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Abstract

In this paper, a multi-objective particle swarm optimization algorithm is used to obtain the Pareto frontiers of the

different commensurable and conflicting objective functions for fuzzy controller design. Also, the Lorenz dominance

method is used to illustrate the equitable solutions. The nonlinear benchmarks are the inverted pendulum and ball-beam

systems. The objective functions for the inverted pendulum system are the normalized angle error of the pendulum and

the normalized distance error of the cart; and for the ball-beam system they are the distance error of the ball and the

angle error of the beam, which must be minimized simultaneously. The comparison of the obtained results with those in

the literature demonstrates the superiority of the results of this work.

Keywords

Particle swarm optimization, fuzzy controller, nonlinear systems, pareto front, Lorenz dominance, equitable solution

1. Introduction

The development of fuzzy controllers for various engin-
eering problems has been a major research activity in
recent years (for example, the studies by Harb and
Smadi, 2004; Chen, 2011; Bui et al., 2012; Li et al.,
2012; and Yeh et al., 2012). In this way, the heuristic
parameters of fuzzy controllers have to be determined
via an appropriate approach. A very effective way to
choose these factors is the use of evolutionary algo-
rithms, such as, for example, the genetic algorithm
(GA) and particle swarm optimization (PSO). Belarbi
et al. (2005) applied the genetic algorithm to optimum
design of Mamdani fuzzy logic controllers. Pourzeynali
et al. (2007) implemented the genetic algorithm and
fuzzy logic for active control of high rise building struc-
tures. Shayeghi et al. (2008) proposed a multi-stage
fuzzy controller for solution of the load frequency con-
trol which operated under deregulation – the member-
ship functions were also designed automatically by
PSO. Larbes et al. (2009) used an optimized fuzzy
logic controller to achieve the maximum power point
tracking in a photovoltaic system. Marinaki et al.
(2010) optimized the fuzzy controller by PSO for vibra-
tion suppression of beams. Bingul and Karahan (2011)

controlled a two-degrees-of-freedom planer robot by
fuzzy logic controller, and PSO was utilized to tune
fuzzy parameters. Pan et al. (2011) tuned an opti-
mal fuzzy proportional-integral-derivative controller
using GA and two variants of PSO.

PSO was developed via simulation of simplified
social systems (Kennedy and Eberhart, 1995) and its
robustness has been shown in solving complex opti-
mization problems (Angeline, 1998). This technique
can generate high quality solutions with short calcula-
tion time and more stable convergence characteristics
compared with other evolutionary algorithms (Yoshida
et al., 2000). In recent years, researchers have proposed
several improved variants of PSO (such as those by
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Janson and Middendorf, 2005; Krohling and Coelho,
2006; Chen and Li, 2007; Chen et al., 2007; Cui et al.,
2008; Lu et al., 2010; Wu et al., 2011; and Zhang et al.,
2013). Furthermore, numerous methods have been pro-
posed to develop the PSO algorithm for solving multi-
objective optimization problems (such as those in
Fieldsend and Singh, 2002; Mostaghim and Teich,
2003; Coello and Lechuga, 2004; Heo et al., 2006;
Tripathi et al., 2007; Liu et al., 2008; Wang and
Yang, 2009; Yen and Leong, 2009; Tsai et al., 2010;
Goh et al., 2010; Hernandez-Diaz et al., 2011; Omkar
et al., 2012; Urade and Patel, 2012; and Garg and
Sharma, 2013). In particular, Mahmoodabadi et al.
(2011) and (2012), to increase the ability of the algo-
rithm to find the global minimum and to escape the
local minima, combined PSO with novel convergence
and divergence operators, and this approach was
named CDPSO. In these references, several test func-
tions were used to challenge the capability of the pro-
posed method to solve both single- and multi-objective
problems. The results show this algorithm performs
very well on the complex benchmarks in terms of solu-
tion accuracy and convergence speed. Therefore, in this
paper, the periodic multi-objective CDPSO algorithm is
employed for the optimum design of the fuzzy control-
lers for nonlinear systems. Furthermore, to identify the
equitable solutions of the Pareto front, the Lorenz
dominance is used (Kostreva et al., 2004).

2. Pareto and Lorenz dominance

In most real-world problems, optimization of more
than one objective function is required. In such prob-
lems the objectives are often in conflict with each other,
which means that there is no unique solution for the
problem. In other words, there are some optimal solu-
tions for a multi-objective problem that are non-
dominated relative to each other, and the designer’s
task in such situations is to select the best solution
according to the requirement. The standard form of a
multi-objective optimization problem can be described
as follows:

Minimize : y
!

¼ fð x
!
Þ ¼ ð f1ðx

!
Þ, . . . , fmðx

!
ÞÞ

where : x
!
¼ ðx1, . . . , xnÞ 2 X,

y
!

¼ ð y1, . . . , ynÞ 2 Y,

giðx
!
Þ ¼ 0, i ¼ 1, 2, . . . , p

hj ðx
!
Þ � 0, j ¼ 1, 2, . . . , , q

ð1Þ

where x
!

is the design (decision) vector, X is the space
of the design variables, y

!

is the objective vector and Y
the space of the objective functions. Subject to p

equality constraints giðx
!
Þ ¼ 0, i ¼ 1, 2, . . . , p and q

inequality constraints hj ðx
!
Þ � 0, j ¼ 1, 2, . . . , q.

As mentioned above, the multi-objective problems
do not have a unique optimal solution, but a set of
optimal solutions named non-dominated solutions. To
describe the concept of optimality, some definitions are
given below.

To make it operational, an assumed solution concept
specifying what it means to minimize multiple objective
functions is required. The solution concepts are defined
by the properties of the corresponding preference
model. The preference model is completely described
by the relation of weak preference (Lopez-de-los-
Mosoz and Mesa, 2001). Let the relation of weak pref-
erence be denoted by �. The corresponding relations of
strict preference � and indifference ffi are defined as
follows.

y0
!

� y00
!

, ðy0
!

� y00
!

and not y00
!

� y0
!

Þ ð2Þ

y0
!

ffi y00
!

, ðy0
!

� y00
!

and y00
!

� y0
!

Þ ð3Þ

Furthermore, the preference model related to the
standard Pareto-optimal solution concept assumes
that the preference relation is

. Reflexive, y
!

� y
!

,

. Transitive, ðy0
!

� y00
!

and y00
!

� y000
!

Þ ) y0
!

� y000
!

,

. Strictly monotonic, y
!

�" e
!

i
� y
!

,

where ei denotes the i-th unit vector in the criterion
space. The last assumption states that for each individ-
ual objective function less is better (minimization).

The most common multi-objective optimization

solution concept is Pareto-optimality. Let x0
!

and x00
!

be two solutions. The solution x0
!

is weakly preferred

over x00
!

, if f ðx0
!

Þ weakly Pareto dominates f ðx00
!

Þ:

f ðx0
!

Þ�P f ðx
00
!

Þ , fiðx
0
!

Þ � fiðx
00
!

Þ, 8i 2 1, . . . ,mf g: The

solution x0
!

is preferred over x00
!

, if f ðx0
!

Þ Pareto domin-

ates f ðx00
!

Þ that means f ðx0
!

Þ �P f ðx00
!

Þ , f ðx0
!

Þ�P f ðx00
!

Þ

and 9 j : fj ðx
0
!

Þ5 fj ðx
00
!

Þ:

The equitable (Lorenz) preference is an enhancement
concept of the Pareto preference and assumes that the
preference relation is reflexive, transitive, strictly mono-
tonic, impartial, and it holds the principle of transfers.

. Impartiality: while dealing with uniform criteria, we
want to focus on the distribution of outcome values
while ignoring their ordering. Impartiality makes the
distribution of values among the criteria more
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important than the assignment of values to specific cri-
teria, and therefore models equity among the criteria.

ð f�ð1Þðx
!
Þ, f�ð2Þðx

!
Þ, . . . , f�ðmÞðx

!
ÞÞ

ffi ð f1ðx
!
Þ, f2ðx

!
Þ, . . . , fmðx

!
ÞÞ,

for any permutation � of f1,2, . . . ,mg, x
!
2X:

. Holding the principle of transfers: a transfer of any
small amount from an outcome to any other rela-
tively worse-off outcome results in a more preferred
outcome vector.

fiðx
!
Þ4 fj ðx

!
Þ ) f1ðx

!
Þ, . . . , fiðx

!
Þ � ", . . . , fj ðx

!
Þ

��
þ ", . . . , fmðx

!
Þ

�
� ð f1ðx

!
Þ, . . . , fmðx

!
Þ

�
for 05 "5 fiðx

!
Þ � fj ðx

!
Þ:

Let us consider fð1Þðx
!
Þ � fð2Þðx

!
Þ � . . . � fðmÞðx

!
Þ as

the components of f ¼ ð fð1Þðx
!
Þ, fð2Þðx

!
Þ, . . . , fðmÞðx

!
ÞÞ

sorted by decreasing order. Let x
!
2 X be a solution

vector. The generalized Lorenz vector associated with
x
!

is Lðx
!
Þ ¼ ðl1, . . . , lj, . . . , lmÞ, where lj ¼

Pj
i¼1 fð j Þðx

!
Þ:

Let x0
!

, x00
!

2 X be two solutions. The solution x0
!

weakly Lorenz dominates the solution x00
!

if:

x0
!

�L x00
!

, Lðx0
!

Þ�P Lðx00
!

Þ: The solution x0
!

Lorenz

dominates x00
!

if: x0
!

�L x00
!

, Lðx0
!

Þ �P Lðx00
!

Þ:

If a solution x
!
2 X is a Lorenz-optimal solution (or

simply a Lorenz solution) of a multiple criteria prob-
lem, it is also a Pareto-optimal solution.

3. CDPSO algorithm

Mahmoodabadi et al. (2011, 2012) proposed the multi-
objective CDPSO algorithm to solve single- and multi-
objective problems and demonstrated its success in
finding the global optimum of engineering problems
in practice. This algorithm is a combination of PSO
and two new operators, namely, convergence and diver-
gence operators. In fact, first, a random number
� 2 ½0, 1� would be allocated for each particle. If a par-
ticle has �5CP (CP is the convergence probability)
then a new particle will be produced by the convergence
operator. For each of the particles that are not chosen
for the convergence operation, another random number
# 2 ½0, 1� would be allocated. If a particle has #5DP
(DP is the divergence probability), then the divergence
operator would generate a new particle. Other particles
that are not selected for convergence and divergence
operations will be enhanced by the PSO method. This
cycle should be repeated until the user-defined stopping

criterion is satisfied (Mahmoodabadi et al., 2011, 2012).
In the following subsections, a brief review of the PSO,
convergence and divergence operators is presented.

3.1. Particle swarm optimization

PSO is one of the recent meta-heuristic optimization
algorithms originally introduced by Kennedy and
Eberhart (1995) based on the natural flocking and
swarming behavior of birds and fish. In essence, the
trajectory of each particle is updated according to its
own moving experience as well as to that of the best
particle in the swarm. In the standard PSO, the move-
ment of the particles is calculated by two equations:

xi
!
ðtþ 1Þ ¼ xi

!
ðtÞ þ vi

!
ðtþ 1Þ ð4Þ

vi
!
ðtþ 1Þ ¼Wvi

!
ðtÞ þ C1r1ðx

!

pbesti � xi
!
ðtÞÞ

þ C2r2ðx
!

gbest � xi
!
ðtÞÞ ð5Þ

where xi
!
ðtÞ and vi

!
ðtÞ denotes the position and velocity

of particle i at iteration t respectively. C1 is the cogni-
tive learning factor and represents the attraction that a
particle has toward its own success. C2 is the social
learning factor and represents the attraction that a par-
ticle has toward the success of the entire swarm. W is
the inertia weight that is employed to control the
impact of the previous history of velocities on the cur-
rent velocity of a given particle. x

!

pbesti is the personal
best position of the particle i. x

!

gbest is the global best
position. r1, r2 2 ½0, 1� are random values.

3.2. Convergence operator

The convergence mechanism proposed by
Mahmoodabadi et al. (2011, 2012) increases the
ability of the PSO algorithm to find the global min-
imum. Assume � 2 ½0, 1� to be a random number. If
�5CP (in this work, CP ¼ 0:1) then the particle xi

!
ðtÞ

moves toward the new particle position xi
!
ðtþ 1Þ as

follows:
If fitness xi

!
ðtÞ is smaller than fitness xj

!
ðtÞ and fitness

xk
!
ðtÞ then:

xi
!

tþ 1ð Þ ¼ x
!

gbest þ �1
x
!

gbest

xi
!

tð Þ

 !
2 xi
!

tð Þ � xj
!

tð Þ � xk
!

tð Þ
� �

ð6Þ

If fitness xj
!
ðtÞ is smaller than fitness xi

!
ðtÞ and fitness

xk
!
ðtÞ then:

xi
!

tþ 1ð Þ ¼ x
!

gbest þ �1
x
!

gbest

xi
!

tð Þ

 !
2 xj
!

tð Þ � xi
!

tð Þ � xk
!

tð Þ
� �

ð7Þ
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If fitness xk
!
ðtÞ is smaller than fitness xj

!
ðtÞ and fitness

xi
!
ðtÞ then:

xi
!

tþ 1ð Þ ¼ x
!

gbest þ �1
x
!

gbest

xi
!

tð Þ

 !
2 xk
!

tð Þ � xj
!

tð Þ � xi
!

tð Þ
� �

ð8Þ

where particles xj
!
ðtÞ and xk

!
ðtÞ are selected from the

swarm, randomly. �1, �2, and �3 are random numbers
selected from ½0, 1� and x

!

gbest is the best particle pos-
ition of the entire swarm. After calculation of equations
(3), (4), and (5), the superior between xi

!
ðtÞ and xi

!
ðtþ 1Þ

should be selected (Mahmoodabadi et al., 2011, 2012).

3.3. Divergence operator

In order to prevent falling in to the local minimum
points, the divergence mechanism was introduced by
Mahmoodabadi et al. (2011, 2012). Suppose # 2 ½0, 1�
to be a random number. If #5DP, (here, DP ¼ 0:1)
and particle xi

!
ðtÞ was not enhanced by convergence

operator then the following divergence operator is
used to generate the new particle xi

!
ðtþ 1Þ.

xi
!
ðtþ 1Þ ¼ Normrand ðxi

!
ðtÞ, SDÞ ð9Þ

Normrand ðxi
!
ðtÞ,SDÞ generates random numbers

from the normal distribution with mean xi
!
ðtÞ and stand-

ard deviation SD. SD is a positive constant and in this
work SD ¼ xmaximum�xminimum

2 . xmaximum and xminimum are the
upper and lower bounds of the search range
(Mahmoodabadi et al., 2011, 2012).

4. Periodic multi-objective CDPSO
algorithm

The multi-objective optimization problem is defined as
the simultaneous optimization of two or more objective
functions. In most real world engineering problems,
these objectives conflict, and hence, there is no single
solution for these problems. Instead, they have a set of
optimal solutions commonly referred to as the Pareto
optimal set.

Mahmoodabadi et al. (2011, 2012) modified the PSO
strategy for solving the multi-objective optimization
problems and named their approach periodic multi-
objective CDPSO. In the following text, a brief review
of the global best selection, inertia weight and learning
factors’ calculation, and adaptive elimination technique
is presented.

4.1. Selection of the global best position

To determine the global best position (x
!

gbest) of each
particle, Mahmoodabadi et al. (2011, 2012) proposed a

selection technique based on density measures in the
Pareto front set. In this technique, a neighborhood
radius Rneighborhood is labeled for all non-dominated solu-
tions. Two members of the Pareto front set are neigh-
bors if the Euclidean distance between them is less than
Rneighborhood. Using this definition, the particle with
fewer neighbors would be assigned as the global best
position. Also, the maximum iteration is divided into
several equal periods and in each period this operation
would be performed. Moreover, for each particle, a
member of the Pareto front set would be assigned to
x
!

pbesti by the uniform random method (Mahmoodabadi
et al., 2011, 2012).

4.2. Inertia weight and learning factors

Linear formulations for inertia weight and learning fac-
tors for multi-objective optimization were proposed by
Heo et al. (2006). Furthermore, the method described
for the global best position enables us to compute the
inertia weight and learning factors in each period as
independent of other periods. Therefore, the following
equations were suggested to calculate the inertia weight
and learning factors in each period (Mahmoodabadi
et al., 2011, 2012):

W ¼W1 � W1 �W2ð Þ �
t

T
� fix

t� 1

T

� �� �
ð10Þ

C1 ¼ C1i � C1i � C1f

� �
�

t

T
� fix

t� 1

T

� �� �
ð11Þ

C2 ¼ C2i � C2i � C2f

� �
�

t

T
� fix

t� 1

T

� �� �
ð12Þ

W1 and W2 are the initial and final values of the inertia
weight in each period, respectively. C1i, C1f, C2i and C2f

are the boundary values of the cognitive and social
learning factors in each period, respectively. t is the
current iteration number and T is the number of iter-
ations in a period. fixðt�1T Þ is a function that rounds ðt�1T Þ
to the nearest integer in the direction of zero. Figures 1
to 3 illustrate the behavior of the inertia weight and
learning factors based on proposed formulations.
In these figures, 0:4 �W � 0:83, 0:5 � C1 � 2:2,
0:79 � C2 � 2:5, the maximum iteration is 150, and
the number of iterations in a period is T ¼ 7.

4.3. Control of the archive size

An adaptive elimination technique was employed in the
periodic multi-objective CDPSO to delete the crowded
members and to create a uniform distribution among
the members of the archive (Mahmoodabadi et al.,
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2011, 2012). In this approach, all non-dominated solu-
tions have an elimination radius equal to "elimination, and
if the Euclidean distance between two particles in the
archive is less than "elimination, then one of them will be
neglected. Moreover, the following equation was

established to compute the value of "elimination:

"elimination ¼
t

� �maximum iteration
ð13Þ

Figure 1. Behavior of the inertia weight in the periodic multi-objective CDPSO algorithm.

Figure 2. Behavior of the cognitive learning factor in the periodic multi-objective CDPSO algorithm.
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where � is a positive constant, t and maximum iteration
are the current and maximum number of iteration,
respectively.

5. Fuzzy controller

Zadeh (1968) originally proposed fuzzy logic and fuzzy
set theory in the 1970s, and these have also received
considerable attention among researchers as a new
topic. Fuzzy systems are knowledge-based or rule-
based systems formed via human knowledge and heur-
istics. They have been applied to a wide range of
research fields such as control, communication, medi-
cine, management, business, psychology, etc. The most
significant applications and studies about fuzzy systems
have concentrated on control areas (such as those in
Kim and Bien, 2000; Koo, 2001; Samanta and Al-
Araimi, 2001; Bezine et al., 2002; Kuo and Lin, 2002;
Xu and Xu, 2003; Sakhare et al., 2004; Li et al., 2005;
Labiod et al., 2005; Hay et al., 2005; Ghasem, 2006;
Lygouras et al., 2007; Castillo et al., 2008; Saad and
Zellouma, 2009; Jamaludin et al., 2009; Tzafestas et al.,
2010; Liu et al., 2010; Wang et al., 2011; Ishaque et al.,
2011; Cazarez-Castro et al., 2012; Nagi et al., 2013). In
particular, Yubazaki et al. (1996) proposed a single
input rule modules (SIRMs) dynamically connected
fuzzy inference model for plural input fuzzy control.
After that, they successfully employed the proposed
technique to control the inverted pendulum (Yi and
Yubazaki, 2000; Yi et al., 2001a), ball and beam (Yi

et al., 2001b), series-type double inverted pendulum (Yi
et al., 2001c), parallel-type double inverted pendulum
(Yi et al., 2002), etc. This controller takes the system
states as input data, and the driving force as the output
item. In essence, for each input, a SIRM and a dynamic
importance degree are made. The dynamic importance
degree contains a base value and a dynamic value. The
base value identifies the role of the related input
through a control process, and the dynamic value
changes with control situations to regulate the dynamic
importance degree. Furthermore, to tune the control
parameters automatically, the random optimization
search method was used. In the following subsections,
the single input rule modules and the dynamic import-
ance degree are briefly described.

5.1. Single input rule modules (SIRMs)

Consider a system with n inputs and one output.
Because there are n input items, n SIRMs would be
created as the following:

SIRMi : fRj
i : if xi ¼ Aj

i then ui ¼ Cj
ig
mi

j¼1g ð14Þ

Each SIRM relates separately to one of the n inputs.
Hence, SIRMi means the SIRM referred to the ith
input item, and Rj

i is the jth rule in the SIRMi. xi
shows the ith input item and is the variable in the ante-
cedent part. ui is the variable in the consequent part of
the SIRMi. A

j
i and Cj

i are the membership functions of

Figure 3. Behavior of the social learning factor in the periodic multi-objective CDPSO algorithm.
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the xi and ui in the jth rule of the SIRMi, respectively.
Further, i ¼ 1, 2, . . . , n is the index number of the
SIRMs, and j ¼ 1, 2, . . . ,m is the index number of the
rules in the SIRMi. Here, the rules and membership
functions of the SIRMs for the inverted pendulum
and ball-beam system are according to Yi and
Yubazaki (2000) and Yi et al. (2001b), respectively.

5.2. Dynamic importance degree

To implement the different role of each input in the
controller effort, a dynamic importance degree pDi inde-
pendently defines for each input item xiði ¼ 1, 2, . . . , nÞ
as follows:

pDi ¼ p0i þQi�p0i ð15Þ

where p0i is the base value, �p0i is the dynamic variable,
and Qi is the breadth for input ith (i ¼ 1, 2, . . . , n). The
dynamic variable �p0i would be calculated via fuzzy
rules. The base value p0i and the breadth Qi are control
parameters and could be obtained by trial and error. In
this paper, the dynamic variable �p0i of the inputs
xiði ¼ 1, 2, . . . , nÞ for the inverted pendulum and ball-
beam systems are completely similar to Yi and
Yubazaki (2000) and Yi et al. (2001b), respectively.

When the dynamic importance degrees and the vari-
ables in the consequent part of the SIRMi are deter-
mined, the driving force F could be obtained by
equation (16).

F ¼ OSF� u ¼ OSF�
Xn
i¼1

pDi u
0
i ð16Þ

where OSF is the output scaling factor, u is the output
item of the SIRMs dynamically connected fuzzy infer-
ence model, and pDi is the dynamic importance degree.
u0i is the fuzzy inference result of the consequent vari-
able ui. u

0
i can be calculated via the min-max-gravity or

product-sum-gravity or simplified inference methods.
In this paper, the base value p0i and the breadth Qi

would be determined using the periodic multi-objective
CDPSO algorithm.

6. Pareto design of sirms dynamically
connected fuzzy controller

In this section, the Pareto design of the SIRMs dynam-
ically connected fuzzy controllers using the periodic
multi-objective algorithm and the multi-objective gen-
etic algorithm (http://www.mathworks.com) is per-
formed for inverted pendulum and ball-beam systems.
The errors of the system states are considered as the
objective functions. These objective functions have to
be minimized simultaneously. The parameters of the
multi-objective CDPSO algorithm are adjusted based

on the experimental results in Mahmoodabadi et al.
(2011, 2012) as the following. W1 ¼ 0:9, W2 ¼ 0:4,
C1i ¼ 2:5, C1f ¼ 0:5, C2i ¼ 0:5, C2f ¼ 2:5, the popula-
tion size 100, the maximum iteration 1000, and the
number of iterations in a period T ¼ 7 are used.
Furthermore, the positive constant to prune the archive
is � ¼ 300 and the neighborhood radius for the leader
selection is Rneighborhood ¼ 0:01. The parameter configur-
ations of the multi-objective genetic algorithm
(MOGA) are: the population size is 100, the maximum
generation is 1000, the pruning of the archive is based
on distance crowding, the crossover method is scattered
and the mutation approach is constraint dependent.

6.1. Inverted pendulum system

The inverted pendulum system is a complicated non-
linear and unstable system of high order. The mechan-
ical structure of the inverted pendulum is illustrated in
Figure 4. The system observable state vector is
x ¼ ½x, _x, �, _�� ¼ ½x1, x2, x3, x4� and includes the cart
position, the cart velocity, the pendulum angle and
the pendulum angular velocity, respectively. The math-
ematical model of the system is given by:

_x1 ¼ x2

_x2 ¼
4
3 Fþmplpx

2
4 sin x3ð Þ

� 	
�mpg sin x3ð Þ cos x3ð Þ

4
3 mc þmp

� �
�mp cos2 x3ð Þ

_x3 ¼ x4

_x4 ¼
mc þmp

� �
g sin x3ð Þ � Fþmplpx

2
4 sin x3ð Þ

� 	
cos x3ð Þ

4
3 mc þmp

� �
�mp cos2 x3ð Þ

� 	
lp

ð17Þ

Figure 4. Mechanical structure of the inverted pendulum

system.

Mahmoodabadi et al. 7

 at Bobst Library, New York University on February 17, 2015jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


XML Template (2014) [24.4.2014–8:51am] [1–15]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/JVCJ/Vol00000/140066/APPFile/SG-JVCJ140066.3d (JVC) [PREPRINTER stage]

where mc is the mass of the cart, mp is the mass of the
pendulum, g is the gravity acceleration, and F is the
driving force. lp is the length from the center of the pen-
dulum to the pivot and is equal to the half length of the
pendulum. For simulation, the following specifications
are used:

mc ¼ 1 kg, mp ¼ 0:1 kg, lp ¼ 0:5m, and g ¼ 9:8 m
s2
.

The initial and desired conditions are x ¼ ½x1, x2,
x3, x4� ¼ ½2, 0, 0, 0� and x ¼ x1,x2, x3, x4½ � ¼ 0, 0, 0, 0½ �,
respectively. The vector [p01, p

0
2, p

0
3, p

0
4, Q1, Q2,Q3,Q4,

OSF� is the vector of design variables of SIRMs dynam-
ically connected fuzzy controllers. p0i (i ¼ 1, 2, 3, 4), Qi

(i ¼ 1, 2, 3, 4), and OSF are the base values, the
breadths, and the output scaling factor, respectively.
The normalized angle error of the pendulum and the
normalized distance error of the cart are considered as
the objective functions that have to be minimized, sim-
ultaneously. The feasibility and efficiency of multi-
objective CDPSO is assessed in comparison with
MOGA and the suggested point by Yi and Yubazaki
(2000) (Figure 5). This figure shows that the obtained
solutions by periodic CDPSO have better convergence
and more uniform distribution in comparison with
MOGA results. Furthermore, it can be clearly seen
that the suggested point by Yi and Yubazaki (2000) is
dominated by some points of the Pareto front. It dem-
onstrates the effectiveness of this work to obtain the

optimum points (compare objective functions of
points B and D in Table 1).

In Figure 5, points A and C show the best normal-
ized distance error of the cart and the normalized angle
error of the pendulum, respectively. The green color
points are the equitable solutions of the proposed

Figure 5. Optimum design points of the fuzzy controller for the inverted pendulum system.

Table 1. The objective functions and design variables of the

optimum points shown in Figure 5.

Optimum design points A B C D

p0
1 5.807 7.202 12.358 2.00

p0
2 4.749 3.516 1.975 1.50

p0
3 0.4943 0.1899 0.0870 0.15

p0
4 0.6410 0.5877 0.3032 0.15

Q1 6.891 �2.671 �12.008 2.50

Q2 �9.992 �1.903 2.200 1.00

Q3 0.9680 0.9285 0.3124 0.20

Q4 0.3756 0.5241 0.3652 0.20

OSF 2.341 2.873 7.499 11

The normalized distance

error of the cart

0.3781 0.4940 0.9881 0.5031

The normalized angle error

of the pendulum

0.9845 0.7081 0.2702 0.7380

Maximum driving force (N) 2.853 2.678 2.496 3.208
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Pareto front obtained by the Lorenz dominance meth-
odology. The interesting result is that the proposed
algorithm has several points dominated to point D
(the suggested point by Yi and Yubazaki, 2000) with
less maximum driving force, such as point B (Figure 5
and Table 1). Design variables, objective functions, and
maximum driving forces related to the optimum design
points A, B, C, and D are presented in Table 1.
Moreover, the time responses of the pendulum and
cart related to these points are shown in Figures 6
and 7. It is clear from these figures that point A has
the best distance control of the cart and the worse
angular control of the pendulum, while point C has
the best angular control of the pendulum and the
worst distance control of the cart. Furthermore, point
B has the better distance control of the cart and the
angular control of the pendulum in comparison with
point D. Figure 8 shows the driving forces of the opti-
mum design points A, B, C, and D.

6.2. Ball-beam system

Here, we consider the ball-beam system depicted in
Figure 9. The state vector is the system observable
state vector x ¼ ½x, _x, �, _�� ¼ ½x1, x2, x3, x4�, including,
respectively, the ball position, the ball velocity, the

beam angle, and the beam angular velocity. In addition,
its dynamic is described as follows:

_x1 ¼ x2

_x2 ¼ B ½x1x
2
4 � g sin x3�

_x3 ¼ x4

_x4 ¼ u

ð18Þ

where M is the ball mass, g is the gravity acceleration,
J1 is the ball inertia moment, and J2 is the beam inertia
moment. The manipulated variable u is related with
torque � by:

� ¼ 2Mx1x2x4 þ gMx1 cos x3 þ ðJ1 þ J2 þMx21Þu

ð19Þ

The system parameters used for simulation are
M ¼ 0:05 kg, J1 ¼ 2� 10�6 kgm2, J2 ¼ 0:02 kgm2,
g¼ 9:81 m

s2
, and B ¼ 0:7143 . Also, the scaling factor is

regarded as OSF ¼ 1.
The vector [p01, p

0
2, p

0
3, p

0
4, Q1,Q2,Q3,Q4] is the vec-

tor of selective parameters (design variables) of
SIRMs dynamically connected fuzzy controllers.

Figure 6. Time responses of the pendulum for optimum design points shown in Figure 5.
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Figure 8. Driving forces of the optimum design points shown in Figure 5.

Figure 7. Time responses of the cart for the optimum design points shown in Figure 5.
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p0i (i ¼ 1, 2, 3, 4) and Qi(i ¼ 1, 2, 3, 4) are the base values
and the breadths, respectively. The angle error of the
beam and the distance error of the ball are functions of
this vector. This means that by selecting the design vari-
ables, we are able to change the angle and distance
errors. Obviously, this is an optimization problem
with two object functions (angle error of the beam
and distance error of the ball) and eight design vari-
ables [p01, p

0
2, p

0
3, p

0
4, Q1,Q2,Q3,Q4]. The initial and

desired values are x ¼ x1, x2, x3, x4½ � ¼ 0:5, 0, �6 , 0
� 	

and x ¼ x1,x2, x3, x4½ � ¼ 0, 0, 0, 0½ �, respectively. The
Pareto front obtained from the proposed method is
compared with the Pareto front of the multi-objective
genetic algorithm in Figure 10. It can be clearly
observed from this figure that the proposed Pareto
front achieves better and more diverse objective

functions than MOGA for the present case study,
which demonstrates the effectiveness of this work.
Moreover, the suggested point D by Yi et al. (2001b)
is drastically dominated by all points of the Pareto sets
shown in Figure 10.

In Figure 10, points C and A stand for the best angle
error of the beam and distance error of the ball, respect-
ively. It can be seen from this figure that all the
optimum design points in the Pareto front are non-
dominated and could be chosen by a designer as opti-
mum SIRMs dynamically connected fuzzy controllers.

Figure 9. Mechanical structure of the ball-beam system.

Table 2. The values of objective functions and their associated

design variables for the optimum points shown in Figure 10.

Optimum design points A B C D

p0
1 6.6219 5.8302 6.9610 4.6552

p0
2 7.5631 8.1254 8.2052 6.9418

p0
3 25.9811 25.0777 23.9687 23.3023

p0
4 10.7181 13.2139 11.2948 15.3286

Q1 6.9709 4.9164 3.0613 6.9432

Q2 5.0025 7.1920 9.9899 7.0228

Q3 3.5753 3.0969 1.0830 5.1883

Q4 2.0002 2.0000 6.5392 6.4724

The distance error of the ball 0.2130 0.2328 0.2723 0.3220

The angle error of the beam 0.3529 0.2653 0.2532 0.5037

Maximum torque 0.2946 0.2810 0.2117 0.2918

Figure 10. Optimum design points of the fuzzy controller for the ball-beam system.
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Figure 12. Time responses of the beam for optimum design points shown in Figure 10.

Figure 11. Time responses of the ball for optimum design points shown in Figure 10.
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The corresponding design variables (vector of SIRMs
dynamically connected fuzzy controllers) of the Pareto
front shown in Figure 10 are the pre-eminent possible
design points. This figure illustrates that if any other set
of design variables is chosen, the corresponding values
of the pair of those objective functions will locate a
point inferior to the Pareto front. Such a design fact
could not have been discovered without the use of the
multi-objective Pareto optimization process.
Furthermore, in this figure, the green color points are
the equitable solutions of the proposed Pareto front
obtained by the Lorenz dominance approach. The
most interesting result is that the suggested point D
by Yi et al. (2001b) is drastically dominated by all
Pareto optimal points (Table 2). Design variables,
objective functions, and maximum driving forces
related to the optimum design points A, B, C, and D
are stated in Table 2. The time responses related to
these points are shown in Figures 11, 12, and 13.

7. Conclusion

In this study, a multi-objective particle swarm opti-
mization algorithm combined with convergence and
divergence operators was successfully used to optimally
design SIRMs dynamically connected fuzzy controllers
for the inverted pendulum and ball-beam systems. The
conflicting objective functions for the inverted pendu-
lum system were the normalized angle error of the

pendulum and the normalized distance error of the
cart; and for the ball-beam system, they were the
angle error of the beam and the distance error of the
ball. The reported results demonstrated that the pro-
posed methodology can effectively control the non-
linear systems.
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