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a b s t r a c t

We consider a two-station tandem queue with a buffer size of one at the first station and a finite buffer
size at the second station. Silva et al. (2013) gave a criterion determining the optimal admission control
policy for this model. In this paper, we improve the results of Silva et al. (2013) and also solve the problem
conjectured by Silva et al. (2013).

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

We consider a tandem queueing network with two stations
(station 1 and station 2) studied by Silva et al. [6]. There is one
server at each station, and customers arrive to station 1 according
to a Poisson processwith rate λ. The service times of the customers
at station i are independently and exponentially distributed with
rate µi, i = 1, 2. The size of the buffer (which includes the cus-
tomer in service and customerswaiting) at station 1 is one, i.e., cus-
tomers are not allowed to wait for service at station 1, while the
buffer size at station 2 is B, where 1 ≤ B < ∞. A gatekeeper who
has complete knowledge of the number of customers at both sta-
tions decides to admit or reject each arrival. If an arrival is not ad-
mitted, a cost c1 is incurred. If station 1 is full at the time of an
arrival, then the gatekeeper has to reject the incoming customer.
If an arrival is accepted, an arriving customer receives service at
station 1. Once a customer completes service at station 1, the cus-
tomer proceeds to station 2. At station 2, if the customer finds it
empty the customer receives service at station 2 and eventually
leaves the system, but if station 2 is full, the customer is lost and a
cost c2 is incurred. The objective for the gatekeeper is tomake opti-
mal admission decisions in order tominimize the long-run average
cost.
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Zhang and Ayhan [8] considered a tandem queueing network
with two stations. The first station has a finite buffer size and the
second station has a unitary buffer size. They studied the optimal
admission control policy for minimizing the long-run average
cost. Many researchers have studied control problems for tandem
queues with loss, see, for example, Chang and Chen [1], Ku and
Jordan [2–4], Sheu and Ziedins [5] and Spicer and Ziedins [7].

This paper is inspired by the work of Silva et al. [6] who stud-
ied the optimal policy thatminimizes the long-run average cost for
the same model as the one considered here. Silva et al. [6] showed
that there are only two policies that could be optimal. The first
policy is the prudent policy, denoted by πP . Under a prudent pol-
icy, the gatekeeper admits an arrival whenever station 1 is empty
and the number of customers at station 2 is less than B. The second
policy is the greedy policy, denoted by πG. Under a greedy policy
the gatekeeper admits an arrival whenever possible (i.e., when-
ever station 1 is empty) and rejects otherwise. Silva et al. [6] gave a
criterion that determines which of the two policies is optimal. The
optimality condition is of the threshold type (on the cost c2) and
the threshold is expressed in terms of the stationary distributions
under the prudent and the greedy policies. They provided closed-
form expressions for the threshold when B ≤ 10, but mentioned
that it is difficult to obtain a closed-form expression for the thresh-
old when B > 10 because there is no closed-form expression for
the stationary distributions for general values of B. They also made
a conjecture about the monotonicity properties of the stationary
distributions.
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Fig. 1. The transition diagram of the Markov process {(N1(t),N2(t)) : t ≥ 0} under the prudent policy.
In this paper, we obtain closed-form expressions for the
stationary distributions of the Markov processes describing the
systemsunder the prudent and the greedy policies for any values of
B. We explicitly determine the criterion for the optimal policy by
providing a closed-form expression of the threshold (on the cost
c2) for any values of B. The threshold is expressed in terms of the
parameters of the model, i.e., the service rates at both stations,
the arrival rate, the cost c1, and the buffer size. We also solve
the problem about the monotonicity properties of the stationary
distributions, conjectured by Silva et al. [6].

2. Stationary distributions under prudent and greedy policies

In this section we not only obtain the stationary distributions
under the prudent and the greedy policies, but also solve the
conjecture of Silva et al. [6], by introducing the scaled station-
ary probabilities and investigating the properties of this scaled
probabilities.

2.1. Prudent policy

Let Ni(t), i = 1, 2, denote the number of customers (including
those waiting and in service) at station i at time t , in the system
operating under the prudent policy. Then {(N1(t),N2(t)) : t ≥ 0}
is a continuous time Markov process with state space S = {(i, j) :

i = 0, 1, j = 0, 1, . . . , B}. Fig. 1 depicts the state transition
diagram of the Markov process {(N1(t),N2(t)) : t ≥ 0}.

Let p(B)
(i,j), (i, j) ∈ S be the stationary distribution of the Markov

process {(N1(t),N2(t)) : t ≥ 0}, i.e.,

p(B)
(i,j) = lim

t→∞
P((N1(t),N2(t)) = (i, j)).

Define

x(B)
n ≡

p(B)
(0,B−n)

p(B)
(0,B)

, y(B)
n ≡

p(B)
(1,B−n)

p(B)
(0,B)

,

for n = 0, 1, . . . , B.

Lemma 1. We have the following recurrence formula:
x(B)
0

y(B)
0


=


1
0


, (1)


x(B)
n+1

y(B)
n+1


=


(µ1 + µ2)µ2

λµ1

µ2
2

λµ1
µ2

µ1

µ2

µ1



x(B)
n

y(B)
n


,

n = 0, 1, . . . , B − 2, (2)
x(B)
B

y(B)
B


=


µ2

λ
0

µ2

µ1

µ2

µ1

x(B)
B−1

y(B)
B−1


. (3)
Proof. Note that (1) is trivial.We canprove (2) and (3) by balancing
the transition rates into and out of a particular set of states. Let
q(B)
(s,s′), s, s

′
∈ S be the transition rates of the Markov process

{(N1(t),N2(t)) : t ≥ 0} from state s to s′. We partition the state
space into two disjoint subsets E and Ec . Thenwe equate transition
rates from one subset to the other:
s∈E


s′∈Ec

p(B)
s q(B)

(s,s′) =


s∈Ec


s′∈E

p(B)
s q(B)

(s,s′). (4)

By choosing E = {(0, 0), (0, 1), . . . , (0, B−(n+1)), (1, 0), (1, 1),
. . . , (1, B − (n + 1))}, n = 0, 1, . . . , B − 2, we have from (4) that
µ1p

(B)
(1,B−n−1) = µ2


p(B)

(0,B−n) + p(B)
(1,B−n)


, or equivalently,

y(B)
n+1 =

µ2

µ1
(x(B)

n + y(B)
n ). (5)

Similarly, choosing E = {(0, 0), (0, 1), . . . , (0, B − (n + 1)),
(1, 0), (1, 1), . . . , (1, B − (n + 2))}, n = 0, 1, . . . , B − 2, yields
λp(B)

(0,B−n−1) = µ2

p(B)

(0,B−n) + p(B)
(1,B−n−1)


, or equivalently,

λx(B)
n+1 = µ2x(B)

n + µ2y
(B)
n+1.

Plugging (5) into the above, we get

x(B)
n+1 =

(µ1 + µ2)µ2

λµ1
x(B)
n +

µ2
2

λµ1
y(B)
n .

From this and (5), we have (2).
Now we prove (3). By choosing E = {(0, 0)}, we have from (4)

that λp(B)
(0,0) = µ2p

(B)
(0,1), or equivalently,

x(B)
B =

µ2

λ
x(B)
B−1. (6)

Similarly, choosing E = {(1, 0)} yieldsµ1p
(B)
(1,0) = λp(B)

(0,0)+µ2p
(B)
(1,1),

or equivalently,

µ1y
(B)
B = λx(B)

B + µ2y
(B)
B−1.

Plugging (6) into the above, we have

y(B)
B =

µ2

µ1
x(B)
B−1 +

µ2

µ1
y(B)
B−1.

This and (6) give (3). �

Lemma 2. Let S(B)
=
B

n=0(x
(B)
n + y(B)

n ). Then

(i) S(B) is strictly increasing in B.
(ii) limB→∞ S(B) < ∞ if and only if χ1 < 1, where χ1 =

µ2
2λµ1


λ +

µ1 + µ2 +


(λ − µ1)2 + 2(λ + µ1)µ2 + µ2

2


.

In that case,

lim
B→∞

S(B)
=

λµ1

λ(µ1 − µ2) − µ1µ2
.

Proof. Note that for n = 0, 1, . . . , B − 1,

x(B+1)
n = x(B)

n , y(B+1)
n = y(B)

n .
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From this and Lemma 1, we have

S(B+1)
− S(B)

= x(B+1)
B + y(B+1)

B + x(B+1)
B+1 + y(B+1)

B+1 − (x(B)
B + y(B)

B )

> (x(B+1)
B + y(B+1)

B ) − (x(B)
B + y(B)

B )

=

1 1


(µ1 + µ2)µ2

λµ1

µ2
2

λµ1
µ2

µ1

µ2

µ1



x(B)
B−1

y(B)
B−1



−

1 1


µ2

λ
0

µ2

µ1

µ2

µ1

x(B)
B−1

y(B)
B−1



=
µ2

2

λµ1
(x(B)

B−1 + y(B)
B−1) > 0.

This proves assertion (i).
Now we prove assertion (ii). By Lemma 1, we have

lim
B→∞

S(B)
=

1 1

 ∞
n=0


(µ1 + µ2)µ2

λµ1

µ2
2

λµ1
µ2

µ1

µ2

µ1


n 

1
0


. (7)

We know that for a matrix A of finite order the series


∞

n=0 A
n

converges if and only if the spectral radius of A is strictly less than
1. In that case,


∞

n=0 A
n

= (I − A)−1. For simplicity, we denote

e =


1
1


, e1 =


1
0


, M =


(µ1 + µ2)µ2

λµ1

µ2
2

λµ1
µ2

µ1

µ2

µ1

 ,

then (7) can be written as

lim
B→∞

S(B)
= e⊤

∞
n=0

Mne1,

where ⊤ denotes the transpose of a vector. The matrix M has two
eigenvalues

χ1 =
µ2

2λµ1


λ + µ1 + µ2

+


(λ − µ1)2 + 2(λ + µ1)µ2 + µ2

2


, (8)

χ2 =
µ2

2λµ1


λ + µ1 + µ2

−


(λ − µ1)2 + 2(λ + µ1)µ2 + µ2

2


. (9)

Therefore, limB→∞ S(B) < ∞ if and only if χ1 < 1. In that case,

lim
B→∞

S(B)
= e⊤(I − M)−1e1.

A straightforward calculation completes the proof of assertion
(ii). �

Wenote that p(B)
(0,n) =

x(B)B−n
S(B) and p(B)

(1,n) =
y(B)B−n
S(B) for n = 0, 1, . . . , B.

From this and (1) we have

p(B)
(0,B) =

1
S(B)

, p(B)
(1,B) = 0. (10)

Therefore, the following corollary is immediate fromLemma2. This
solves the first part of Conjecture 1 by Silva et al. [6].
Corollary 1. (i) p(B)
(0,B) is strictly decreasing in B.

(ii) limB→∞ p(B)
(0,B) > 0 if and only if χ1 < 1. In that case,

lim
B→∞

p(B)
(0,B) =

λ(µ1 − µ2) − µ1µ2

λµ1
.

In the remainder of this subsection,we find closed-formexpres-
sions for p(B)

(0,n) and p(B)
(1,n), n = 0, 1, . . . , B. Note that for i = 1, 2,

χi −
µ2

µ1

µ2

µ1

⊤

is an eigenvector of M corresponding to the

eigenvalue χi. ThusM can be written as

M =
µ1

µ2(χ1 − χ2)

χ1 −
µ2

µ1
χ2 −

µ2

µ1
µ2

µ1

µ2

µ1



×


χ1 0

0 χ2


µ2

µ1

µ2

µ1
− χ2

−
µ2

µ1
χ1 −

µ2

µ1

 . (11)

By (1), (2) and (11), we have that for n = 1, . . . , B,
p(B)

(0,n)

p(B)
(1,n)


=

1
S(B)


x(B)
B−n

y(B)
B−n



=
µ1

µ2(χ1 − χ2)S(B)

χ1 −
µ2

µ1
χ2 −

µ2

µ1
µ2

µ1

µ2

µ1



×


χB−n
1 0

0 χB−n
2


µ2

µ1

µ2

µ1
− χ2

−
µ2

µ1
χ1 −

µ2

µ1

 e1

=
1

(χ1 − χ2)S(B)

χB−n+1
1 − χB−n+1

2 −
µ2

µ1
(χB−n

1 − χB−n
2 )

µ2

µ1
(χB−n

1 − χB−n
2 )

 .

(12)

By (3) and (12) with n = 1, we have
p(B)

(0,0)

p(B)
(1,0)


=


µ2

λ
0

µ2

µ1

µ2

µ1

p(B)
(0,1)

p(B)
(1,1)



=
1

(χ1 − χ2)S(B)


µ2

λ
(χB

1 − χB
2 ) −

µ2
2

λµ1
(χB−1

1 − χB−1
2 )

µ2

µ1
(χB

1 − χB
2 )

 . (13)

Now it only remains to determine S(B). Since
1

i=0
B

n=0 p
(B)
(i,n) =

1, we have by (12) and (13) that

S(B)
=

1
χ1 − χ2


B

k=1

χ k
1 −

B
k=1

χ k
2 +


µ2

µ1
+

µ2

λ



× (χB
1 − χB

2 ) −
µ2

2

λµ1
(χB−1

1 − χB−1
2 )



=
1

χ1 − χ2


B+1
k=1

χ k
1 −

B+1
k=1

χ k
2 −

µ2
2

λµ1
(χB

1 − χB
2 )


,
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Fig. 2. The transition diagram of the Markov process {(N̂1(t), N̂2(t)) : t ≥ 0} under the greedy policy.
where the second equality follows from the characteristic equation

ofM , i.e., χ2
i −


µ2
µ1

+
(µ1+µ2)µ2

λµ1


χi +

µ2
2

λµ1
= 0, i = 1, 2.

In summary, we have the following result.

Theorem 1. The stationary distribution for the system operating
under the prudent policy is given by

p(B)
(0,0) =

1
(χ1 − χ2)S(B)

×


µ2

λ
(χB

1 − χB
2 ) −

µ2
2

λµ1
(χB−1

1 − χB−1
2 )


,

p(B)
(0,n) =

1
(χ1 − χ2)S(B)

×


χB−n+1
1 − χB−n+1

2 −
µ2

µ1
(χB−n

1 − χB−n
2 )


,

n = 1, . . . , B,

p(B)
(1,n) =

µ2

µ1(χ1 − χ2)S(B)
(χB−n

1 − χB−n
2 ),

n = 0, 1, . . . , B,

where

S(B)
=

1
χ1 − χ2


B+1
k=1

χ k
1 −

B+1
k=1

χ k
2 −

µ2
2

λµ1
(χB

1 − χB
2 )


with χ1 and χ2 given in (8) and (9).

We remark that when n = B, Theorem 1 reduces to (10).

2.2. Greedy policy

Let N̂i(t), i = 1, 2, denote the number of customers (including
those waiting and in service) at station i at time t , in the system
operating under the greedy policy. Then {(N̂1(t), N̂2(t)) : t ≥ 0} is
a continuous timeMatkov processwith state space Ŝ = {(i, j) : i =

0, 1, j = 0, 1, . . . , B}. Fig. 2 depicts the state transition diagram of
the Markov process {(N̂1(t), N̂2(t)) : t ≥ 0}. As we can see from
Figs. 1 and 2, all transition rates for the greedy policy are equal to
the transition rates for the prudent policy except from state (0, B)
to (1, B). Under the greedy policy the transition from state (0, B) to
(1, B) is possible, whereas under the prudent policy the transition
from (0, B) to (1, B) is not possible.

Let p̂(B)
(i,j), (i, j) ∈ Ŝ be the stationary distribution of the Markov

process {(N̂1(t), N̂2(t)) : t ≥ 0}, i.e.,

p̂(B)
(i,j) = lim

t→∞
P((N̂1(t), N̂2(t)) = (i, j)).

Define

x̂(B)
n ≡

p̂(B)
(0,B−n)

p̂(B)
(0,B) + p̂(B)

(1,B)

, ŷ(B)
n ≡

p̂(B)
(1,B−n)

p̂(B)
(0,B) + p̂(B)

(1,B)

,

for n = 0, 1, . . . , B. As the procedure and arguments in this
subsection are very similar to those in the previous subsection we
omit the details of them.
Lemma 3. We have the following recurrence formula:


x̂(B)
0

ŷ(B)
0


=


µ1 + µ2

λ + µ1 + µ2

λ

λ + µ1 + µ2

 , (14)


x̂(B)
n+1

ŷ(B)
n+1


=


(µ1 + µ2)µ2

λµ1

µ2
2

λµ1
µ2

µ1

µ2

µ1



x̂(B)
n

ŷ(B)
n


,

n = 0, 1, . . . , B − 2,
x̂(B)
B

ŷ(B)
B


=


µ2

λ
0

µ2

µ1

µ2

µ1

x̂(B)
B−1

ŷ(B)
B−1


.

Proof. By choosing E = {(1, B)}, we have from (4) that λx̂(B)
0 =

(µ1 + µ2)ŷ
(B)
0 . Combining this and x̂(B)

0 + ŷ(B)
0 = 1, we get

(14). The others follow by the same argument as in the proof of
Lemma 1. �

Lemma 4. Let Ŝ(B)
=
B

n=0(x̂
(B)
n + ŷ(B)

n ). Then

(i) Ŝ(B) is strictly increasing in B.
(ii) limB→∞ Ŝ(B) < ∞ if and only if χ1 < 1. In that case,

lim
B→∞

Ŝ(B)
=

λµ1(λ + µ1)

(λ(µ1 − µ2) − µ1µ2)(λ + µ1 + µ2)
.

Proof. The proof is the same as that of Lemma 2, except the vector

e1 is replaced by


µ1 + µ2

λ + µ1 + µ2

λ

λ + µ1 + µ2

⊤

. �

Wenote that p̂(B)
(0,n) =

x̂(B)B−n
Ŝ(B) and p̂(B)

(1,n) =
ŷ(B)B−n
Ŝ(B) for n = 0, 1, . . . , B.

From this and (14) we have

p̂(B)
(0,B) =

µ1 + µ2

λ + µ1 + µ2

1

Ŝ(B)
, p̂(B)

(1,B) =
λ

λ + µ1 + µ2

1

Ŝ(B)
. (15)

Therefore, the following corollary is immediate fromLemma4. This
solves the second part of Conjecture 1 by Silva et al. [6].

Corollary 2. (i) p̂(B)
(0,B) and p̂(B)

(1,B) are strictly decreasing in B.
(ii) limB→∞ p̂(B)

(0,B) > 0 if and only if χ1 < 1. Moreover,

limB→∞ p̂(B)
(1,B) > 0 if and only if χ1 < 1. If χ1 < 1, then

lim
B→∞

p̂(B)
(0,B) =

µ2
1(λ − µ2) − µ2

2(λ + µ1)

λ(λ + µ1)µ1
,

lim
B→∞

p̂(B)
(1,B) =

λ(µ1 − µ2) − µ1µ2

(λ + µ1)µ1
.

Finally, we can obtain closed-form expressions for p̂(B)
(0,n) and

p̂(B)
(1,n), n = 0, 1, . . . , B, by following the same procedure as in the

derivation of Theorem 1 and using Lemma 3.
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Theorem 2. The stationary distribution for the system operating
under the greedy policy is given by

p̂(B)
(0,0) =

1

(χ1 − χ2)Ŝ(B)

µ2

λ
(χB

1 − χB
2 )

−
µ2

2

λ


1
µ1

+
1

λ + µ1 + µ2


(χB−1

1 − χB−1
2 )

+
µ3

2

λ(λ + µ1 + µ2)µ1
(χB−2

1 − χB−2
2 )


,

p̂(B)
(0,n) =

1

(χ1 − χ2)Ŝ(B)


χB−n+1
1 − χB−n+1

2

− µ2


1
µ1

+
1

λ + µ1 + µ2


(χB−n

1 − χB−n
2 )

+
µ2

2

(λ + µ1 + µ2)µ1
(χB−n−1

1 − χB−n−1
2 )


,

n = 1, . . . , B,

p̂(B)
(1,n) =

µ2

µ1(χ1 − χ2)Ŝ(B)


χB−n
1 − χB−n

2 −
µ2

λ + µ1 + µ2

× (χB−n−1
1 − χB−n−1

2 )

, n = 0, 1, . . . , B,

where

Ŝ(B)
=

1
χ1 − χ2


B+1
k=1

χ k
1 −

B+1
k=1

χ k
2

−
µ2

λ + µ1 + µ2


B−1
k=0

χ k
1 −

B−1
k=0

χ k
2



− µ2


µ2

λµ1
+

1
λ + µ1 + µ2


(χB

1 − χB
2 )

+
µ3

2

λ(λ + µ1 + µ2)µ1
(χB−1

1 − χB−1
2 )


with χ1 and χ2 given in (8) and (9).

We remark that when n = B, Theorem 2 reduces to (15).

3. Optimal policy

As mentioned before, Silva et al. [6] showed that either the
prudent policy or the greedy policy can be optimal. Also, that if
c1 ≥ c2, then the greedy policy πG is always optimal. They gave
a criterion that determines which of the two policies is optimal for
all cases including when c1 < c2. Let

c∗(B) = c1
λ

µ1


B−1
i=0


p(B)

(1,i) − p̂(B)
(1,i)


+ p(B)

(0,B)

p̂(B)
(1,B)

− 1

 . (16)

If c2 > c∗(B), then πP is optimal for minimizing the long-run
average cost; otherwiseπG is optimal, see Proposition 3 of [6]. They
also provided a closed-form expression for c∗(B) when B ≤ 10 and
illustrated through numerical examples that the threshold value
for B = 10, c∗(10), yields near optimal cost values even when
B > 10.

Now we find a closed-form expression of c∗(B) for any B ≥ 1,
by using the explicit closed-form expression for the stationary
distribution given in Section 2. Recall that

p(B)
(0,B) =

1
S(B)

, p̂(B)
(1,B) =

1

Ŝ(B)

λ

λ + µ1 + µ2
. (17)
For the greedy policy,
B−1
i=0

p̂(B)
(1,i) + p̂(B)

(1,B) =
λ

λ + µ1
,

the right-hand side ofwhich is the probability that station 1 is busy.
Thus,
B−1
i=0

p̂(B)
(1,i) =

λ

λ + µ1
−

1

Ŝ(B)

λ

λ + µ1 + µ2
. (18)

On the other hand,
B−1
i=0

p(B)
(1,i) =

µ2

µ1(χ1 − χ2)S(B)


B

k=1

χ k
1 −

B
k=1

χ k
2


. (19)

Plugging (17)–(19) into (16) yields

c∗(B) = c1
(λ + µ1 + µ2)Ŝ(B)

µ1


µ2

µ1(χ1 − χ2)S(B)

×


B

k=1

χ k
1 −

B
k=1

χ k
2


+

1
S(B)

−
λ

λ + µ1


.

Therefore, we have the following theorem, which is an immediate
consequence of Proposition 3 of [6]. The theorem allows us to char-
acterize the optimal policy. The optimality condition is expressed
in terms of the parameters of the model.

Theorem 3. If

c2
c1

>
(λ + µ1 + µ2)Ŝ(B)

µ1


µ2

µ1(χ1 − χ2)S(B)

×


B

k=1

χ k
1 −

B
k=1

χ k
2


+

1
S(B)

−
λ

λ + µ1


, (20)

then the prudent policy πP is optimal; otherwise the greedy policy πG
is optimal.

Remark 1. Carefully examining the proofs of [6], we see that if
c2 > c∗(B), then πP is optimal but πG is not optimal. If c2 = c∗(B),
then both πP and πG are optimal. If c2 > c∗(B), then πG is optimal
but πP is not optimal. Therefore, we have that if (20) holds, then πP
is optimal but πG is not optimal. If c2

c1
equals the right-hand side of

(20), then both πP and πG are optimal. If c2
c1

is strictly less than the
right-hand side of (20), then πG is optimal but πP is not optimal.

Remark 2. From the result of [6] we know that if c1 ≥ c2, then πG
is optimal, and, furthermore, πP cannot be optimal. It follows from
Theorem 3 that for any λ > 0, µ1 > 0, µ2 > 0, and B ≥ 1, the
right-hand side of (20) is strictly larger than 1.
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