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Abstract 
This paper describes a sequential Monte Carlo simulation 
method for the reliability analysis of standby and emergency 
power systems. The results obtained from this method are com- 
pared with those from the Markov cut-set approach. It is shown 
that the Monte Carlo simulation can yield additional useful in- 
formation on the probability distribution of indices in addition 
to obtaining the estimates of the mean values. 

1 Introduction 
Different facilities have varying requirements for reliability of 
electric power supply. Even at the same facility various loads 
may have different reliability requirements. Some loads, such 
as medical facilities, emergency lighting, data processing and 
chemical process industries are very sensitive to interruptions 
in electric supply. Standby and emergency power systems [ 1, 
2,3] are installed at such premises to provide electric power of 
acceptable quality. 

Reliability and cost considerations play an important role in 
the choice of various altematives. These altematives include 
less expensive utility supply enhanced by standby power, more 
expensive utility supply, and various configurations of standby 
systems. The analysis of these altematives may become more 
important as the reliability differentiated power becomes avail- 
able. 

Reliability analysis of various options is important for the 
proper selection of standby power systems. Although this is an 
important problem, it has not been adequately addressed in the 
available literature. References [4] and [5] describe methods 
based on Markov and Markov cut set approaches. This paper 
describes a Monle Carlo [61 approach for this problem. 

2 Background 
Reference [5] outlines an approach based on a combination of 
the cut-set method and the Markov models. This approach con- 
sists in first identifying cut-sets which are basically components 
or events whose failure or occurrence would cause system fail- 
ure. The equations for calculating the failure frequency and 
duration of these cut-sets are described in [3, 51. Some of 
the events which involve dependent failures are analyzed using 

Markov processes [5,  6, 71. The methodology for combining 
the frequency and duration of cut-sets to obtain system indices 
is described in [6,7]. This approach is quite powerful, but may 
run into problems of dimensionality where large and complex 
configurations are involved. 

3 Monte Carlo Approach 
The reliability indices of an actual physical system can be es- 
timated by collecting data on the occurrence of failures and 
the durations of repair. The Monte Carlo method mimics the 
failure and repair history of the components and the system by 
using the probability distributions of the component state dura- 
tions. Statistics are then collected and indices estimated using 
statistical inference. 

There are two basic approaches for Monte Carlo simulation, 
(1) sequential simulation, and (2) random sampling. The se- 
quential simulation proceeds by generating a sequence of events 
using random numbers and probability distributions of random 
variables representing component state durations. In random 
sampling, states are drawn based on the probability distribu- 
tions of component states and random numbers. Further, there 
are two methods for representing the passage of time in se- 
quential simulation: (1) the fixed interval method, also called 
synchronous timing, and (2) the next event or asynchronous 
timing method. In the fixed interval method, time is advanced 
in steps of fixed length and the system state is updated. In the 
next event method, time is advanced to the occurrence of the 
next event. In actual implementations, it is likely that combi- 
nations of the timing controls may be used. 

The sampling method is generally faster than the sequential 
technique, but is suitable when component failures and repairs 
are independent. This paper presents the sequential method for 
reliability analysis. 

3.1 Description of the Method 

The flowchart for this method is shown in FIGURE 1. The whole 
procedure consists of the following steps. 

3.1.1 Data Input and Initialization 

The input data consists of thefailure rate (A) and duration ( r )  
of every component. The failure rate is the reciprocal of the 
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mean up time. The failure duration or mean down time is the 
reciprocal of the repair rate (p). The failure and repair rates, A. 
and p ,  of a component will be used to determine how long the 
component will remain in the “UP” state and the “DOWN” state. 

Simulation could be started from any system state, but it is 
customary to begin simulation with all the components in the 
“UP” state. 

READ FAILURE RATE AND DURATION 
DATA FOR ALL COMPONENTS 

4 
SET INITIAL STATE OF ALL 

COMPONFNTS AS “UP” 

AND COMPUTE THE TIME TO THE NEXT EVENT 

FIND THE MINIMUM TIME AND CHANGE THE 
STATE OF THE CORRESPONDING COMPONENT, 

UPDATE TOTAL TIME 

\1 
IS THERE 

A CHANGE IN SYSTEM 
STATUS? 

1 UPDATEINDICES 1 
I I 

FIGURE 1: FLOWCHART FOR NEXT-EVENT SIMULATION 

3.1.2 Random Number Generation 
Simulation is performed by generating realizations of the un- 
derlying stochastic process, by using random numbers. These 
numbers constitute a sequence in which each number has an 
equal probability of assuming any one of the possible values, 
and is statistically independent of the other numbers in the 
sequence. Random numbers, therefore, basically constitute a 
uniform distribution over a suitably selected range of values. 
This distribution may be constructed using any suitable means. 
The method used in this work is a multiplicative congnuential 
method [6] which obtains the (n + 1)th random number Rn+l 
from the nth random number R, using the followingrecuirrence 
relation due to Lehmer 

Rn+l = (aR,)(modulo m) (1) 

where a and m are positive integers, a < m. The above notation 
signifies that Rn+l is the remainder when aR, is divided by m. 
The first random number RO (called the seed) is assumed, and 
the subsequent numbers can be generated by the above recur- 
rence relation. Now the sequence thus generated is periodic, so 
Ro, a and m should be carefully chosen so that the sequence 
cycle is larger than the number of random numbers required. 

3.1.3 Computation of Time to the Next Event 

The time to the next event is generated by using the inverse 
of probability distribution method. This method can be under- 
stood by considering the probability mass function of a random 
variable shown in FIGURE 2. The first step is to convert this 
mass function into the corresponding distribution function, as 
shown. Now a random number z between 0 and 1 is gener- 
ated and F ( x )  is set equal to z .  The corresponding value of X 
gives the value of the random variable. An example is shown 
in FIGURE 2, with z = 0.55, for which X = 2. 

I 
3 
X 

4 

Random 
number 

. - - - - - - - - - - 

, observation 

0 1 2 3 4  

X- 

FIGURE 2: PMF AND PDF OF A RANDOM VARIABLE 

It should be noticed that F(x i )  - F(xi-1) is equal to 
P(X = xi), and if the random number falls in the interval 
(F(x i ) ,  F ( x i - ~ ) ) ,  the value of X = xi will be selected. The 
procedure therefore essentially allocates the random numbers 
to the random variables in the proportion of their probabilities 
of occurrence. 

This procedure can also be used for continuous distributions. 
Continuous distributions are approximated by discrete distribu- 
tions whose irregularly spaced points have equal probabilities. 
The accuracy can be increased by increasing the number of in- 
tervals into which (0,l) is divided. This requires additional data 
in the form of tables. Although the method is quite general, its 
disadvantages are the great amount of work required to develop 
tables and possible computer storage problems. The following 
analytic inversion approach is simpler. 

Let z be a random number in the range 0 to 1 with a uni- 
form probability density function, i.e., a triangular distribution 
function: 

0 z < o  

0 z > 1  
(2) 
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Similarly 
0 z < o  

1 z > 1  
(3) 

Let F (x) be the distribution function from which the random 
observations are to be generated. Let 

z = F ( x )  

Solving the equation for x gives a random observation of 
X .  That the observations so generated do have F ( x )  as the 
probability distribution can be shown as follows. 

Let q5 be the inverse of F ;  then 

Now x is the random observation generated. We determine its 
probability distribution as follows 

P(x  5 X )  = P ( F ( x )  5 F ( X ) )  

= P ( z  I F ( X ) )  (4) 
= F ( X )  

Therefore the distribution function of x is F ( X ) ,  as required. 
In the case of several important distributions, special techniques 
have been developed for efficient random sampling. 

In this paper, the distributionsassumed for up and down times 
are exponential. The exponential distribution has the following 
probability distribution 

P ( X  5 x )  = 1 - e-Px (5 )  

where l /p  is the mean of the random variable X .  Setting this 
function equal to a random decimal number between 0 and 1, 

Since the complement of such a random number is also a ran- 
dom number, the above equation can as well be written as 

Taking the natural logarithm of both sides and simplifying, we 
get 

(6) 
M z )  x = -- 

P 
which is the desired random observation from the exponential 
distribution having l / p  as the mean. 

This method is used to determine the time to the next tran- 
sition for every component, using A. or p for p ,  depending on 
whether the component is UP or DOWN. The smallest of these 
times indicates the most imminent event, and the correspond- 
ing component is assigned a change of state. If this event also 
results in a change of status, (i.e., failure or restoration) of the 
system, then the corresponding system indices are updated. 

3.1.4 The Indices 

At any time t , the mean failure frequency is given by 

1 
t 

At = -(number of failures till time t )  (7) 

and the mean down time is given by 

1 
t 

rr = -(total time spent in failed state) (8) 

The values of A. and r at the instant the simulation converges 
(see P 3.1.5) are thereliability indices for the system as obtained 
from the Monte Carlo method. 

3.1.5 Convergence 

The simulation is said to have converged when the indices attain 
stable values. This “stabilization” of the value of an index i is 
measured by its standard error, defined as: 

where Oi = standard deviation of the index i 
n, = number of cycles simulated 

(9) 

Convergence is said to occur when the standard error drops 
below a prespecified fraction, e ,  of the index i, i.e., when 

If, for instance, the mean down timer is chosen as the index to 
converge upon, then, after every system restoration simulated, 
the following relation is tested for validity: 

If this criterion is satisfied, the simulation is said to have 
converged. 

3.2 Statistics Obtained from Simulation 

Simulation is advantageous in that it not only allows the compu- 
tation of indices at various points in the system, but also permits 
the accumulation of data pertaining to the distribution of these 
indices, thereby affording a better understanding of the system 
behavior. 

For an emergency power system, for instance, statistics may 
be collected for failure frequency and duration at various points 
in the system, the annual incidence rates for failures, as well as 
for the variances of these indices. 

This feature of the method is demonstrated in the following 
sections. 

4 The Test System 
This section describes the test system used in this study, and 
briefly discusses some modeling considerations. 
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4.1 System Description 

The test system is shown in FIGURE 3. This system is the same as 
the one analyzed in [51. The power is normally supplied from 
utility input power through the U P S .  A synchronized bypass 
and static switch protect the critical load in the event of an 
inverter failure. If voltage is lost to the critical load, the SlTS 
reestablishes voltage in less than one quarter of a cycle. This is 
considered continuous power for most loads. 
UTILlTY INPUT POWER SYNCHRONIZED BYPASS 

CNTICAL 

BUS 
INV” STS LOACl 

FIGURE 3: PARALLEL S W P L ~  NONREDUNDANT UNINTERRUPTIBLE 
POWER SUPPLY 

When the generators are in standby mode, their failures; re- 
main undetected except during periodic inspections. Therefore, 
while starting, there is a probability ps that a generator may fail 
to start. 

Only one generating unit is taken out for planned mainte- 
nance. If a generator fails while the other is on planned mainte- 
nance, it is possible to accelerate the maintenance on the second 
generator by a factor of a!. 

If power fails at bus A, the battery can sustain the load1 for 
upto 4 hours. 

TABLE I lists the data pertaining to the system. 

TABLE I: SYSTEM DATA 

Equipment/Suppl y (f/Y) r (h/f) 
Utility Supply, single circuit 0.53700 5.66 
Generator (per hour of use) 0.00536 478.00 
Inverter 1.25400 107.00 
Rectifier 0.03800 39.00 
ATS 0.00600 5.00 
STS 0.08760 24.00 
Battery 0.03130 24.00 
Equipment Maintenance fres c/Y> dur (h) 
Generator 1.00 10.00 
U P S  1.00 4.00 
Other data: 
Battery can supply load for 4.0 h 
Common mode failure of 

generators 0.0 
Acceleration factor for planned 

maintenance of generators (a) 2.0 
Probability of failure to 
- start a generator (ps) 0.015 - - 

4.2 Simulation Model 

The flowchart shown in FIGURE 1 was implemented. In com- 
puting the time to the next event, the method described in Q 3.1.3 
was used, but the following dependencies were also included: 

1. A generator cannot fail while the utility supply is up 

2. A generator cannot be taken out for maintenance if the 
utility is down or if the other generator is down or under 
maintenance 

3. The U P S  cannot be taken out for maintenance unless 
power is available at bus A 

The failure of a generator to start was modeled as follows. 
A random number z was generated, 0 5 z 5 1. If z I p s ,  the 
generator was assumed to fail. 

5 Results 
In this section the indices obtained from simulation are com- 
pared with those obtained analytically, using cut-set analysis, 
in [5]. 

5.1 Cut-Set Analysis 

The reliability indices of the test system have been analytically 
evaluated, using the cut-set approach, in [5]. A summary of the 
solution steps and the results will be presented here, to provide 
a basis for validation of the simulation technique. 

First, the combination of the utility supply and the two gen- 
erators is analyzed for failure modes. FIGURE 4 shows the 
possible states this combination can assume, and the transition 
rates between these states. Based on these transition rates, the 
probabilities and frequencies of occurrence of the failed states 
are determined. This enables computation of the failure rate 
and duration of the utility-generator subsystem, which are de- 
termined to be 

hp = O.O01576/y and rp = 5.443h 

I 
S. BOTH 
GENS DN 

FIGURE 4: STATE TRANSITION DIAGRAM FOR UTILITY SUPPLY AND 

GENERAToRS 
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The next step involves computation of the rate and duration 
of power failure at bus A: 

Index 
h, (f/y) 
rp Wf) 
A A  (f/y) 
T A  

~ C L B  (f/y) 
rr1.R (h/f) 

The remainder of the cut-set analysis is performed as shown 
in TABLE 11. The system indices, i.e., rate and duration of power 
loss at the Critical Load Bus (CLB) are determined to be 

Simulated Calculated 
M m  SD Mean SD 

0.001352 0.001497 0.001576 0.001576 
5.028 5.503 5.443 5.443 

0.007193 0.006851 0.007576 0.007576 
5.216 5.201 5.092 5.092 

0.004868 0.004888 0.005225 0.005225 
9.7135 13.3312 9.648 9.648 

~ C L B  = - ‘ l Z r  = 9.648h 
E,’ 

k 
0 
1 
2 
3 
4 

If all distributions are assumed exponential, then the standard 
deviations of all the up times and down times would equal the 
corresponding mean up times and down times. This implies 
that the standard deviations of the failure rates would also equal 
the corresponding means computed. 

P ( N f  = k )  
Simulated Calculated 

0.9952 0.9947 
0.4825 x 0.5198 x 
0.2167 x 0.1358 x lop4 
0.0000 0.2365 x 
0.0000 0.3089 x 

TABLE FREQUENCY AND DURATION OF POWER LOSS AT CRITICAL 

LOAD Bus ( C L B )  

Power loss at bus A > 4 h 0.003454 5.092 0.017588 
Power loss at bus A 

(0.007576,5.092) 
and 0.000125 4.845 0.000606 

Failure of [Inverter or battery 
or STS] (1.3729.99.812) 

Maintenance on UPS (I .O, 4) 

Power loss at bus A 
(0.007576,5.092) 

Inverter failure(l.254, 107.0) 

STS failure(0.0876,24.0) 

and 0.000003 2.240 0.000007 

and 0.001643 19.603 0.032208 

c 0.005225 0.050409 

5.2 Simulation Results 
The simulation method described in section 3 was used to 
compute the following statistics for the test system: 

1. Frequency h, and duration r,, of failure of the utility- 
generator subsystem (FIGURE 4); the standard deviations 
of h, and rp .  

2. Frequency L A  and duration r A  of power failure at bus A; 
the standard deviations of AA and rA .  

3. Frequency h c ~ ~  and duration TCLB of power failure at 
the critical load bus; the standard deviations of ACLB and 
rcLB. 

4. Data for the Probability Mass Function of the number of 
system failures per year, N f  . 

system down time, T f .  
5. Data for the Probability Distribution Function of the 

TABLE I11 compares the indices obtained from simulation 
with those obtained analytically. 

TABLE m: COMPARISON OF SIMULATED AND CALCULATED INDICES 

TABLE IV compares the PMF of the number of system failures 
per year. Now for exponentially distributed up times the failures 
are Poisson distributed, i.e., 

- simulated 
- - -  calculated 

0.0 ! I I I 1 I I I I I 

0 10 20 30 40 50 80 70 80 90 100 
down time (hours) 

FIGURE 5: F ’ R O B A B I L ~  DISTRIBUTION FUNCTION OF DOWN TIME 
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6 Discussion and Conclusion 
This paper has demonstrated the application of the Monte Carlo 
method to the reliability analysis of emergency and standby 
power systems. A relatively small system consisting of two 
standby generators and one UPS was used for illustrating the 
method and comparing the results with those obtained by an 
analytical method. It is no surprise that the results obtained from 
the simulation are close to those obtained using cut-sets, since 
both methods are based on sound mathematical foundation. 

In practice, both methods use approximations, but in different 
ways. The cut-set approach is exact only if all cut-sets are 
utilized. In practice, however, only cut-sets of upto a selected 
order, generally second order, are used. The other source of 
approximation comes from the use of equations for probability 
and frequency of system failure. Although exact equations are 
available [6], the equations used in [5] and many applications 
are approximate. The approximations do not have a significant 
effect so long as the component probabilities of success are 
close to unity. 

The approximation in the Monte Carlo method comes from 
the fact that in this approach, the statistics are estimates of 
the true values, and therefore cannot be exact. It can be seen 
from equation (1 1) that if the error is to be reduced to half, 
the number of samples has to increase four times. Thus for 
systems with high reliability (or low probability of failure:), the 
Monte Carlo simulation can take a very long time to converge. 
The main advantage of simulation is that it is very flexible 
for incorporating dependent failures and is very suitable for 
large systems. Also, it yields the probability distribution of 
indices in addition to estimating mean values. These probalbility 
distributions are useful for performing cost benefit analysis. 
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