem of PV/wind/battery systems.
The optimal size of system components has been studied under
various performance conditions using real-time information and
meteorological data from each of Iran’s southern, north-west, and
north-east regions.

The Big Bang–Big Crunch (BB–BC) optimization algorithm is a
global optimization method that relies on one of the theories of
the evolution of the universe, namely, BB–BC theory. It has sev-
eral advantages over other evolutionary methods: the inherent
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numerical simplicity of the algorithm with relatively few control
parameters, quick convergence, and easy implementation (Tang
et al., 2010). Superiority of the BB–BC algorithm over improved
and classical genetic algorithms for many benchmark test func-
tions was shown by Erol and Eksin (2006). The results for design
of space trusses indicated that the BB–BC has better performance
than either the ACO or GA approaches (Camp, 2007). The HBB–BC
algorithm was employed by Sedighizadeh et al. (2013) for multi-
objective reconfiguration of balanced and unbalanced distribution
systems in a fuzzy framework. Numerical results demonstrated
the efficiency and robustness of the HBB–BC method compared
to other heuristic algorithms.

This paper presents an efficient method to solve the problem of
optimal sizing of a stand-alone hybrid power system including
photovoltaic panel, wind turbine and battery bank using Hybrid
Big Bang–Big Crunch algorithm. The objective function is minimiz-
ing the total present cost (TPC) of the system. TPC includes all the
costs throughout the useful life of the system, which are translated
to the initial moment of the investment. To have a reliable system,
the reliability index of energy not supplied (ENS) is also consid-
ered. The number of PV panels, wind turbines and batteries are
considered as the control variables. This study is performed for
electrification to a remote area located at Qazvin, Iran. Simulation
results are compared with Particle Swarm Optimization (PSO)
(Maleki and Askarzadeh, 2014) and Discrete Harmony Search
(DHS) (Askarzadeh, 2013a) algorithms to indicate the efficient per-
formance of the HBB–BC algorithm.

The rest of the paper is organized as follows: In Section 2, the
modeling of the hybrid system components and problem formula-
tion are described. In Sections 3 and 4, the BB–BC and HBBBC algo-
rithms are introduced, respectively. Section 5 explains the
application of the HBB–BC algorithm to optimal sizing of hybrid
power system. Simulation results are presented in Section 6. The
results demonstrate the efficiency of the proposed algorithm.
Finally, Section 7 gives the conclusions.

2. Problem formulation

As it can be seen in Fig. 1, the studied hybrid system consists of
the photovoltaic (PV) panel and wind turbine (WT) as main power
sources, the battery bank for backup power, converter and charge
regulator. Components mathematical model are summarized in
the following sections.

2.1. Photovoltaic panel

The output power of each photovoltaic panel with respect to the
solar radiation power, can be calculated by Eq. (1).
Fig. 1. Diagram of a hybrid P
PPV ¼ G
1000

� PPV-rated � gMPPT ð1Þ

where G is perpendicular radiation at array’s surface (W/m2), PPV--
rated is rated power of each PV panel at G = 1000W/m2, and gMPPT

is the efficiency of PV’s DC/DC converter and maximum power point
tracking (MPPT) system. PV systems are usually equipped with
MPPT systems to maximize the power output. A PSO-based MPPT
for PV systems under partially shaded as well as variable tempera-
ture and insolation conditions was presented by Sarvi et al. (2015).
The proposed method with high accuracy can track the real peak
power point under different conditions. In current study it is
assumed that gMPPT is 95% (Kashefi Kaviani et al., 2009).

2.2. Wind turbine generator

Wind power is one of the most important sources of renewable
energy. The main advantage of this energy source is the absence of
greenhouse gas emissions and its economic efficiency (Maleki and
Pourfayaz, 2015). For a wind turbine, if the wind speed exceeds the
cut-in value, the wind turbine generator starts generating. If the
wind speed exceeds the rated speed of the wind turbine, it gener-
ates constant output power; and if the wind speed exceeds the
cut-out value, the wind turbine generator stops running to protect
the generator. The output power of each wind generator is
described in terms of the wind speed by Eq. (2) (Maleki et al.,
2015).

PWT ¼
0 if v 6 Vci or v P Vco

PWT-rated � v�Vci
Vr�Vci

if Vci 6 v < Vr

PWT-rated if Vr 6 v < Vco

8><
>: ð2Þ

where v is the wind speed; Vci, Vco and Vr are cut-in, cut-out and
rated speed of the wind turbine, respectively; and PWT-rated is the
wind generator rated power.

2.3. Battery

The battery bank is widely used for hybrid power systems to
store extra electrical energy and to supply load demand in case
of deficiency of wind turbine and/or PV panel output power. Due
to the stochastic behaviors of PV panels and wind turbines, the bat-
tery bank capacity constantly changes in hybrid system. In such
system, state of charge (SOC) of the battery is stated as follows
(Maleki and Pourfayaz, 2015).

When the total output power of PV panels and wind turbines is
greater than the load demand, the battery bank is in charging state.
The charge quantity of the battery bank at time t can be obtained
by:
V/wind/battery system.
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PBAðtÞ ¼ PBAðt � 1Þ � ð1� rÞ

þ NPV � PPV ðtÞ � gCON þ NWT � PWTðtÞ � gRECð Þ � PLoadðtÞ
gINV

� �

� gBA

ð3Þ
where PBA(t) and PBA(t � 1) are the charge quantities of the battery
bank at time t and t � 1, respectively. r is the hourly self-discharge
rate, gCON, gREC and gINV denote the efficiency of the converter, rec-
tifier and inverter, respectively. PLoad(t) is the load demand, and gBA
is the charge efficiency of the battery bank.

When the total output power of PV panels and wind turbines is
less than the load demand, the battery bank is in discharging state.
In this paper, the discharge efficiency of battery bank is assumed to
be 1. Therefore, the charge quantity of the battery bank at time t
can be obtained by:

PBAðtÞ ¼ PBAðt� 1Þ � ð1�rÞ

� PLoadðtÞ
gINV

� NPV � PPV ðtÞ�gCON þNWT � PWTðtÞ �gRECð Þ
� ��

gBA

ð4Þ
In this paper, temperature effects on the battery bank are

ignored

2.4. Objective function

The objective function of the optimal sizing problem is the
minimization of the total present cost (TPC) of the system. TPC
is sum of the investment cost (INVESTC), maintenance cost
(MAINC) and replacement cost (REPLACEC) throughout the useful
life of the system, which are translated to the initial moment of
the investment. The optimization is carried out to continuously
satisfy the load demand considering the reliability index of energy
not supplied (ENS). The problem is mathematically formulated as
follows:

Minimize TPC ¼ INVESTC þMAINC þ REPLACEC ð5Þ
The investment cost which includes the costs of the wind tur-

bine, photovoltaic panel, battery bank, rectifier, charge regulator,
inverter and converter is obtained by Eq. (6).

INVESTC ¼ CPV � NPVð Þ þ CWT � NWTð Þ þ CBA � NBAð Þ
þ ðCREC � NRECÞ þ CREG � NREGð Þ þ CINV � NINVð Þ
þ CCON � NCONð Þ ð6Þ

where CPV is unit cost of PV panel, CWT is unit cost of wind turbine,
CBA is unit cost of battery bank, CREC is unit cost of rectifier, CREG is
unit cost of charge regulator, CINV is unit cost of inverter and CCON
is unit cost of converter. NPV is the number of PV panel, NWT is the
number of wind turbine, NBA is the number of battery bank, NREC

is the number of rectifier, NREG is the number of charge regulator,
NINV is the number of inverter and NCON is the number of converter.

The maintenance cost of the system components is obtained by
Eq. (7).

MAINC ¼ CPV CPV ;M � NPV þ CWT;M � NWT þ CBA;M � NBAð Þ ð7Þ
where CPV,M, CWT,M and CBA,M are the annual maintenance costs of PV
panel, wind turbine and battery, respectively. The maintenance
costs of rectifier, charge regulator, inverter and converter are
neglected. CPV( ) is the cumulative present value which translates
all the costs throughout the useful life of the system to the initial
moment of the investment and is obtained by Eq. (8).

CPVðf Þ ¼ f
XT
t¼1

1þ InfR
1þ IntR

� �t

ð8Þ
In this equation, IntR is the interest rate, InfR is the inflation rate
and T is the economic life cycle of the hybrid system.

The replacement cost of the system components regarding to
their lifetime can be obtained as follow:

REPLACEC ¼ CPVðCBA � NBA þ CREC � NREC þ CREG � NREG þ CINV

� NINV þ CCON � NCONÞ ð9Þ
Since that the lifetime of the PV panel and wind turbine is equal

to the useful life of the system, the replacement cost is not consid-
ered for them.

2.5. Constraints

The constraints considered in this study are as follows:

– The minimum and maximum number of the hybrid system
components.

Ni-min < Ni < Ni-max ð10Þ
where Ni is the number of component i, Ni-min and Ni-max are the
minimum and maximum number of the component i, respectively.
– Energy not supplied amount during the year
In the hybrid power system, for having a reliable system the

concept of the energy not supplied should be considered.

ENSð%Þ 6 ENSmaxð%Þ ð11Þ
ENSmax(%) is the allowable percentage of energy not supplied

during the year and ENS(%) is the percentage of energy not sup-
plied during the year which is obtained by Eq. (12).

ENSð%Þ ¼ ENSP8760
t¼1 PLoadðtÞ

� 100 ð12Þ

where ENS is the energy not supplied during the year and is calcu-
lated as follows:

ENS ¼
X8760
t¼1

PLoadðtÞ � NPV � PPV ðtÞ þ NWT � PWTðtÞ þ PBAðtÞð Þ½ � ð13Þ

– The minimum and maximum charge quantity of the battery
bank

PBA-min 6 PBA 6 PBA-max ð14Þ
PBA-max is the maximum charge quantity of battery bank which

is considered equal to the nominal capacity of battery bank (SBA).
PBA-min is the minimum charge quantity of battery bank which is
obtained by maximum depth of discharge (DOD).

PBA-min ¼ ð1� DODÞ � SBA ð15Þ
3. BB–BC optimization algorithm

The BB–BC optimization algorithm was introduced by Erol and
Eksin (2006). It was inspired by one of the theories of the evolution
of universe, namely, the Big Bang–Big Crunch theory. Its key
advantages are the low computational time, easy implement and
fast convergence. The BB–BC optimization algorithm consists of
two main steps. In the first step, Big Bang phase, candidate solu-
tions are randomly distributed over the search space and in the
next step, Big Crunch phase, candidate solutions are drawn into a
single representative point via a center of mass or minimal cost
approach. Then candidate solutions are spread about the center
of mass or the individual with minimal cost to be used as the next
Big Bang. Initial population is randomly generated within the
search space similar to other evolutionary algorithms. The center
of mass is computed regarding the current positions of each
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candidate solution in the population and its associated cost func-
tion value as given in Eq. (15).

AcðkÞ
i ¼

PN
j¼1

1
f j
� Aðk;jÞ

iPN
j¼1

1
f j

i ¼ 1;2; . . . ;m; ð16Þ

where AcðkÞ
i is the ith component of the center of mass in the kth iter-

ation; Aðk;jÞ
i is the ith component of the jth candidate generated in

the kth iteration; fj is the fitness function value of candidate j; N
is the population size in Big Bang phase; and m is the number of
control variables.

The new candidates for the next iteration of the Big Bang are
normally distributed around the center of mass or best fit individ-
ual and the standard deviation of this normal distribution function
decreases as the iterations elapse:

Aðkþ1;jÞ
i ¼ AcðkÞ

i þ rja1 Aimax � Aiminð Þ
kþ 1

; i ¼ 1;2; . . . ;m; ð17Þ

where rj is a random number from a standard normal distribution
which changes for each candidate; a1 is a parameter for limiting
the size of the search space; and Aimax and Aimin are the upper and
lower limits for the ith control variable, respectively.

The successive Big Bang and Big Crunch steps continue until a
stopping criterion has been met.

4. Proposed HBB–BC algorithm

The HBB–BC algorithm uses the PSO capacities as introduced by
Kaveh and Talatahari (2009) and a mutation operator to improve
the exploration ability of the BB–BC algorithm and avoid the trap-
ping into the local optimum.

The PSO algorithm was initially proposed by Kennedy and
Eberhart (1995). It was inspired by the social behavior of bird
flocking and fish schooling. PSO consists of a swarm of particles
as candidate solutions for the optimization problem. Each particle
adjusts its trajectory toward its own best previously visited posi-
tion (local best) and the global best position of the swarm found
(global best). In HBB–BC algorithm similarly in addition to the cen-
ter of mass, the local best and the global best are also used to gen-
erate the new candidates as (Kaveh and Talatahari, 2009):

Aðkþ1;jÞ
i ¼ a2A

cðkÞ
i þ ð1� a2Þ a3A

gbestðkÞ
i þ ð1� a3ÞAlbestðk;jÞ

i

� �

þ rja1ðAimax � AiminÞ
kþ 1

i ¼ 1;2; . . . ;m
j ¼ 1;2; . . . ;N

;

	
ð18Þ

where Albestðk;jÞ
i is the best position of the jth particle up to the iter-

ation k and AgbestðkÞ
i is the global best position up to the iteration k; a2

and a3 are adjustable parameters controlling the effect of the global
best and local best on the new position of the candidates,
respectively.

A discrete solution is achieved by using Eq. (18).

Aðkþ1;jÞ
i ¼ round a2A

cðkÞ
i þ ð1� a2Þ a3A

gbestðkÞ
i þ ð1� a3ÞAlbestðk;jÞ

i

� ��

þ rja1 Aimax � Aiminð Þ
kþ 1

�
; ð19Þ

where round(X) is a function which rounds the elements of X to the
nearest integers.

Now, we use the mutation operation to prevent the HBB–BC
from trapping into the local optimum and to explore new search
areas as follow:

Aðkþ1;jÞ
i ¼ round Aimin þ randð Þ � Aimax � Aiminð Þð Þ

if randð Þ < Pm;
ð20Þ
Here, rand( ) is the uniformly generated random number within
the interval of [0, 1] and Pm is mutation probability.

5. Application of the HBB–BC algorithm for optimal sizing
problem

In the proposed algorithm, the number of PV panels, wind tur-
bines and batteries are considered as the control variables. The
HBB–BC algorithm is applied for the problem of the optimal sizing
of the hybrid power system as follows:

� Step 1: Define the input data. In this step, the input data are
defined including the costs of investment, maintenance and
replacement of hybrid system components, the data related to
the load demand, solar insolation and wind speed in the studied
area, the rated power and efficiency of system components, the
number of population, limiting parameter of the size of the
search space (a1), adjustable parameters (a2, a3), mutation
probability (Pm), and the number of iterations.

� Step 2: Generate the initial population. Initial population is ran-
domly generated within the search space.

� Step 3: Evaluate the objective function and check the problem
constraints. If the problem constraints are not satisfied, the cor-
responding objective function is penalized.

� Step 4: Calculate the center of mass AcðkÞ
i

� �
using Eq. (16) and

determine the best position of each particle Albestðk;jÞ
i

� �
and the

global best position AgbestðkÞ
i

� �
.

� Step 5: calculate new candidates according to Eq. (19). Then,
apply the mutation operation to prevent the HBB–BC from trap-
ping into the local optimum.

� Step 6: Repeat steps 3–5 until a termination criterion is satis-
fied. In this paper, the stopping criterion is considered the num-
ber of iteration. Furthermore, if the maximal iteration number is
satisfied, algorithm is terminated.

At last, the proposed algorithm is achieved the optimal number
of the hybrid system components and the total present cost of the
corresponding system.

Fig. 2 shows the flowchart of the proposed algorithm.

6. Simulation results

The proposed algorithm for optimal design of the hybrid power
system has been applied to a village in Qazvin that still lacks access
to grid electricity due to economic and geography issues. The
experimental data used here for wind speed and solar insolation
in 2011 is extracted from meteorological organization. These data
have been recorded every ten minutes and their mean for each
hour is used in this study. Figs. 3–5 show the hourly profiles of
wind speed, solar insolation and area estimated load during a year
(8760 h), respectively. The costs related to the hybrid system com-
ponents are given in Table 1. Technical specification of the wind
turbine is also presented in Table 2.

MATLAB environment is used to code and implement the algo-
rithms. To compare the performance of the proposed algorithm
with PSO (Maleki and Askarzadeh, 2014) and DHS (Askarzadeh,
2013a) algorithms, 50 independent runs are implemented and
the results are presented. The parameters of the algorithms used
in this paper to optimize the objective function are adjusted as
follows:

HBB–BC: population size (N) = 50, a1 = 1, a2 = 0.4, a3 = 0.8,
Pm = 0.01, maximum iteration = 150.



Fig. 2. Flowchart of the proposed HBB–BC algorithm.

Fig. 3. Hourly profile of wind speed during a year.
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Fig. 5. Hourly load profile during a year.

Fig. 4. Hourly profile of insolation during a year.

Table 1
The costs related to the hybrid system components.

Item PV panel Wind turbine-generator Battery bank Inverter, converter, rectifier, charge regulator

Rated power 1 (kW) 1 (kW) 1 (kW h) 1 (kW)
Useful lifetime (year) 20 20 5 10
Investment cost ($) 2000 3200 100 700
Maintenance cost ($/year) 33 100 5 0

Table 3
The results of optimal sizing problem obtained by HBB–BC algorithm.

Hybrid systems ENSmax(%) ENS(%) NPV NWT NBA Total present
cost ($)

PV/battery 2 1.995 330 0 555 2,185,948

372 S. Ahmadi, S. Abdi / Solar Energy 134 (2016) 366–374
PSO: N = 50, c1 = 2, c2 = 2, b = 0.99, w0 = 1, maximum
iteration = 150.
DHS: N = 50, HMCR = 0.95, PARmax = 0.7, PARmin = 0.1, bwmax = 1,
bwmin = 0.01, maximum iteration = 150.

which are determined by a trial-and-error method by using com-
puter simulations. In this study, the minimum and maximum
bounds of the control variables are set to 0 and 400 for the PV pan-
els and wind turbines and set to 0 and 900 for the battery banks.

To perform the simulation, different cases are considered as
follow:

– Hybrid system consists of PV panel and battery bank.
– Hybrid system consists of wind turbine and battery bank.
– Hybrid system consists of PV panel, wind turbine and battery
bank.
Table 2
Technical specification of the wind turbine.

Rated power (kW) 1
Cut-in speed (m/s) 2.5
Rated speed (m/s) 11
Cut-out speed (m/s) 13
In each case study, the simulation is performed for three
different values of ENSmax(%) (2%, 5% and 10%). Table 3 indicates
the results of optimal sizing problem which obtained by HBB–BC
algorithm. The number of PV panels, wind turbines and battery
banks, total present cost of the system and ENS(%) are presented
in the table. As can be seen, the hybrid PV/wind/battery system
is the most cost-effective hybrid system for different ENSmax(%).
Also the hybrid PV/battery system has lower cost than hybrid
wind/battery system.
5 4.999 237 0 515 1,778,456
10 9.998 185 0 440 1,466,196

Wind/battery 2 1.9998 0 363 843 3,560,149
5 4.999 0 277 529 2,551,783

10 9.997 0 210 343 1,860,223

PV/wind/battery 2 1.9997 186 57 434 1,794,824
5 4.998 141 56 338 1,468,857

10 9.998 106 57 222 1,159,472



Table 4
Comparison of the results obtained by the algorithms for ENSmax(%) = 2%.

Hybrid system Algorithm Mean Std. Best Worst

NPV NWT NBA TPC ($) NPV NWT NBA TPC ($)

PV/battery HBB–BC 2,185,948 0 330 0 555 2,185,948 330 0 555 2,185,948
PSO 2,185,962 89 330 0 555 2,185,948 328 0 560 2,186,584
DHS 2,193,509 10,852 330 0 555 2,185,948 308 0 627 2,220,202

Wind/battery HBB–BC 3,560,150 0 0 363 843 3,560,150 0 363 843 3,560,150
PSO 3,560,150 0 0 363 843 3,560,150 0 363 843 3,560,150
DHS 3,563,805 3697 0 363 843 3,560,150 0 385 773 3,577,012

PV/wind/battery HBB–BC 1,794,835 40 186 57 434 1,794,824 180 63 426 1,795,060
PSO 1,794,867 76 186 57 434 1,794,824 180 63 426 1,795,060
DHS 1,805,291 10,322 186 57 434 1,794,824 215 35 479 1,844,931

Table 5
Comparison of the results obtained by the algorithms for ENSmax(%) = 5%.

Hybrid system Algorithm Mean Std. Best Worst

NPV NWT NBA TPC ($) NPV NWT NBA TPC ($)

PV/battery HBB–BC 1,778,456 0 237 0 515 1,778,456 237 0 515 1,778,456
PSO 1,778,470 65 237 0 515 1,778,456 241 0 506 1,778,790
DHS 1,786,320 9550 237 0 515 1,778,456 221 0 577 1,818,823

Wind/battery HBB–BC 2,551,784 0 0 277 529 2,551,784 0 277 529 2,551,784
PSO 2,551,805 139 0 277 529 2,551,784 0 284 504 2,552,775
DHS 2,560,275 11,363 0 277 529 2,551,784 0 311 438 2,605,399

PV/wind/Battery HBB–BC 1,468,926 231 141 56 338 1,468,858 146 53 338 1,469,708
PSO 1,468,944 261 141 56 338 1,468,858 145 52 344 1,469,770
DHS 1,478,610 11,017 142 56 336 1,469,342 114 94 294 1,521,650

Table 6
Comparison of the results obtained by the algorithms for ENSmax(%) = 10%.

Hybrid system Algorithm Mean Std. Best Worst

NPV NWT NBA TPC ($) NPV NWT NBA TPC ($)

PV/battery HBB–BC 1,466,197 0 185 0 440 1,466,197 185 0 440 1,466,197
PSO 1,466,197 0 185 0 440 1,466,197 185 0 440 1,466,197
DHS 1,470,118 5229 185 0 440 1,466,197 175 0 482 1,496,638

Wind/battery HBB–BC 1,860,224 0 0 210 343 1,860,224 0 210 343 1,860,224
PSO 1,860,225 7 0 210 343 1,860,224 0 207 354 1,860,257
DHS 1,877,672 23,988 0 210 343 1,860,224 0 177 532 1,969,650

PV/wind/battery HBB–BC 1,159,481 25 106 57 222 1,159,472 103 63 207 1,159,556
PSO 1,159,485 26 106 57 222 1,159,472 103 63 207 1,159,556
DHS 1,166,839 11,403 106 57 222 1,159,472 68 95 212 1,226,184
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Simulation results also show that reduction of ENSmax(%) and
reliability improvement leads to increase the system costs. For
the hybrid PV/wind/battery system and ENSmax(%) = 2%, total pre-
sent cost is obtained 1,794,824$ which is more than TPC for
ENSmax(%) = 5% (1,468,857$) and ENSmax(%) = 10% (1,159,500$).

Simulation results for optimal sizing problem obtained by HBB–
BC, PSO and DHS algorithms are presented in Tables 4–6. In these
tables, the mean (Mean), standard deviation (Std.), worst (Worst)
and best (Best) indexes of each algorithm for each case are given.
The indexes have been reported over 50 runs.

With comparison of the different indexes, it can be concluded
that HBB–BC algorithm yields better result than the other algo-
rithms in all cases. Also PSO algorithm is better than DHS algo-
rithm. The small values of HBB–BC’s Std. denote the robustness
of this algorithm. Std. index for DHS algorithm has high values
and this algorithm cannot find the best solution in most trials.

For example, for the hybrid wind/battery system and ENSmax(%)
= 5%, the mean and standard deviation values of TPC obtained by
HBB–BC over 50 runs are 2,551,784 ($) and zero, respectively.
Therefore HBB–BC in all trials can find the best solution. These val-
ues are obtained 2,551,805 ($) and 139 by PSO and 2,560,275 ($)
and 11,363 by DHS. According to these results, PSO cannot find
the best solution in some trials and DHS does not yield the accept-
able result.

Fig. 6 shows the generated power, the load demand and the
charge quantity of the battery bank for hybrid system consists of
PV panel, wind turbine and battery bank with ENSmax(%) = 2%. As
can be seen, during the hours that the load demand is greater than
generated power, the battery bank supplies the load demand and is
in discharging state and during the hours that the load demand is
less than the generated power, the battery bank is in charging
state.

Fig. 7 illustrates the convergence characteristic of HBB–BC algo-
rithm for the hybrid PV/wind/battery system and ENSmax(%) = 2%. It
is observed that the proposed algorithm quickly finds the optimum
sizing of the hybrid systems.

7. Conclusion

This paper evaluates the performance of HBB–BC optimization
for optimal sizing of hybrid PV/wind/battery system to minimize
the total present cost (TPC) of the system. TPC includes all the costs



Fig. 6. Sample of hourly performance of hybrid PV/wind/battery system for ENSmax(%) = 2%.

Fig. 7. Convergence characteristic of HBB–BC for the hybrid PV/wind/battery
system and ENSmax(%) = 2%.
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throughout the useful life of the system, which are translated to
the initial moment of the investment. To have a reliable system,
the reliability index of energy not supplied is also considered. In
HBB–BC algorithm PSO capacities and mutation operation are used
to improve the exploration ability of the BB–BC algorithm and
avoid local optimum. This study is applied to a village in Qazvin
that still lacks access to grid electricity due to economic and geog-
raphy issues. The HBB–BC algorithm is compared with PSO and
DHS algorithms. The results indicate the better performance of
the proposed algorithm than two other algorithms. Also can be
concluded, the hybrid PV/wind/battery system is the most cost-
effective hybrid system for different ENSmax(%) (2%, 5% and 10%).
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