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The fractal theory was used to describe long term behavior of dam structures by means of determin- 
ing (mono-) fractal exponents. Many records do not exhibit a simple monofractal scaling behavior,
which can be accounted for by a single scaling exponent. In this paper the multifractal detrended 
fluctuation analysis (MF-DFA) is employed to analyze the time series of in situ observed data of exist- 
ing dam which intrinsically reflects its long term behavior and structural evoluti on law. Deformation 
analysis of one gravity dam is taken as an example, the multifractal characteristic of the time series is
obtained. The results show that this method can reliably determine the multifractal scaling behavior 
of time series of existing dams. The fractal theory can be applied to predict and diagnose dam 
behavior.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

Dam and foundation can be regarded as a complex nonlinear 
dynamic system. Dam behavior exhibits significant spatiotemporal 
nonlinear characterist ics under the combinin g influencing of exter- 
nal factors. For deformat ion, in practice, there is not just a single 
origin, the measure d deformation signal is a result of a number 
of influencing factors, such as temperat ure, upstream and down- 
stream water levels and physical properties of concrete. In situ ob-
served time series permits effective assessment of the ongoing 
evolution of physical mechanis m (e.g. aging and creep) in struc- 
tures. In recent years mathematical monitoring models combinin g
advanced mathematical methods and in situ observed time series 
have become widely used techniques for analyzing and identifyin g
long term behavior of existing dams (Liu, Wu, Yang, & Hu, 2012;
Loh, Chen, & Hsu, 2011; Su, Hu, & Wu, 2012 ).

In general, standard statistical methods are used to reveal data 
characterist ics, assume that the observed independen t and effect 
quantities are normally distribut ed. However in fact, in situ ob-
served time series do not strictly follow this normal distribution.
This means that the traditional determinist ic or random theories 
cannot rightly characterize and interpret the signal time series.
In addition, various independence testing methods cannot identify 
long-term correlate behavior. In a previous paper, monofractal 
exponents were obtained based on observed time series in order 
to give information on the inherent evolution law of a dam system 
(Su et al., 2012 ). The investigated example indicates that dam 
structure has self-similarity characterist ics. In recent years the 
detrende d fluctuation analysis (DFA) method has become a widely 
used technique for the determination of monofracta l scaling prop- 
erties and the detection of long-range correlations in noisy and 
nonstationa ry time series. It has successfully been applied to
various fields such as DNA sequence s, long-time weather records,
cloud structures, geology, and solid state physics. Fractals naturally 
appear in many physical situations (Alvarez-R amirez, Rodriguez,
& Echeverria, 2009; Coniglio, de Arcangelis, & Herrman n, 1989;
de Moura, Vieira, Irmao, & Silva, 2009; Govindan et al., 2007;
Kantelha rdt, Koscielny-Bun de, Rego, Havlin, & Bunde, 2001; Peng,
Buldyrev, Havlin, et al., 1994 ). One reason to employ the DFA 
method is to avoid spurious detection of correlations that are 
artifacts of nonstationa rities in the time series.

Many records do not exhibit a simple monofractal scaling 
behavior, but crossover (time-) scales separating regimes with dif- 
ferent scaling exponents, e.g. long-range correlations on small 
scales and another type of correlations or uncorrelated behavior 
on larger scales (Kantelhardt et al., 2002; Telesca, Lovallo, Lopez- 
Moreno, & Vicente-Serrano, 2012a; Telesca, Pierini, & Scian,
2012b). A multifractal object requires many indices to characterize 
its scaling properties. Multifractal s can be decomposed into many- 
possibly infinitely many sub-sets characterized by different scaling 
exponents . That is to say, much more information is contained in
what is called a multifractal measure which is defined on a fractal 
can give insight about its structure or about the way it evolves.
Then DFA was generaliz ed to study the multifractal nature 
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hidden in time series, termed multifractal DFA (MF-DFA) (Huang,
Liu, Shi, & Zhang, 2010; Niu, Wang, Liang, Yu, & Yu, 2008; Telesca,
Colangelo, Lapenna, & Macchiato, 2004; Telesca & Lovallo, 2011;
Telesca, Lovallo, Hsu, & Chen, 2012 ). Due to complicated cases 
such as chemical dissolution and extreme external loads, dam 
behavior may change in different intervals. Dam behavior is con- 
trolled by external and internal influencing factors, such as
water level and temperat ure. Previous research has already 
shown that records of these factors exhibits multifractali ty.
Therefore, MF-DFA can be employed to investigate multifractal 
characterist ics of time series of dam structures, and to judge dif- 
ferent combustion status.

The main objective of this paper is to reveal the time scale effect 
and the nonlinear dynamic evolution law of dams using MF-DFA.
The paper is organized as follows: In Section 2 the DFA method 
is simply described. In Section 3 the MF-DFA method is introduced 
and the framework for obtaining multifractals of time series of
dam structure s is proposed. In Section 4, the results of data analy- 
sis are present and their physical interpretations are discussed. In
Section 5 comments on the current work are listed.

2. Monofractal feature identification of monitoring data 
sequence of dam’s service behavior 

Critical fluctuations, evolution or disorder can produce fractal 
structures which have unusual physical properties due to
their scale invariance (Bernaola-Gal ván, Ivanov, Nunes Amaral, &
Eugene Stanley, 2001; Foufoula- Georgiou, & Sapozhnikov, 2001;
Kawada, Nagahama, & Nakamura, 2007 ). As in many physical situ- 
ations, dam structure is characterized by self-similari ty (Su et al.,
2012). The only difference is the characteristic physical quantity 
accompanyi ng in the stochasti c processes.

The DFA is a method which was invented by Peng et al. in 1994 
when they detected long-ran ge correlations of DNA time series 
(Peng et al., 1994 ). The DFA can be used as a means of estimating 
the Hurst exponent of a time series by eliminating trends.

Let us suppose that xi is a series of length n of dam’s service 
behavior, and this series is of compact support. The DFA procedure 
consists of the following steps.

(1) Calculate the cumulati ve sum of the time series{ xt,
t = 1,2, . . . ,n}
YðiÞ ¼
Xi

t¼1

ðxt � �xÞ ð1Þ
where �x ¼ 1
N

Pi
t¼1xt .

(2) Divide the series Y(i) into m non-overlapping intervals v.
Each interval contains the same number of points s, where 
integral part is m = [N/s]. Since the length N of the sequence 
is often not an integral multiple of s. In order not to disregard 
the data at the end of the sequence, the same procedure is
repeated from the opposite end from the m + 1-th interval.
Thereby, 2m intervals are obtained altogether.

(3) Calculate the local trend for each interval v by a least-squar e
fit of the data. Ys(i) which the time series removing the trend 
is denoted by shows the difference between original series 
and fitted values 
YsðiÞ ¼ YðiÞ � Pk
vðiÞ ð2Þ
where Pk
vðiÞ, called k-order DFA (e.g. linear, quadratic , cubic, or high- 

er order, conve ntionally called DFA1, DFA2, DFA3,. . .), is the fitting
polynom ial of in vth interval; k is the different fitting order. Since 
the detrendi ng of the time series is done by the subtraction of the 
polynom ial fits from the profile, different order DFA differ in their 
capability of eliminating trends in the series.
(4) Then determine the variance of each interval which has 
already been removed the trend 
F2ðv; sÞ ¼ 1
s

Xs

i¼1

Y2
s ½ðv � 1Þsþ i�; m ¼ 1;2; � � � ;2m ð3Þ
(5) Average over all segments to obtain the standard DFA fluctu-
ation function 
FðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xm

v¼1

F2ðv; sÞ
s

ð4Þ
If time series is uncorrela ted or short-term correlated, then 
F(s) � s1/2; If time series is long-ter m correlat ed, then F(s) � sa,
a – 1/2. The significance of a which is a scaling exponen t and 
embodies the correlati on property of sequenc e is the same as Hurst 
expone nt.

(6) Determine the scaling relation between the DFA F(s) and the 
size scale s, which reads 

lgFðsÞ ¼ lgAþ algs ð5Þ

Use the least-square regression to obtain the value of a. (Kantel-
hardt et al., 2002; Telesca et al., 2004 )

If a = 0.5, time series is a independen t process and does not 
exist long-term memory.
If 0 < a < 0.5, time series is characterized by inverse sustainabil- 
ity and shows power-law inverse correlation.
If 0.5 < a < 1, time series is characterized by positive sustain- 
ability and shows power-law positive correlation.
If a = 1, time series is similar to white noise.
If a > 1, time series still shows long-ran ge correlations but devi- 
ates slowly from power-law.
If a = 1.5, the correlation of time series is similar to Brown noise.

Therefore, scale exponent can be used to describe ‘‘roughness’’
of time series. The larger the scale exponent is, the more smooth 
time series is.

3. Multifractal features identification of monitoring data 
sequence of dam’s service behavior 

Multifrac tals, as well as monofractals, are ubiquitous in natural 
and social sciences. Much more informat ion is contained in what is
called a multifractal measure. In the case that there exist time 
scales separating regimes with different scaling exponents a mul- 
titude of scaling exponents is required for a full description of
the scaling behavior, and a multifractal analysis must be applied.
For the measured time series of dam’s service behavior, its irregu- 
larity and singulari ty often change with time dependent influenc-
ing factors, and internal and external environment. Time scales 
separating regimes with different scaling exponents on different 
scales can be used to better depict long term behavior of dams.

3.1. Definition of multifractal approach 

Multifrac tal approach , which is also called fractal measure , used 
to express a singular set of distribution of non-uniform fractal 
dimensio n which can not be described only by a holistic character- 
istic scaling exponent or the growth characterist ics of fractal parti- 
cle at different levels which can be described by a spectral function,
studies its whole fractality from system part (Barabasi, & Vicsek,
1991; Halsey, Jensen, Kadanoff , Procaccia, & Shraiman , 1986; Lau,
& Ngai, 1999; Longley, & Batty, 1989 ). Through analyzing singular- 
ity spectrum function f(a) of time series, multifractal analysis 
quantitat ively depicts the distribution on the whole set of
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probabilitie s which is caused by different local conditions or differ- 
ent levels in the evolution process. Therefore, multifractal analysis 
is also a metric for the complex, irregular and inhomogeneous de- 
gree of fractal structure.

If the continuous time series X = {Xt: t = 1,2, . . .} has stationary 
increments, and for all t e T, q 2 Q , they are satisfied as follows.

EðjXðt þ DtÞ � XðtÞjqÞ ¼ cðqÞðDtÞsðqÞþ1 ð6Þ

then Xt can be called multifractal process. The length of real 
intervals Q and T are both positive, and 0 e T, [0, 1] # Q; s(q) and 
c(q) are the functions of Q domain; 4t is the time incremen t.

The above equality describes the relationship between multi- 
fractal process moment and scale power-law. The relationships of
scale power-law for different time incremen t4t are the same. That 
is, the scale invariance is met.

When s(q), the scaling function, has the following propertie s, its 
process is the multifractal process.

(1) s(q) is a convex function;
(2) If q = 0, all scaling functions have the same intercept , that is

s(0) = �1;
(3) s(q) is the nonlinear function of q. If s(q) = qH � 1, the corre- 

sponding stochastic process is turned into monofracta l pro- 
cess, that is the relationship between scaling function and q
is linear.

(4) If q ? ±1, s(q) tends to be infinite.

The definition above that depicts the fractal features of different 
amplitude process increments and different time points through 
the moment scale characteristics of increments provides evidence 
for studying fluctuation characteristics of measured data sequence 
of dam’s service behavior at different time scales. The scaling func- 
tions of different q values correspond to different fluctuations. The 
physical meaning of multifractal process is described through two 
special cases as follows.

(1) If q < 0 and jqj � 10, bigger fluctuations tend to zero after 
the q-th power and almost do not work in the final results.
Those smaller fluctuations play important roles and q-order
moment mainly depicts the characterist ics of small fluctua-
tion at this point.

(2) If q > 0 and jqj � 10, smaller fluctuations almost do not work 
while those bigger fluctuations play important roles. q-order
moment mainly depicts the characterist ics of big fluctuation
at this point.

Thus s(q) values correspond ing to each q can be calculated first
and then test multifractal structure {Xt} of s(q) by detecting the 
nonlinear relationshi p between s(q) and q.

3.2. Generalized Hurst exponent 

Through studies, Hurst found that rescaled range and sequence 
subscript n exist changed proportion of index H, that is R/S = K(n)H.
Where n is the length of time incremen t interval, K is a constant.
Based on this, generalized Hurst exponent H(q) can be defined by
contacting the definition of stochastic process multifractali ty as:

fEðjXðt þ DtÞ � XðtÞjqÞg1=q ¼ cðqÞðDtÞHðqÞ ð7Þ

In the above equality, q – 0, the function H(q) contains the 
information of generaliz ed average change under the time incre- 
ment Dt .

From the comparison of equality (6) and (7), it can be seen that 
the relationshi p between generalized Hurst exponent and scaling 
function s(q) is:
HðqÞ ¼ ½sðqÞ þ 1�=q ð8Þ

Therefore, the relationship between s(q) and q will be got if
appropriate numerical method can be found to fit out H(q).

3.3. MF-DFA method 

Based on the previous DFA, Kantelhardt et al. proposed a robust 
multifractal analysis namely MF-DFA (Coniglio et al., 1989;
Govindan et al., 2007 ). MF-DFA method takes fluctuant average 
of time series in each partition interval as statistical points and 
determines generalized Hurst exponent depending on power-law 
property of fluctuation function to measure stationary and non- 
stationar y sequence structure and fluctuation singulari ty. The 
advantag es of this method are that it can find the long-range 
correlations of non-stationary time series. And Kantelhardt et al.
demonst rated with the computer simulation that the effect using 
MF-DFA method to analyze multifractality for non-stati onary time 
series was the best in all methods (Govindan et al., 2007 ).

The concrete steps of analyzing measured data characteristics of
dam’s service behavior based on MF-DFA are as follows:

(1) Cumulati ve deviation of time series {xt, t = 1,2, . . . ,n} of
dam’s prototype monitoring data is calculated as

YðiÞ ¼
Xi

t¼1

ðxt � �xÞ ð9Þ

where �x ¼ 1
N

Pi
t¼1xt .

(2) Divide sequence Y(i) into m non-overlap ping intervals v.
Each interval contains the same number of points s, where integral 
part is m = [N/s]. Since the length of the sequence is often not an
integral multiple of s. In order not to produce surplus, the same 
procedure is repeated from the opposite end from the m + 1-th 
interval. Thereby, 2m intervals are obtained altogether.

(3) Fitting polynomial of the v-th interval through a least- 
square fit of the data for each interval v(v = 1,2, . . . ,2m) can be
got as:

ŷvðiÞ ¼ â0 þ â1iþ � þ âkik
; i ¼ 1;2; . . . ; s; k ¼ 1;2; . . . ð10Þ

Ys(i) which the time series removing the trend is denoted by shows 
the differe nce between the original series and fitted values.

YsðiÞ ¼ YðiÞ � ŷvðiÞ ð11Þ

where ŷv(i), called k-order MF-DFA , is the local trend function of the 
vth interval. k is the differe nt fitting order. In MF-DFA k (kth order 
MF-DFA ) trends of order k in the profile (or, equivalen tly, of order 
k � 1 in the original series) are eliminated.

(4) Calculate the variance of each interval which has been re- 
moved the trend.

If v = 1,2, . . . ,m,

F2ðv; sÞ ¼ 1
s

Xs

i¼1

Y2
s ½i� ¼

1
s

Xs

i¼1

ðyððv � 1Þsþ iÞ � ŷvðiÞÞ2 ð12Þ

If v = m + 1, m + 2, . . . ,2m,

F2ðv; sÞ ¼ 1
s

Xs

i¼1

Y2
s ½i�

¼ 1
s

Xs

i¼1

ðyððn� ðv � 1ÞÞsþ iÞ � ŷvðiÞÞ2 ð13Þ

Obviously , F2(v,s) is concerned with the fitting order. Different 
orders have different abilities to eliminate the trend.

(5) Average and extract a root for all variances of equal-length 
intervals. Then the q-order fluctuation function of the whole se- 
quence can be obtained:
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FqðsÞ ¼
1

2m

X2m

v¼1

½F2ðv ; sÞ�q=2

( )1=q

ð14Þ

In general, the index variable q can take any real value. For q = 0,
the fluctuation function can be determined as below equality:
F0ðsÞ ¼ exp
1

4m

X2m

v¼1

ln½F2ðv ; sÞ�
( )

ð15Þ

For q = 2, it can be seen that equality (14) and (4) are the same,
the standard DFA procedure is retrieved. At this point, DFA is the 
special form of MF-DFA.

For positive q, the segments v with large variance (i.e., large 
deviation from the correspondi ng fit) will dominate the average 
Fq(s). Therefore, if q is positive, h(q) describes the scaling behavior 
of the segments with large fluctuations; and generally, large fluctu-
ations are characterized by a smaller scaling exponent h(q) for 
multifractal time series. For negative q, the segments v with small 
variance will dominate the average Fq(s). Thus, for negative q val-
ues, the scaling exponent h(q) describes the scaling behavior of
segments with small fluctuations, usually characterized by a larger 
scaling exponents .

Therefore, different q values have different effects on fluctua-
tion functions.
(a) Downstream

(b) Layout of observation sus

Fig. 1. Downstream view of the dam and layou
(6) Determine the scaling exponent of fluctuation function.
Varying the value of s in the range from smin � 5 to smax � N/4,
and repeating the procedure described above for various scales s,
FqðsÞ will increase with increasing s. Then analyzing log–log plots 
FqðsÞ vs. s for each value of q, the scaling behavior of the fluctuation
functions can be determined. If the series xi is long-range power- 
law correlated, FqðsÞ increases for large values of s as a power-law 

FqðsÞ � shðqÞ ð16Þ

In general the exponent h(q) will depend on q. For stationary 
time series, h(2) is the well defined Hurst exponent H. Thus, h(q)
is called the generaliz ed Hurst exponent. Monofractal time series 
are characterized by h(q) independen t of q. The different scaling 
of small and large fluctuations will yield a significant dependence 
of h(q) on q.

The above equality can be also expressed as Fq(s) = Ash(q). Take 
logarithm for the both sides of the equality 

lnðFqðsÞÞ ¼ ln Aþ HðqÞ lnðsÞ ð17Þ

A corresponding fluctuation function value Fq(s) can be obtained 
for each partition length s; different Fq(s) can be got by using differ- 
ent constant s. By using the least square method to make linear 
regressio n for the above equality, slope estimate d value obtained 
is q-order generaliz ed Hurst exponent h(q).
 view of the dam 

pended and reversed pendulums 

t of its observation suspended pendulums.
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Generalized Hurst exponent h(q) has the significance of scaling 
exponent of DFA, but h(q) is concerned with q. Time series is mono- 
fractal if h(q) has nothing with q and time series is multifractal if
h(q) is a function of q.

(7) h(q) which is obtained through MF-DFA is related to Renyi 
exponent s(q), that is
sðqÞ ¼ qhðqÞ � 1 ð18Þ

(8) Multifrac tal spectrum f(a) which is used to describe multi- 
fractal time series can be obtained from the below equality:
a ¼ hðqÞ þ qh0ðqÞ ð19Þ
f ðaÞ ¼ q½a� hðqÞ� þ 1 ð20Þ

The shape and extension of f(a)-curve contains significant infor- 
mation about the distribution characteristics of the examined data 
set.
Fig. 2. Process lines of measured data of Sus
4. Analysis of an engineering example 

A hydropower station (shown in Fig. 1), located in southeast 
China, is mainly for power generation with consideration of flood
control, navigation, aquaculture and other comprehens ive benefits.
Its main body is roller compacted concrete gravity dam which has 
a maximum height of 113.0 m, the crest length of 308.5 m and the 
elevation of 179.0 m. This dam consists of 10 blocks and numbered 
1#–6# from left bank to right bank. Blocks 3 and 4 are overflow
structure s, others are water retaining structures. The reservoir’s 
normal water level is 173.0 m, regulating storage is 1.12 billion 
m3. To monitor long term dam behavior, deformation observation 
system composed of collimati ng lines, tension wire alignments and 
pendulums (as shown in Fig. 1(b)) was installed .

Typical suspended pendulums, namely PL3, PL4 and PL5 are se- 
lected to investigate monofracta l features and multifractal features 
of the dam global behavior. In detail, the time series of horizontal 
displacemen ts measured by PL4 is used to identify monofracta l
pended Pendulums PL3 �5 (Y direction).
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features and multifractal features, and all three time series of hor- 
izontal displacemen ts from January 1, 2003 to December 31, 2008 
(N�1959, 2014 and 1967 respectively) of these suspended pendu- 
lums are used to compare corresponding behavior of Blocks3#�5#.
For the convenience of result analysis, assume that downstream 
displacemen t is positive and upstream displacemen t is negative.
Fig. 2(a) and (b) respectively show the daily measured and 
monthly mean time series of observed horizontal displacements 
(Y direction) of these suspended pendulums, According to Fig. 2,
it is observed that all three time series fluctuate with the seasons 
with small as well as large fluctuations among different years,
and obviously show the similar global trend namely small positive 
developmen t. Meanwhi le, to a certain extent, small differences ex- 
ist among fluctuation amplitudes of these time series. Therefore,
the multifractal structure is employed to reflect important proper- 
ties of the deformat ion evolution of various dam blocks to obtain 
the global behavior.
Fig. 3. Analysis results of the monthly mean for measured 

Fig. 4. Analysis results of the daily measured data of
4.1. Monofrac tal identification of dam’s displacemen t sequence 

DFA method is used to analyze displacement series of sus- 
pended pendulum of Y direction. For very large scales, the fluctua-
tion function Fs becomes statistical ly unreliable because the 
number of segments N for the averaging procedure in Eq. (14) be-
comes very small. For the maximum scale, s = N, the fluctuation
function Fs is independen t of q. Based on this, the interval length 
of Smax � N/4 and Smin � 5 are generally selected. Thus, the range 
of s is selected from 6 to N/4 depending on the length of the time 
series.

The DFA is respectively employed to time series of daily obaser- 
vation (N = 2014) and monthly mean (N = 72) measured by PL4. Re- 
sults for MF-DFA1 to MF-DFA4 are compared to detect effects of
order on multifractal scaling exponents. The DFA fluctuation func- 
tions Fs of time series of monthly mean are shown versus the scale 
s in log–log plots for four orders in Fig. 3, and that of daily 
data of Suspended Pendulum PL4 (Y direction) by DFA.

Suspended Pendulum PL4 (Y direction) by DFA.



Table 1
The results of scaling exponents by DFA.

Monthly mean Daily measured data 

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

a 1.0875 1.3581 1.6853 1.8629 1.328 1.4671 1.5005 1.5053 
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measured data is shown in Fig. 4 with only one order (k = 1). Table 1
gives results of scaling exponents.

The analysis from above figures and Table 1 indicates that:

(1) It can be seen from Fig. 3 that the value of log(Fs) decreases 
on the whole with the increase of the order and each curve 
tends to be stable gradually at the end of data. All of these 
plots are mostly close to be straight, have different slopes 
and are shown for comparison, signifying that the studied 
time series can be regarded as multifractal measures. From 
Table 2
The results of scaling exponents for the monthly mean by MF-DFA.

H(q) Monthly mean H0(q)

q k = 1 2 3 4 k = 3

�10 1.552 2.222 2.473 3.812 2.749
�9 1.549 2.216 2.460 3.801 2.730
�8 1.545 2.207 2.444 3.787 2.706
�7 1.539 2.196 2.423 3.769 2.675
�6 1.531 2.180 2.394 3.742 2.633
�5 1.519 2.157 2.353 3.703 2.578
�4 1.500 2.120 2.297 3.638 2.504
�3 1.471 2.061 2.217 3.522 2.405
�2 1.425 1.968 2.110 3.277 2.277
�1 1.356 1.836 1.982 2.743 2.129

0 1.267 1.672 1.858 2.179 1.979
1 1.172 1.502 1.757 1.956 1.839
2 1.088 1.358 1.685 1.863 1.715
3 1.021 1.253 1.638 1.808 1.615
4 0.970 1.179 1.607 1.772 1.540
5 0.931 1.127 1.585 1.746 1.485
6 0.901 1.091 1.570 1.727 1.445
7 0.877 1.063 1.557 1.712 1.416
8 0.858 1.043 1.548 1.701 1.394
9 0.842 1.027 1.540 1.692 1.377

10 0.830 1.014 1.533 1.685 1.364

Fig. 5. Analysis results of the m
Table 1, the scaling exponent a obtained correspondi ng to
different orders is the curve slope which increases gradually 
as the order increases but the amplitude of gradual increase 
is decreasing for. It is needed to point out that log(Fs)�log(s)
curves of daily measured data not given except k = 1. This is
because that it cannot be distingui shed well at different 
orders in the figure due to the large amount of log(Fs)
obtained depending on daily measured data, the general 
trends of other orders are the same as that of k = 1. It can 
also be seen from Table 1 that ranges of scaling exponents 
corresponding to daily measured time series for different 
orders are relatively less than those of monthly mean series.
According to the principle of DFA, main function of the 
k-order polynomial fitting is to eliminate k-order tendency 
fluctuation from accumulative sequence , in other words, to
eliminate k-1-order tendency fluctuation from original 
sequence. Therefore, the greater the sequence fluctuation
is, the greater the scaling exponent fluctuation obtained 
Daily measured data H́(q)

k = 1 2 3 4 k = 3

 1.867 1.820 1.840 1.873 1.596 
 1.856 1.811 1.830 1.863 1.590 
 1.843 1.799 1.818 1.852 1.582 
 1.826 1.785 1.803 1.837 1.574 
 1.804 1.767 1.786 1.820 1.564 
 1.775 1.744 1.763 1.798 1.553 
 1.736 1.716 1.736 1.771 1.541 
 1.683 1.680 1.704 1.738 1.526 
 1.616 1.640 1.668 1.698 1.510 
 1.540 1.599 1.630 1.650 1.496 
 1.464 1.559 1.590 1.603 1.490 
 1.394 1.515 1.547 1.555 1.485 
 1.328 1.467 1.501 1.505 1.478 
 1.269 1.419 1.455 1.458 1.469 
 1.221 1.378 1.418 1.418 1.459 
 1.183 1.347 1.388 1.386 1.449 
 1.153 1.322 1.366 1.363 1.439 
 1.130 1.303 1.348 1.344 1.430 
 1.112 1.289 1.335 1.330 1.422 
 1.097 1.277 1.324 1.318 1.415 
 1.085 1.267 1.315 1.308 1.409 

onthly mean by MF-DFA.



Fig. 6. Analysis results of the daily measured data by MF-DFA.

H. Su et al. / Expert Systems with Applications 40 (2013) 4922–4933 4929
from this is. The fact, namely the range of daily measured 
value series is smaller than monthly mean series for different 
values of k, also reflects the characterist ics of monthly mean.

(2) It can be seen from Table 1 that all scaling exponents that 
are greater than 1.0. The time series of dam displacemen t
exhibits not only long-ran ge correlations but also complex 
non-power- law correlations. This indicates that displace- 
ment series has complex fractal structure and the factors 
affecting displacemen t fluctuations are more complex. The 
scaling exponent of daily measured series which tends to
1.5 means that displacemen t sequence is similar to the cor- 
relation of Brown noise.

(3) The advantag es of DFA which can be seen as a conventional 
analysis method of time series are that DFA can not only ana- 
lyze potential self-simi larity of series but also eliminate spu- 
rious correlations caused by strong tendency for the time 
series which is not determined but looks like an unsteady one.
Fig. 7. Relation plots between Renyi index s(q) and
4.2. Multifracta l analysis of dam’s displacement time series 

The MF-DFA is respectively employed to the time series of daily 
observati on data (N = 2014) and monthly mean (N = 72) of Y-direc-
tion displacement measured by PL4 installed in Block 4#.

As mentioned in Section 3.1, if jqj � 10, fluctuation functions 
for q > 0 and q < 0 correspond to the scaling behavior of large and 
small fluctuations of displacemen t time series, respectively . That’s 
to say, the values of q are very important, and the bigger q takes the 
better for analysis in theory. However the computational complex- 
ity doubles with the increase of q, especially when the value of q
exceeds a certain limit value increase has almost no effect on the 
results. Meanwhile, small value range of q can not reflect the frac- 
tal features well. According to references(de Moura et al., 2009;
Kantelha rdt et al., 2002; Telesca et al., 2012a; Telesca et al.,
2012b), fractal spectrums are calculated for q in the range 
�10 6 q 6 10.
 q for monthly mean and daily measured data.



Fig. 8. Analysis results of the monthly mean for measured data of Suspended Pendulums PL3 �5 (Y direction) by DFA.
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H́(q) in the Table 2 which gives the multifractal analysis 
results is the analysis results after time series reorganiz ation 
(generating surrogate time series). Time series reorganization is
realized by Fourier Transform with the same mean and 
variance of original one. Changed but uncorrlet ed phases are 
assigned randomly to the Fourier transformed time series. There- 
fore new time series after reorganization has no memory. It is
unreasonab le for the fractal analysis of displacement time 
series if the data after reorganization have the same fractal 
results with original data; the analysis of long-range 
correlations for time series is credible if the data after reorgani- 
zation and original data have significantly different analysis re- 
sults. Figs. 5 and 6 show the relationship between H(q) and q
by using MF-DFA to analyze monthly mean and daily measure d
values respectivel y. It can be seen from the above figures and 
tables:



Fig. 9. The q-order H(q) for three time series of PLs3 �5 (Y direction).
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(1) The case that H(q) obtained from the analysis of monthly 
mean and daily measure d value are over 1.0 indicates dis- 
placement time series has obvious long-range correlations .

(2) For fixed order k, H(q) of the time series of displacemen t
changes with q but not a constant. Both monthly mean 
and daily measure d time series present similar nonlinear 
relationship between H(q) and q, namely the growing q leads
to a decreasing H(q). This indicates that displacemen t time 
series has different degree of multifractal features as
expected, thus monofracta lity cannot describe the fluctua-
tion characteristics of displacement well.

(3) From Fig. 5, the values of MF-DFA2 and MF-DFA3 are very 
close if q < 0; the values of MF-DFA3 and MF-DFA4 are very 
close and the whole range of MF-DFA3 is smaller that tends 
to 1.5 gradually at the end if q > 0. So selecting 3-order poly- 
nomial fitting is credible for the monthly mean analysis of
displacemen t sequence. The same to Fig. 6, the values of
MF-DFA2 and MF-DFA3 are very close if q < 0; the values 
of MF-DFA3 and MF-DFA4 are very close and the whole 
Fig. 10. Renyi index s(q) for three tim
range of MF-DFA3 is also smaller that tends to 1.3 gradually 
at the end if q > 0. So selecting 3-order polynomi al fitting is
credible for the daily measure d value analysis of displace- 
ment sequence.

(4) Changes of H(q) mainly depend on the variance of small fluc-
tuation if q < 0 and changes of H(q) mainly depend on the 
variance of big fluctuation if q > 0. The case that the range 
of monthly mean and daily measured value are both smaller 
if q > 0 indicates that the whole changes of displacement 
measured value sequence are smaller and do not have bigger 
fluctuation.

(5) When the value of q is fixed, the higher the order is, the 
greater the value of H(q) is. Even if the polynomials of differ- 
ent orders are used, the abilities of eliminating tendency 
fluctuation are not the same. So the greater the fluctuation
of displacemen t sequence is, the greater the difference of
H(q) obtained from different orders is. It can be seen from 
the figures that H(q) of monthly mean changes greater than 
daily measured value for the same order and the whole 
e series of PLs3 �5 (Y direction).



Fig. 11. Multifractal spectrums f(a) for three time series of PLs3 �5 (Y direction).
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range of H(q) of daily measured value is much smaller than 
H(q) of monthly mean. The range of daily measured value for 
the same order is very small if q > 2. So this is in accord with 
reality that the fluctuation degree of daily measure d value is
smaller than the fluctuation degree of monthly mean.

(6) According to the analysis conclusio n of (3), this paper selects 
3-order polynomial fitting to make the same analysis for the 
sequence after phase reorganizati on and the analysis results 
are given in H0(q) column of Table 2. A striking contrast 
existing between the analysis results after and before reor- 
ganization by comparing indicates that the long-range cor- 
relations of displacemen t time series analyzed is not 
accidental . So it is necessary for the displacement sequence 
of complex causes to use multifractal analysis method to
analyze.

(7) Fig. 7 is the relation graphs between Renyi index s(q) and q.
It can be seen from the figures that the slope of s(q) changes 
greatly when q < 0 and q > 0 and s(q) is nonlinear obviously.
The significant nonlinearity of s(q) fully demonstrat es mul- 
tifractal features of displacement time series.

4.3. Multifractal analysis of dam global behavior 

As mentioned above, multifractal features exist in the displace- 
ment time series of the dam. Next, multifractal analysis of time 
series of PL3 and PL5 are conducted to compare with that of PL4 
to reflect the long term behavior and structura l evolution law of
the global dam system, and MF-DFA1 has been employed.

To determine the scaling behavior of the fluctuation functions,
log–log plots of Fs versus s for time series of all three suspended 
pendulums are shown in Fig. 8(a)–(f) for several q values
(±5,±3,±1) with k = 1. Fig. 9 shows the corresponding calculated 
H(q)�q for three time series using MF-DFA1.

From Fig. 9, H(q) is q dependent for these time series. In other 
words, multifractal characteristics really exist in deformation fluc-
tuation series. Since this, the deformation fluctuation series may be
transferred into a more useful compact form through the multi- 
fractal formalism, namely, the f(a)�a plots. Fig. 10 shows plots of
mass exponents Renyi index s(q) versus q for three time series 
with MF-DFA1, and Fig. 11 shows the correspondi ng f(a) spectrums 
calculated from H(q) using Legendre transform namely Eq. (20).

It can be seen from the above figures:
(1) The results of Fs�s for three time series are compared in
Fig. 8(a)–(f). The small segments are able to distingui sh
between the local periods with large and small fluctuations
(i.e., positive and negative q’s, respectively ) because the 
small segments are embedded within these periods. In con- 
trast, the large segments cross several local periods with 
both small and large fluctuations and will therefore average 
out their differences in magnitude. From Fig. 2, it is observed 
that time series of PL4 and PL5 fluctuate with the same trend 
and magnitude among these years. As shown in Fig. 8(a)–(f),
nice agreement is observed for Fs�s plots of time series of
PL4 and PL5 especiall y around lower values of q.

(2) Only if small and large fluctuations scale differently, there 
will be a significant dependence of H(q) on q. For positive 
values of q, H(q) describes the scaling behavior of the seg- 
ments with large fluctuations, on the contrary, for negative 
values of q, H(q) describes the scaling behavior of the seg- 
ments with small fluctuations. Usually large fluctuations
are characterized by a smaller scaling exponent H(q) for 
multifractal series than the small fluctuations. In Fig. 9, var- 
iation trends of H(q)�q plots accord well with each other.
However, it is also found that some small differences exist.
These can be boiled down to differences caused by the large 
and small fluctuations. The results are in good agreement 
with general law, showing that the MF-DFA correctly detects 
the multifractal scaling exponents of dam deformation .

(3) Fig. 10 shows that three time series have mass exponents 
Renyi index s(q) with a curved q-dependecn y The resulting 
multifractal spectrum is where the difference between the 
maximum and minimum a are called the width of multifrac- 
tal spectrum Da (amax � amin). The higher the range (width)
Da, the higher the multifractal degree.Da may indicate 
absolute magnitudes of deformat ions in a dam, larger the 
value of Da, weaker the local or dam block. Different fluctu-
ation scopes and movement trends correspond to multifrac- 
tal spectra with different sizes and shapes (i.e., a hook to the 
left as PL3 and a hook to the right as PL4). Meanwhi le, the Df
may indicate the different trends of deformat ion move- 
ments. Values of Da of PL3 �PL5 are respectively equal to
1.0033, 1.0086 and 0.7727. This can also be found from 
Fig. 11. These figures and data indicate that Block 5 has 
the most normal deformation fluctuations according with 
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environmental factors (i.e., water pressure , rain and air tem- 
perature etc.). On the contrary, time series of PL3 and 4 show 
more multifractal characterist ics. Intuitivel y, the multifrac- 
tal spectra may contain some useful statistical information 
about the deformat ion movements of dams.

5. Conclusions 

The physical phenomenon underlying the observed time series 
is complex. The use of multifractal methods in investigatin g the 
spatiotempor al fluctuations of the observed time series can lead 
to a better understand ing of such complexity. The determination 
of the multifractality has been performed by means of the MF- 
DFA method, which has revealed a clear multifractal characteri stic 
of the time series, mostly due to different long-range correlations 
for small and large fluctuations.

(1) The DFA was used to analyze the monofracta l scaling prop- 
erties of the in situ time series of dam. The results indicate 
that this time series has obvious fractal features and typical 
long-ran ge correlation.

(2) According to the time depende nt characteristics appear in
observed time series of dam, the framework for analyzing 
multifractals based on MF-DFA was proposed . Time series 
of deformation observed from one existing gravity dam 
was investigated . The time series exhibits not a simple 
monofracta l scaling behavior but multifractal characteris- 
tics. The scaling behavior in the observed time series of
dam is so complicated that different scaling exponents are 
required for different parts of the series. The MF-DFA based 
method can depict the fractal features with different time 
scales especially smaller scales, namely a full description of
the scaling behavior.

(3) Monofractal in time series identifies the long range statisti- 
cal characteri stics of long term dam behavior, thus in the 
sense this exponent only describes the fluctuations for the 
original series in one large scale. In this case monofractal 
doesn’t take different parts of the series into account. Multi- 
fractals observed in deformation time series reflect the irreg- 
ularity and singulari ty, within which phenomena internal or
external influencing factors vary. In other words, the struc- 
ture of the time series is linked to the structural behavior 
under correspondi ng environm ents. Multifrac tals within dif- 
ferent small scales can better depict the underlying behavior 
evolution.

(4) Since the observation of multifractal spectrum of deformation 
fluctuation in dam monitoring system has led to a better 
understa nding of such complexity, this should be encourag ed.

(5) The determination of the multifractal ity has been performed 
by means of the MF-DFA method, which has revealed clear 
multifractal characteristics of the time series, mostly due to
different long-ran ge correlations for small and large fluctua-
tions. The potential of multifractal analysis is far from being 
fully exploited , in our future work the variation of the multi- 
fractal of the time series should also be investigated in a more 
systemic way, namely not only the consequences but also the 
influencing factor should be understood in depth.
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