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A B S T R A C T

A 2.5D FEM (finite element method) is used to investigate the effects of soil parameters of transversely isotropic
(cross anisotropic) saturated soil on ground vibrations and excess pore water pressures induced by moving train
loads. The governing equations of transversely isotropic saturated soil are derived from the Boit's theory in
frequency domain by applying the Fourier transform with respect to time, and 2.5D FE model is then established
using Galerkin method. Correctness of the proposed model is validated with published data. Numerical results
illustrate that the decrement of vibration amplitude and excess pore water pressure caused by the increment of
vertical elastic modulus is more significant than that of the horizontal direction. Poisson ratios in both directions
have little effect on ground vibrations, while an increase in horizontal Poisson ratio results in a significant
increment in excess pore water pressure.

1. Introduction

Railway train has been a major mode of public transportation,
especially in China. With the rapid development of high-speed railways,
the environmental vibration caused by moving trains is becoming more
widely concerned. Natural soils widely distributed in coastal area
usually is exhibited the characteristic of cross-anisotropy or transverse
isotropy due to sedimentation or consolidation. Therefore, researchers
should pay more attention on the vibrations of transversely isotropic
(cross anisotropic) ground.

Many experimental methods are adopted to study the property of
transversely isotropic soil. For example, Kuwano et al. [1] used bender
elements and trigger-accelerometers to measure elastic wave velocities
transmitted vertically in triaxial specimens of sand, gravel and glass
beads. Nishimura [2] adopted high-precision triaxial apparatus to study
cross-anisotropic deformation characteristics of natural sedimentary
clays. Other researchers studied the analytical solution of wave pro-
pagation in transversely isotropic ground. Papargyri-Beskou et al. [3]
studied the wave propagation in gradient elastic solids and structures.
Zymnis et al. [4] presented closed-form analytical solution for esti-
mating far-field ground deformations caused by shallow tunneling in a
linear elastic soil mass with cross-anisotropic stiffness properties. Ah-
madi and Eskandari [5] analyzed the vibrations of rigid circular disk

and strip embedded in a transversely isotropic solid. Ogden and Singh
[6] investigated the effect of rotation and initial stress on the propa-
gation of waves. Recently, Ai and Ren [7] analyzed the vibration of a
transversely isotropic solid subject to a moving loading using the ana-
lytical element method.

Apart from the experimental and analytical studies, numerical
method is becoming a promising method in study of this problem with
its feasibility for dealing with actual problems with irregular geometry.
Abedrrahim [8] presented a coupling method of finite and hierarchical
infinite elements to solve a non-homogeneous cross-anisotropic half-
space subjected to a non-uniform circular loading. These methods
showed good performance in predicting vibration in non-homogenous
soils, however, such models are rather expensive in calculation time
and memory space. To improve the computational efficiency and en-
sure the accuracy of computational model, a 2.5D FEM was used for
solving the ground vibrations induced by a moving train [9–12]. The
2.5D FEM conducts Fourier transform along the train moving direction,
and solves the three dimension problem with a two dimensional FE
grids which is dispersed on section perpendicular to the train moving
direction. It is firstly used in seismic analysis, and then employed to
solve dynamic response under train loads by Yang and his collaborators
[9,10]. Nevertheless, published results using 2.5 D FEM are all in
homogenous or layered elastic and saturated soils, study on ground

http://dx.doi.org/10.1016/j.soildyn.2017.09.030
Received 6 August 2017; Received in revised form 27 September 2017; Accepted 29 September 2017

⁎ Correspondence to: College of Civil Engineering, Tongji University, Shanghai 200092, China.
E-mail address: gaoguangyun@263.net (G. Gao).

Soil Dynamics and Earthquake Engineering 104 (2018) 40–44

0267-7261/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/02677261
https://www.elsevier.com/locate/soildyn
http://dx.doi.org/10.1016/j.soildyn.2017.09.030
http://dx.doi.org/10.1016/j.soildyn.2017.09.030
mailto:gaoguangyun@263.net
http://dx.doi.org/10.1016/j.soildyn.2017.09.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2017.09.030&domain=pdf


borne vibration under moving train loads in transversely isotropic sa-
turated soil is not yet reported.

In view of this, based on Biot theory and the Galerkin method, this
paper establishes a 2.5D FEM of transversely isotropic saturated soil
together with flow viscoelastic boundary conditions, to predict ground
vibrations in such soils subjected to train loads; and the effects of me-
chanical parameters of transversely isotropic saturated soil on the
ground vibration and excess pore water pressure are studied in detail.

2. Equations of u-p format for 2.5D FEM

The finite element model is the same as that in Ref. [11], track and
ground are simplified as Euler-Bernoulli beam and transversely iso-
tropic saturated porous medium, respectively. The train moves along
the track with a velocity c, the expression of train loads can be seen in
Ref. [11]. The material and geometric properties are assumed to be
constant along the train moving direction. Coordinates system of the
finite element model is the same as that in Ref. [11], where x is the train
moving direction, y is the direction perpendicular to track, and z is the
vertical direction, the track center is the origin of coordinates. In ad-
dition, the height of embankment is set to be 1.0 m, and underground
water level is at the ground surface.

According to Biot's theory of wave propagation in fluid-saturated
porous medium, the dynamic motion equations of a fully saturated
poroelastic medium can be expressed as follows [11]:
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in which σij is the stress of porous medium and Fi is the body force of the
solid skeleton; ρ and ρf denote the bulk density of the porous medium
and the density of the pore fluid, = − +ρ ρ n nρ(1 )s f , in which ρs is the
density of the solid skeleton and n is the porosity of the porous medium;

= −W n w u( )i i i is the average displacement of the pore fluid relative to
the solid skeleton, in which wi and ui denote the infiltration displace-
ments of pore fluid and the average displacement of solid skeleton,
respectively; p is the excess pore water pressure and g is the acceleration
of gravity; Kf and Kd are the bulk modulus of pore fluid and the per-
meability of the porous medium, respectively; (′) indicates differentia-
tion with respect to time t.

The Fourier transformation of function u x y z t( , , , ) with respect to x-
coordinate and time t is defined by:
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The corresponding inverse transforms with respect to εx and ω is
given by:
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where ω and εx represent circular frequency and the horizontal wave-
number corresponding to x-direction, respectively.

Based on the generalized Hooke's law, stress-strain relationship and
effective stress principle of soil, the relationship between stresses and
displacements of soil are given as:
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where u, v and w are respectively displacements of soil skeleton in x, y
and z directions; Cij(i, j = 1, 2, 3, 4, 6) are mechanical parameters of

transversely isotropic soil, which can be expressed in horizontal and
vertical elastic moduli, horizontal and vertical Poisson's ratio and the
shear modulus. Elastic modulus in complex form is introduced to ac-
count for the material damping.

In order to eliminate time derivatives in Eq. (3), the Fourier trans-
formation with respect to time is performed on Eq. (3). As a result, the
equation is transformed into the frequency domain. By using the deri-
vative nature of Fourier transform, the following equation can be ob-
tained:

= −W F ω ρ u p( )i f i i
2

, (7)

in which = −F nK iωρ gn ω K ρ/( )d f d f
2 , variables with a bar above in-

dicate the components in frequency domain.
Substituting Eqs. (6) and (7) into Eq. (1), and then performing

Fourier transformation with respect to time, the balance equations of
mechanics parameters in frequency domain are given by:
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Similarly, Fourier transformation with respect to time is performed
on Eq. (2). Then by substituting the results obtained into Eq. (7), the
balance equation of fluid in frequency domain is expressed as:
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Stress boundary conditions and flow boundary condition in fre-
quency domain of the FEM model are given as:
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where fi(i = x, y, z) are components of external forces in x, y, z di-
rections; l, m, n are directions cosine, respectively; q is the flow of pore
water; vn is flow velocity of pore water.

Combining the constitutive equation and applying the Galerkin
method to Eqs. (8)–(11), and then incorporating the developed shape
function and performing wave-number expansion on the resulting
equation in x-direction, the 2.5D FEM governing equations in wave-
number domain and frequency domain can be derived by conventional
finite element method, which are given by:
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where Kup is stiffness matrix; Mup is mass matrix; ″Qup, ′Qup and Qup are
solid and fluid coupling matrixes; Hup and Sup are Jacobian matrixes;
f up

s and f up
s are equivalent node load vectors; u is node displacement

matrix; variables with '~' above indicate the component in wave-
number domain.

Artificial boundary has a non-negligible influence on the calculation
accuracy. Referring to Gao et al. [11], this paper adopted a 2.5D vis-
coelastic dynamic artificial boundary to model the wave propagation in
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far-field of transversely isotropic saturated ground. And drainage
boundary is set on the surface of this model.

3. Numerical examples and discussions

In order to verify the validity and reliability of the proposed method
in analysis of the vibration of transversely isotropic saturated soils,
numerical results obtained from this paper are degenerated to compare
with Gao's results [11] by setting that Ehh = Ehv, μhh = μvh,

= +G E ν/2(1 )v hh hh . Velocity of the moving loads acting on the ground
surface is 0.5Vs ( =V G ρ/s is the shear wave velocity of soil). The
dynamic responses at 1.0 m beneath the ground surface were in-
vestigated. Fig. 1 shows the normalized vertical displacement

= G Fw* w / max and excess pore water pressure =P p F/ max predicted by
current model and that of Gao et al. [11], where Fmax and G are the train
wheel load and soil shear modulus, respectively. It is observed from

Fig. 1 that these two results agree with each other, which demonstrates
the accuracy of the suggested model.

3.1. Parameters of calculation model

The track is a 32 m standard rail normally used in Beijing-Shanghai
high-speed railway. Its bending rigidity is EI = 38.0496 kN m, and the
comprehensive quality is 401 kg/m. The adopted high-speed train
model is the CRH5, which is similar to the model in Bian et al. [12].
There are 8 carriages composing one unit, including 2 motor cars and 6
trailers. The length of train is 205.2 m, including 16 wheel sets in total.
Length of trailer is 25 m, length of motor car is 27.6 m, distance of
bogie center is 17.5 m, fixed wheelbase is 2.7 m, and average axle load
is 17 t. The soil parameters are shown in Table 1. The train velocity is
200 km/h, corresponding to the high-speed train moving near the
downtown.

3.2. Effects of horizontal and vertical elastic moduli

In order to discuss the effects of horizontal elastic modulus, vertical
elastic modulus was taken as a constant of 7.86 MPa; horizontal elastic
moduli were adopted as 9.06 MPa, 7.86 MPa, 6.66 MPa and 5.46 MPa,
respectively. Other soil parameters are identical to that in Table 1 (si-
milarly hereinafter). Fig. 2 presents the amplitude of vertical dis-
placement along the distance from the track center for different hor-
izontal elastic modulus and distribution of excess pore water pressure
along the depth beneath the track center. It can be observed from
Fig. 2(a) that ground vibration amplitudes decrease with the increase of
horizontal elastic modulus. This is attribute from that, the increment of
the horizontal modulus exerts an overall confining action on the soil,

Fig. 1. Verification of the 2.5 D FEM: (a) Normalized displacement time history curve; (b) Normalized pore pressure time history curve.

Table 1
Calculation parameters of transversely isotropic saturated soil.

Parameters Values

Density ρ (kg/m3) 1800
Horizontal elastic modulus Ehh (MPa) 5.46
Vertical elastic modulus Evh (MPa) 7.86
Vertical shear modulus Gv (MPa) 2.45
Horizontal Poisson ratio μhh 0.35
Vertical Poisson ratio μvh 0.34
Material damping β 0.05
Bulk elastic modulus of fluid Kf (MPa) 2 × 103

Dynamic permeability coefficient Kd (m/s) 2 × 10−7

Porosity n 0.54

Fig. 2. Effects of horizontal elastic modulus: (a) Attenuation of peak amplitude along ground surface; (b) Distribution of excess pore water pressure along depth.
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thus make the vertical displacement more difficult to happen. Max-
imum excess pore water pressures occur at 2 m beneath ground surface,
as shown in Fig. 2(b). The excess pore water pressures increase with the
decrease of horizontal elastic modulus. The soil becomes isotropic when
Ehh = Ehv, μhh = μvh, = +G E ν/2(1 )v hh hh .

To investigate the effects of vertical elastic modulus, horizontal
elastic modulus was taken as a constant of 5.46 MPa, and vertical
elastic moduli were set as 7.86 MPa, 6.66 MPa, 5.46 MPa and
4.26 MPa, respectively. Fig. 3(a) shows that the vibration amplitude
decreases with the increase of vertical modulus and the vibration at-
tenuates significantly within 5 m from the center of track. Vertical

elastic modulus has a greater influence than horizontal elastic modulus
compared to Fig. 2(a). Excess pore water pressures decrease with the
increase of vertical elastic modulus, as presented in Fig. 3(b). By
comparing Figs. 2(b) and 3(b), it is concluded that with the increase of
horizontal elastic modulus, deformation of soil and excess pore water
pressure decrease; while with the increase of vertical elastic modulus,
excess pore water pressures near ground surface decrease, and that in
the deeper soils increase. This indicates that horizontal and vertical
elastic modulus exerts different effects on excess pore water pressures.

Fig. 3. Effects of vertical elastic modulus: (a) Attenuation of peak amplitude along ground surface; (b) Distribution of excess pore water pressure along depth.

Fig. 4. Effects of horizontal Poisson ratio: (a) Attenuation of peak amplitude along ground surface; (b) Distribution of excess pore water pressure along depth.

Fig. 5. Effects of vertical Poisson ratio: (a) Attenuation of peak amplitude along ground surface; (b) Distribution of excess pore water pressure along depth.
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3.3. Effects of horizontal and vertical Poisson ratio

To study the effects of horizontal Poisson ratio, vertical Poisson
ratio was taken as a constant of 0.32, and horizontal Poisson ratios were
respectively adopted as 0.30, 0.35, 0.40 and 0.45. The results in
Fig. 4(a) indicate that the effects of Poisson ratio on ground vibrations
are less obvious than those of the elastic modulus. Fig. 4(b) shows the
excess pore water pressures for different horizontal Poisson ratios,
which indicates that excess pore water pressure generally increases
with the increase of horizontal Poisson ratio.

Effects of vertical Poisson ratio is covered by setting horizontal
Poisson ratio as a fixed value of 0.32, and vertical Poisson ratios were
adopted as 0.30, 0.35, 0.40, and 0.45, respectively. Fig. 5(a) shows the
attenuation curves of vibration displacement for different vertical
Poisson ratios, which indicates that displacement amplitude increases
with the increase of vertical Poisson ratio near the center of track, and
the attenuation is different from that shown in Fig. 4(a). Fig. 5(b) shows
the excess pore water pressures for different vertical Poisson ratios. It is
observed that the influence of vertical Poisson ratio to excess pore
water pressure is less significant compared to horizontal Poisson ratio.

3.4. Effects of shear modulus

In this section, the horizontal shear modulus of transversely iso-
tropic soil is the same to that of isotropic soil, while vertical shear
modulus is an independent variable. Fig. 6(a) shows the attenuation
curves of vibration displacement for different shear moduli (2.0 MPa,
2.45 MPa, 2.90 MPa, 3.35 MPa). It is observed from Fig. 6(a) that the
amplitudes of ground vibrations decrease with the increase of shear
modulus. Fig. 6(b) shows the excess pore water pressure curves for
different shear modulus. It can be seen from Fig. 6(b) that, excess pore
water pressure increases with the decrease of shear modulus in the
depth of 3 m, and the maximum excess pore water pressure occurs at
2 m beneath track center for different shear moduli.

4. Conclusions

In this paper, numerical simulations of ground vibrations in trans-
versely isotropic saturated medium induced by high-speed trains were
performed. The displacement-pore pressure (u-p) format 2.5D FEM
model and dynamic viscoelastic boundary condition in transversely
isotropic medium were presented. The proposed numerical method was

validated by a published example in the literature. Effects of horizontal
and vertical elastic modulus, horizontal and vertical Poisson ratio and
shear modulus on vertical ground vibration and excess pore water
pressure were analyzed under high-speed train loads, respectively. The
numerical results show that the decrement of vibration amplitude and
excess pore water pressure caused by increment of vertical elastic
modulus is larger than that caused by horizontal elastic modulus. Both
horizontal and vertical Poisson ratios have little effects on ground vi-
brations, whereas the horizontal Poisson ratio increment results in a
great increase on excess pore water pressure.
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