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This paper presents a practical genetic algorithm (GA)-based solution for solving the economic load dis-
patch problem (ELDP) and further compares the performance of the improved GA (IGA) with that of
dynamic programming (DP). Specifically, their performance is comprehensively evaluated in terms of
addressing the ELDP through a case study of 26 turbines in the Three Gorges Hydropower Plant with a
focus on calculation accuracy, calculation time, and algorithm stability. Evaluation results show that
the improved GA method can significantly reduce the ineffectiveness of the GA in current use and could
avoid the running of the turbines in the cavitation/vibration zone, thereby ensuring the safety of the tur-
bines during generating operations. Further, the analysis comparing the performance of the IGA and DP
show that the IGA is superior to DP when a small number of turbines are involved. However, as the number
of turbines increases, the IGA requires more calculation time than DP; moreover, its calculation accuracy
and convergence rate are significantly reduced. It is difficult to guarantee the stability of IGA in high-
dimension space even though the population grows, on account of the exponential expansion of the
calculation dimension, the algorithm’s premature convergence, and the lack of a local search capability. The
improvement of the GA as well as the evaluation method proposed in this paper provide a new approach
for choosing and improving optimization algorithms to solve the ELDP of large-scale hydropower plants.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

A hydropower plant usually has multiple turbines that are run
side by side. Because of differences in the turbines’ operating char-
acteristics, the generation discharge varies sharply in different
combinations of committed turbines. The purpose of an economic
load dispatch problem (ELDP) study is to develop load-specific tur-
bine operation strategies that clarify the number and timing of
start and stop orders and the power load allocation of committed
turbines (Ding et al., 2015). The ELDP study is of great importance
for reducing the generation discharge of hydropower plants and
improving their economy of operation (Kamboj, 2016). The eco-
nomical operation of a hydropower plant has traditionally been
based on algorithms for optimizing load dispatching. Improve-
ments in the scheduling algorithm of the committed turbines are
therefore able to generate significant economic benefits (Kumar
et al., 2015). However, in practice, the operating ranges of the tur-
bines are not always available for optimal load allocation on
account of their physical operation limitations (Zhang et al.,
2013). Turbines can have prohibited operating zones because of
faults in the machines themselves or in the associated auxiliaries
(He et al., 2008). Such faults usually lead to instabilities in certain
ranges of the turbine load, rendering them unable to carry a load
for any appreciable time in these operating zones (Niknam et al.,
2012). Therefore, the input-output characteristics of large turbines
are inherently highly nonlinear and probably non-convex (Séguin
and Côté, 2016), which makes the economic load dispatch problem
(ELDP) a large-scale highly nonlinear constrained optimization
problem that is difficult to solve (Hidalgo et al., 2014).

The primary objective of the ELDP is to schedule the committed
turbine outputs to meet the required load demand at the minimum
discharge volume while satisfying the equality and inequality con-
straints for all turbines and for the system (Santra et al., 2016;
Cheng et al., 2000). For this purpose, a continuous balance must
be maintained between power generation and varying load
demand (Lu et al., 2015). Meanwhile, the system frequency,
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Nomenclature

dN;dN0 the discrete step lengths of DP and the
GA (IGA), respectively

Gen the termination generation of the
evolution process

H the average water head for the given
period (m)

i; j; k; l the sequence number of the turbine,
the sequence number of the cavita-
tion/vibration zone of the turbine, the
serial number of an individual in the
GA (IGA) population, and the serial
number of a state variable in DP,
respectively

ind1; ind2 two individuals involved in the cross-
over operation

int½�� Gaussian rounding function
INF the maximum value of the penalty

term
n the number of turbines
nT; nS the number of tests and the number of

convergences, respectively
N the total number of turbines
NDP a solution in the set of optimal DP

solutions, XDP

Ni the power output of turbine i (MW)
Ni;IGA the optimal solution of IGA test i
N0

maxk;i , N0
mink;i

the upper and lower limits, respec-
tively, of the corresponding cumulative
output

N00
maxk;i , N00

mink;i
the upper and lower limits, respec-
tively, of the cumulative output varia-
tion

Nd the power grid load (MW)
Nsi;l the variable value of state l for phase i
NHi the expected output of turbine i (MW)
NYt the installed capacity of turbine t

(MW)
Ni;j the upper output limit of turbine i in

zone j with given water head H (MW)
Ni;j the lower output limit of turbine i in

zone j with given water head H (MW)
Ntmp, Ntmp maxfPi

t¼1Nt � NYi;0g and minfPi
t¼1

Nt;
Pi�1

t¼1NYtg, respectively

OPTDP, OPT IGA the optimal values obtained using the
DP and the IGA approaches, respec-
tively

pk;i the cumulative output code of turbine i
of individual k

p00k;i the individual pk;i after variation
pm the variation probability of the GA

(IGA)
popdt the output discrete step length of IGA
P, P0 , P00 the parent population, the crossover

population, and the mutant population
in the GA (IGA), respectively

Pop the population size
PSeps the threshold for completion of the IGA

calculations (%)
qið�Þ the generation discharge of turbine i

(m3/s)
Q the generation discharge (m3/s)
Q �

i ð
Pi

t¼1NtÞ the optimal accumulated generation
discharge in the remaining period

Rnd, Rnd0;Rnd00;Rndmut;a random numbers evenly distributed in
the interval (Ding et al., 2015)

Snum the number of evolutionary genera-
tions

t time period
Teps the accuracy coefficient
TCDP, TCIGA the calculation times using DP and the

IGA, respectively (s)
a1, a2 the penalty coefficients for the operat-

ing constraint and the output domain
constraint, respectively

Dqi the penalty term to constraints on the
operating condition

Dqpi the penalty term to constraints on the
output domain

DPC, DTC, PS the accuracy indicator, the calculation
time indicator, and the algorithm
stability indicator, respectively

e the convergence threshold
XiðHÞ the cavitation/vibration zone of

turbine i
XDP the optimal state set
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voltage levels, and security must also be kept constant (Miao and
Fan, 2016). In addition, the load dispatch has strict requirements
on the calculation time because real-time ELDP is generally per-
formed every 5 min and determines the active power output of
all committed dispatchable turbines for the next 5-min interval
(Bakirtzis et al., 2014). Therefore, the ELDP algorithm optimizes
with the objective of minimizing the total amount of water dis-
charged from the reservoir and completing the required operation
in the shortest amount of time (Li et al., 2014).

To obtain accurate dispatch results in a timely manner, a
demand exists for techniques that have no restrictions on charac-
teristics of the turbines (Bortoni et al., 2015). A variety of optimiza-
tion techniques have been tried, including mixed-integer, linear,
and nonlinear programming approaches (Lu et al., 2010). The
mixed-integer linear programming (MILP) technique circumvents
the nonlinearity by assuming a constant net water head and a fixed
power load (Chen et al., 2016). This assumption simplifies the
modeling process; however, it can lead to remarkable inaccuracy
because of the inevitable errors and uncertainties that are induced
by the use of piecewise linear approximation and the introduction
of discreteness to the problem via the addition of integer variables
or constraints (Cheng et al., 2016). Furthermore, this approach may
not be precise enough for a large hydropower plant when long-
term scheduling is considered. On the other hand, both lambda-
iteration and gradient-technique methods in conventional
approaches to solving these problems are calculus-based tech-
niques (Subramanian et al., 2016) that require a smooth and con-
vex function and strict continuity of the search space (Suman
et al., 2016). The dynamic programming (DP) approach (Li et al.,
2014) imposes no restrictions on the nature of the turbine operat-
ing curves; therefore, it can solve ELDPs that have inherently non-
linear and discontinuous physical operation limitations (Nanda
et al., 1994).

Evolutionary computation is one such tool that has demon-
strated its ability to solve these complex problems (Nahas and
Abouheaf, 2016; Yang et al., 2012). Evolutionary computation
methods mimic biological population genetics in a search for
the optimal solution (Abido, 2006). They can be implemented in
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various forms, such as a genetic algorithm (GA) (Gen and Cheng,
2000), evolutionary programming (EP) (Lai, 1998), or an evolution
strategy (ES) (Miranda et al., 1998). The GA approach has immense
potential for applications in the field of power systems. The GA
approach addresses all types of problems that typically present sig-
nificant challenges for researchers (Sivaraj and Ravichandran,
2011): integer variables, non-convex functions, non-differentiable
functions, unconnected domains, poorly behaving functions, multi-
ple local optima, and multiple objectives. It has been successfully
applied to solve various problems in electric power systems, such
as economic load dispatch (Lee et al., 2011), unit commitment
(Pavez-Lazo and Soto-Cartes, 2011), reactive power control
(Devaraj and Preetha Roselyn, 2010), hydrothermal scheduling
(Senthil Kumar and Mohan, 2011), and distribution system plan-
ning (Guimaraes et al., 2010). Some situations exist in which sim-
ple GA does not perform particularly well (Fadaee and Radzi,
2012). Nonetheless, GAs have proven to be a versatile and effective
approach for solving optimization problems (Yokota et al., 1996). It
is believed that, with the development of artificial intelligence,
modern optimization algorithms, such as GAs, will be more com-
monly used in unit load allocation (Younes and Rahli, 2006).

So far, GA and DP are still two representative algorithms for
solving the economic load dispatch problem (ELDP), although DP
may suffer from the ‘‘curse of dimensionality” or local optimality
(Srikrishna and Sivarajan, 2010). Despite the above advancements,
no unified conclusion has emerged on the advantages and disad-
vantages of the two algorithms because of their very different
structures and working principles (Salazar et al., 2016). This makes
it difficult for a hydropower plant to select the optimal algorithm
for creating a real-time scheduling scheme, thus hindering the
practical application of the optimization algorithm in projects.
Baskar et al. (2003) used a two-phase hybrid real-coded GA and
DP to solve a 10-generation-unit ELDP, and they concluded that
GA has a higher accuracy than DP. Orero and Irving (1996)) inte-
grated binary-coded GA into the crowding mechanism to highlight
the individual differences. However, the improved GA approach
was found to be less accurate than DP in the performance compar-
ison of 15 experimental turbines involved in load distribution. In
addition, Kazarlis et al. (1996) analyzed the performance of GA
and DP approaches to a load commitment of 72 units. They deter-
mined that GA consistently requires less calculation time than DP;
however, the accuracy and rate of convergence are significantly
decreased when 18 or more units are involved. The above-
mentioned conclusions require further verification because the
algorithm efficiency comparison must account for calculation
accuracy and time in addition to convergence rate. Otherwise,
the schemes are not comparable. To date, research on calculation
accuracy and time has been rare. Chen et al. (2000) integrated
the indicator of calculation time when comparing the convergence
and speed of DP algorithms and GAs. Nevertheless, they did not
consider accuracy. Abdelaziz et al. (2012) studied the effectiveness
of GA improvement and showed that the optimal solution quality
was improved. However, the study failed to consider the calcula-
tion time efficiency.

In general, research on a DP and GA performance comparison
has been inadequate. Existing studies are only clustered on one
aspect of the algorithms; they do not provide a comprehensive
evaluation. In short, previous research is deficient in the following
three aspects. First, the benchmarks are not unified, leading to dif-
ferent conclusions. DP and GA are two different approaches, and
the experiment scheme must be comparable to ensure the objec-
tivity of the conclusions. Second, the evaluation indicators are
not sufficiently comprehensive to cover the time efficiency, stabil-
ity, and accuracy of the algorithms in certain experimental
schemes. Third, the experimental conditions are not identical.
The algorithm performance is subject to the step length and con-
vergence threshold (DP), as well as the coding method, operator
structure, parameter selection, and improvement operation (GA).
Different forms and calculation parameters of algorithms result
in variance in the conclusions.

The Three Gorges hydropower project, which spans the Yangtze
River in Yichang, Hubei Province, China, has the world’s largest
hydropower plant (Huang and Yan, 2009). The issues of the Three
Gorges Hydropower Plant, such as multiple turbines, different
models, and nonlinear output, have presented new challenges for
the ELDP (Zheng et al., 2013). The ELDP of these turbines is recog-
nized as one of the world’s most complex problems. Twenty-six
turbines of five types that have sharply different output curves
were installed on both banks. In recent years, the Three Gorges
Hydropower Plant has been attempting to use GA to optimize
the load allocation on these 26 units. The GA-based solution in cur-
rent use relies on the penalty of the fitness function to avoid oper-
ation in the prohibited zone. However, for the ELDP of the 26
turbines, neither a quantitative nor a variable penalty factor can
be found to guarantee a non-negative solution of the fitness func-
tion. As a result, the GA always converges prematurely (to local
optima), and the load allocation results often make units run in
the cavitation/vibration zone. Therefore, there is an urgent need
to develop an applicable algorithm for solving the ELDP of the 26
turbines. In order to provide solid technical support for the Three
GorgesHydropower Plant, this study aimed to address the following
two questions: 1) How can the GA be improved to solve the prob-
lems of premature convergence and vibration? 2) Of the DP and
GA approaches, which type of algorithm is more applicable for the
special case of the Three Gorges Hydropower Plant? This study pro-
posed an approach to improve the performance of the GA in current
use and compared the performance of DP and improved GA (IGA)
with a focus on calculation accuracy, calculation time, and algorithm
stability. We believe this study makes contributions to the existing
body of knowledge since the improvement of the GA as well as the
evaluation method proposed in this study provide a new approach
for choosing and improving optimization algorithms to solve the
ELDP of large-scale hydropower plants.

The remainder of this paper is structured as follows. Section 2
presents themethodology: Section 2.1 defines the ELDP, Section 2.2
presents the improved GA method as well as the optimization pro-
cesses of the DP, and Section 2.3 focuses on performance evalua-
tion indicators. Section 3 describes the case study: Section 3.1
briefly describes the ELDP case of 26 turbines in the Three Gorges
Hydropower Plant, Section 3.2 presents the experiment designed
for testing GA and IGA, and Section 3.3 presents the test scheme
and parameter settings for the comparison of the IGA and DP per-
formance. Section 4 provides the results and analysis: Section 4.1
gives the results of IGA implementation, and Section 4.2 gives an
analysis of the performance of IGA and DP. Finally, an overall sum-
mary is given in Section 5.
2. Methodology

2.1. ELDP formulation

The ELDP can be described as an optimization process based on
the following objective function and operation constraints.

2.1.1. Objective function
The objective of the ELDP is to minimize the water discharge of

the turbines when the upstream water level of the reservoir and
the power grid load are given:

minQ ¼
Xn
i¼1

qiðNi;HÞ ð1Þ
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where Q represents the generation discharge and n is the number of
turbines. In addition, qið�Þ represents the generation discharge of
turbine i, Ni denotes the power output of turbine i, and H represents
the average water head for the given period.

2.1.2. Nonlinear constraints related to turbine cavitation/vibration
The turbines are subject to the following load balancing and

turbine operating constraints:Xn
i¼1

Ni ¼ Nd ð2Þ

0 6 Ni 6 NHi; and Ni R ½Ni;j;Ni;j�; j 2 Xi ð3Þ

where Nd is the power grid load, NHi characterizes the expected
output of turbine i (MW), and XiðHÞ denotes the cavitation/vibra-
tion zone of turbine i; Ni;j and Ni;j, respectively, denote the demon-

strated upper and lower output limits of turbine i in zone j with
given water head H.

Fundamentally, the ELDP problem is a high-dimension, discrete,
and non-convex nonlinear programming problem, one that is diffi-
cult to solve directly using existing linearization techniques. Errors
would inevitably be introduced by the rough linearization of such
nonlinear constraints as safety turbine operation constraints and
water head changes, while piecewise linear approximation would
lead to a drastic increase in computational dimension as well
as a rapid decline in calculation efficiency.

2.2. Solution approaches

DP and GA are two representative algorithms for solving the
ELDP.

2.2.1. DP-based solution: Overview
There are two steps to the DP-based solution to ELDP: 1)

Sequentially obtain the optimal function of each phase according
to the recursion formula; 2) obtain the load of each turbine and
the corresponding water discharge, turbine number, and combina-
tion based on backward generation of the optimal function, i.e., the
best operation mode. The variables, constraints, and process of
solving ELDP using the DP algorithm are detailed as follows:

2.2.1.1. Phase and state variables. The serial number of turbine i is

defined as the phase variable, and the cumulative output
Pi

t¼1Nt

is the state variable. The state discrete step length is dN, and the
cumulative state discrete output is written as

Nsi;l ¼ minfl � dN;
Xi

t¼1

NYt;Ndg; when i–n

Nd; when i ¼ n

8><
>: ð4Þ

where l 2 ½0; int½minfPi
t¼1NYt;Ndg=dN� þ 1�, Nsi;j represents the

variable value of state l for phase i, NYt represents the installed
capacity of turbine t, and int½�� is the Gaussian rounding function.

2.2.1.2. Constraints. A penalty function is used to handle the con-
straints of the output conditions. The objective function f iðNi;HÞ
of the penalty variable in phase i is written as

f iðNi;HÞ ¼ qiðNi;HÞ þ Dqi þ Dqpi ð5Þ

Dqi ¼ a1 � INF;Dqpi ¼ a2 � INF ð6Þ
wherein

a1 ¼
1 Ni 2 ½Ni;j ;Ni;j�;9j
0 Ni R ½Ni;j;Ni;j�;8j

(
ð7Þ
a2 ¼ 1 Ni 2 ð�1;0Þ[ðNHi;þ1Þ
0 Ni 2 ½0;NHi�

(
ð8Þ

where Dqi represents the penalty term to constraints on the operat-
ing conditions, and Dqpi denotes the penalty term to constraints on
the output domain. In addition, a1 and a2 are penalty coefficients,
and INF represents the maximum value of the penalty term.

2.2.1.3. State transition and state traversal. With output Ni defined
as a decision variable, the state transition equation can be written
as

Xi

t¼1

Nt ¼
Xi�1

t¼1

Nt þ Ni ð9Þ

The recursive equation is written as

Q �
i ð
Xi

t¼1

NtÞ ¼ minff iðNi;NÞ þ Q �
i�1ð
Xi�1

t¼1

NtÞg ð10Þ

where Q �
i ð
Pi

t¼1NtÞ represents the optimal accumulated generation
discharge in the remaining period.

DP state traversal is shown in Fig. 1. The DP solution to space is
made stage by stage. Owing to the output domain constraint,
Ni 2 ½0;NYi�, the DP calculation of cumulative power flow in state
j and phase i requires simply searching state j� int½NYi=dN� to state
j in phase i� 1, as shown in Fig. 1. When there are multiple optimal
solutions to the problem, the optimal set of states XDP is recorded.

2.2.1.4. State backtracking. All the optimal strategies are obtained
by backtracking the final state of phase n, and the solution is
completed.

2.2.2. GA and improved GA (IGA)
2.2.2.1. GA-based solution: Overview. The GA has been adopted by
the Three Gorges Hydropower Plant. The operator correction
method and penalty function method are two typical methods of
processing constraints in the GA approach. The former is mainly
used to solve linear constrained optimization problems. Based on
linear processing, the elimination of linear constraints and opera-
tor adjustment can quickly and efficiently generate a feasible solu-
tion. The safety constraints describing the output of the unit are
nonlinear equations. For the GA in current use, a penalty function
is adopted to deal with nonlinear constraints. It constructs nonlin-
ear constraints as a penalty term to be added to the fitness func-
tion. Using this method, the constrained optimization problem is
converted into an unconstrained optimization problem. Out of
Fig. 1. Schematic view of the dynamic programming (DP) state traversal.
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combined consideration, the operator correction method is applied
to address constraints on the load balance and output domain. The
penalty function is constructed in Formula (5) for constraints on
operating conditions.

2.2.2.1.1. Encoding and decoding. The cumulative output of the

ith turbine,
Pi

t¼1Nt , is defined as a gene. Based on Formula (4) for
discrete units with a discrete step length defined as dN0, the genes

are encoded as pk;i 2 ½0; ½minfPi
t¼1NYt ;Ndg=dN0� þ 1� to represent

the sequence of elements in the term Nsi;l. The cumulative output
of turbine i is decoded as Nsi;pk;i (k 2 ½1; Pop�, i 2 ½1;n�, where Pop
denotes the population size and n is the number of turbines).

2.2.2.1.2. Initial population generation. The linear constrained
elimination method is used to generate the genes in reverse order
under the conditions of load balance and output domain con-
straints. When the cumulative output of turbine i is known

(
Pi

t¼1Nt), then pk;i ¼ int½Pi
t¼1Nt=dN

0 �. Formula (9) can be rewritten
as

Xi�1

t¼1

Nt ¼
Xi

t¼1

Nt � Ni ð11Þ

When the output domain constraint Ni 2 ½0;NYi� is integrated
into Formula (11), then

Xi�1

t¼1

Nt 2 ½
Xi

t¼1

Nt � NYi;
Xi

t¼1

Nt � ð12Þ

As the output is bound to be smaller than the installed capacity,
i.e., Nt 2 ½0;NYt�, it is integrated into Formula (11) as

Xi�1

t¼1

Nt 2 ½0;
Xi�1

t¼1

NYt � ð13Þ

The common solution to Formulas (12) and (13) can satisfy the
requirement for the output domain. Then,

Xi�1

t¼1

Nt 2 ½maxf
Xi

t¼1

Nt � NYi; 0g;minf
Xi

t¼1

Nt;
Xi�1

t¼1

NYtg� ð14Þ

Letting Ntmp ¼ maxfPi
t¼1Nt � NYi;0g and

Ntmp ¼ minfPi
t¼1Nt ;

Pi�1
t¼1NYtg, the approach for generating gene

pk;i�1 can be expressed as

pk;i�1 ¼ int½Ntmp=dN0� þ int½Rnd � ðint½Ntmp=dN0�
� int½Ntmp=dN0�Þ� ð15Þ

where Rnd indicates a random number evenly distributed in the
interval [0,1].

Given load balance
Pn

i¼1Ni ¼ Nd, the reverse recursion of For-
mulas (14) and (15) from the last gene is performed to obtain indi-
viduals that satisfy the output domain and load balance
requirements.

2.2.2.1.3. Fitness function. According to the objective function,
the fitness formula is constructed as

Fitness ¼ INFPn
i¼1f iðNsi;pk;i � Nsi�1;pk;i�1

;HÞ ð16Þ

2.2.2.1.4. Crossover operator. An arithmetic crossover is used,
and assuming that only the two individuals in the population
k ¼ 1 and k ¼ 2 are crossed, the genes after crossover can be calcu-
lated using the following formulas:

p0
k;i ¼ a � p1;i þ ð1� aÞ � p2;i; p

0
kþ1;i ¼ ð1� aÞ � pind1 ;i þ a � pind2 ;i ð17Þ

where a indicates a random number evenly distributed in the inter-
val [0,1], and ind1 and ind2 represent the individuals involved in the
crossover operation.
Arithmetic crossover satisfies the load balance constraints and
output domain constraints. Taking the crossover probability as 1,
P0 with a size of Pop is formed after the crossover.

2.2.2.1.5. Variation operator. The variation probability pm is
introduced to control gene variation: the mutant gene is replaced,
and the variation operator is used with the new random gene, as
shown in Fig. 2.

The gene variation in point i also affects the output and turbines
i and iþ 1. Given the output domain constraint, Ni 2 ½0;NYi�, the
post-variation point i will not be higher than point A,Pi�1

t¼1Nt þ NYi. In the same way, when Niþ1 2 ½0;NYiþ1�, the post-

variation point i will not be lower than point B,
Piþ1

t¼1Nt � NYiþ1.
Hence, the domain of mutant genes is

Xi

t¼1

Nt 2 ½maxf
Xi�1

t¼1

Nt ;
Xiþ1

t¼1

Nt � NYiþ1g;minf
Xi�1

t¼1

Nt

þ NYi;
Xiþ1

t¼1

Ntg� ð18Þ

Letting Ntmp ¼ maxfPi�1
t¼1Nt ;

Piþ1
t¼1Nt � NYiþ1g and

Ntmp ¼ minfPi�1
t¼1Nt þ NYi;

Piþ1
t¼1Ntg, the mutant genes are calcu-

lated as follows:

p00
k;i ¼

int½Ntmp=dN0� þ int½Rndmut

�ðint½Ntmp=dN0�Þ�; if Rnd 6 pm

pk;i; if Rnd > pm

8><
>: ð19Þ

where Rnd and Rndmut are random numbers that are evenly dis-
tributed in the interval [0,1], and P00 represents the size of the
mutant population.

2.2.2.1.6. Selection operator. Using the tournament selection
method (Yang and Soh, 1997), the highest-scoring individuals in
three populations—namely parent population P, crossover popula-
tion P0, and mutant population P00—are taken as a new parent pop-
ulation for the next generation’s evolution.

2.2.2.1.7. Termination condition. The algorithm terminates
when the optimal solution remains unchanged over Snum genera-
tions or the GA reaches the termination generation Gen. Then the
GA outputs the optimal individual.

2.2.2.2. Improvements to method. To improve the performance and
efficiency of the GA, a feasible solution space was constructed in
this study. A means of generating the initial population and per-
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Fig. 3. Schematic view of solution space perturbation variation.
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forming the variation operation in solution space is also proposed
so that the generated solutions are convergent while the turbines
are prevented from running in the cavitation/vibration zone. The
technical details of the algorithm improvements are as follows:

2.2.2.2.1. Method of initial population generation. The distribu-
tion of the initial population affects the convergence of the GA.
The convergence will be slower or the GA may not even be able
to converge to a local optimum if the initial population is biased
and decentralized. An initial population generation method is thus
herein presented to ensure that the initial population satisfies the
load balance and domain output constraints while avoiding tur-
bine cavitation/vibration. The improved approach is given as
follows:

The cumulative output is encoded:

pk;i�1 ¼
N0

mink;i�1

popdt
þ int Rnd0 �

N0
maxk;i�1

popdt
�
N0

mink;i�1

popdt

 !" #
ð20Þ

where pk;i�1 represents the cumulative output code of turbine i� 1
of individual k; N0

maxk;i�1
and N0

mink;i�1
indicate, respectively, the upper

and lower limits of the corresponding cumulative output; popdt

denotes the output discrete step length; Rnd0 is a random number
evenly distributed in the interval [0,1], and int½�� is the Gaussian
rounding function.

Assuming that all turbines are put into operation, given the load
balance constraint, i.e.,

Pn
i¼1Ni ¼ N, the cumulative output of tur-

bine n is encoded as

pi;n ¼ N=popdt ð21Þ
The decreasing relation of the cumulative output is expressed as

Xn�1

i¼1

Ni ¼
Xn
i¼1

N � Nn ð22Þ

Considering Formulas (21) and (3), the following formula can be
obtained:

Xn�1

i¼1

Nmini 6
Xn�1

i¼1

Ni 6
Xn�1

i¼1

Nmaxi ;
Xn
i¼1

N � Nmaxi 6
Xn�1

i¼1

Ni

6
Xn
i¼1

N � Nmini ð23Þ

Then, N0
mink;i�1

and N0
maxk;i�1

in Formula (20) can be respectively

written as

N0
mink;i�1

¼ maxf
Xi�1

t¼1

Nmint ;
Xi

t¼1

Nt � NmaxigN0
maxk;i�1

¼ minf
Xi�1

t¼1

Nmaxt ;
Xi

t¼1

Nt � Nminig ð24Þ

The cumulative output code for turbine n is obtained by For-
mula (21) and for other turbines by employing Formulas (23)
and (20). The initial population generated by this model can simul-
taneously satisfy the constraints and effectively avoid the cavita-
tion/vibration zone.

2.2.2.2.2. Population variation control. The coding variation at
point i will affect the size of the output of turbines i and i + 1. To
effectively avoid the cavitation/vibration zone, a perturbation vari-
ation operator based on the feasible solution space is herein intro-
duced. It requires the position of variation to be controlled within
the given interval and a variation-based individual to effectively
avoid the running of the turbines in the cavitation/vibration zone.
As shown in Fig. 3, the i-point variation should not be positioned
below point B or point D, nor should it be higher than point A or
point C.
As shown in Fig. 3, N00
maxk;i

and N00
mink;i

represent, respectively, the

upper and lower limits of the cumulative output variation. They
can be obtained using the following formulas:

N00
mink;i

¼ maxf
Xi�1

t¼1

N00
t þ Nmini

;
Xiþ1

t¼1

N00
t � NmaxigN00

maxk;i

¼ minf
Xi�1

t¼1

N00
t þ Nmaxi ;

Xiþ1

t¼1

N00
t � Nminiþ1

g: ð25Þ

Hence, the solution space perturbation variation operator can
be expressed as

p00
k;i ¼

N00
mink;i
popdt

þ int Rnd00 � N00
maxk;i
popdt

�
N00
mink;i
popdt

� �� �
Rnd 6 pm

pk;i Rnd > pm

8><
>: ð26Þ

where Rnd00 and Rnd are random numbers in the interval [0,1], pm

denotes the variation probability, and pk;i and p00
k;i represent individ-

uals before and after variation, respectively.
2.3. Performance evaluation indicators

Accuracy, calculation time, and algorithm stability are the three
indicators for evaluating algorithm performance.
2.3.1. Accuracy
Using the DP calculation results, the accuracy indicator is con-

structed as

DPC ¼ OPT IGA � OPTDP ð27Þ

where OPTDP and OPT IGA represent the optimal values obtained
using the DP and the IGA approaches, respectively. DPC > 0 means
that the IGA has a lower accuracy than the DP; DPC < 0 means that
the IGA is more accurate than the DP.

Note that, as the minimum discharge for power generation is
taken as the objective of the ELDP, the accuracy of the algorithm
that presents a smaller discharge is deemed higher.
2.3.2. Calculation time
The difference in calculation time is expressed as

DTC ¼ TCIGA � TCDP ð28Þ

where TCDP and TCIGA respectively represent the calculation times of
the DP and IGA approaches.
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2.3.3. Stability
The convergence rate PS reflects the stability of stochastic algo-

rithm IGA. Under the condition of repeated tests, the probability
that the algorithm will converge to the global optimal solution is

PS ¼ nS=nT ð29Þ
where nT represents the number of tests, and nS is the number of
convergences. The IGA is deemed to have reached convergence
when its solution is similar to any of the optimal DP solutions.

jNi;IGA � NDPj 6 e;8i; NDP 2 XDP ð30Þ
where NDP represents any solution in the set of optimal DP solu-
tions, XDP. In addition, Ni;IGA represents the optimal solution of the
IGA test i, and e 6 1 is the convergence threshold.

3. Case study

3.1. Experimental setup

Twenty-six turbines with a total installed capacity of
18,200 MW are installed on the left bank (14 turbines) and right
Table 1
Turbine parameters.

Three Gorges Hydropower Plant Left bank

Type VGS ALSTOM

Number 6 8
Rated head (m) 80.6
Max. head (m)
Min. head (m)
Rated flow capacity (m3/s)
Unit capacity (MW)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

VGS Left-Bank Turbines

ORIENTAL

Fig. 4. Distribution of the 26 turbines installe
bank (12 turbines) of the Three Gorges Hydropower Plant, as out-
lined in Table 1. The turbines are depicted in Fig. 4.

Although each of these turbines has the same generating capac-
ity, the output characteristics vary sharply on account of the differ-
ent manufacturers. The turbines can be classified into five
categories according to their manufacturers: VGS: 1–3 and 7–9;
ALSTOM I: 4–6 and 10–14; ORIENTAL I: 15–18; ALSTOM II: 19–
22; HARBIN: 23–26.

3.2. Tests to evaluate performance of GA and IGA

The study applied IGA and GA to optimize the load allocation of
the 26 turbines in the Three Gorges Hydropower Plant with the
water level of the reservoir below 77 m. For the study, the no-
load discharge in actual economical operation was considered,
and the precision benchmark for the calculation of load allocation
was set to 10,000 kW. For comparison purposes, the selection
probability and the variation probability were set to 0.7 and 0.08,
respectively, for both algorithms. The iteration termination
condition was 500 generations. To evaluate the optimal allocation
Right bank

ORIENTAL ALSTOM HARBIN

4 4 4
85

113
71
996
700

#14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25

ALSTOM I

ALSTOM II HAERBIN

Right-Bank Turbines

#26

d in the Three Gorges Hydropower Plant.
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performance of the two algorithms under different loads, test cases
were run at the upper limit, mean value, and lower limit of the load
for the Three Gorges Hydropower Plant, namely 16.5 million kW,
14.5 million kW, and 12 million kW, respectively. These three
cases were used to characterize large, medium, and small power
load levels, respectively, for the 26 units.

The GA is a stochastic algorithm that was developed as a mim-
icking of genetic changes and the evolutionary mechanism of
organisms in the natural environment. In order to eliminate the
influence of stochastic factors, in this study the ELDP was repeat-
edly solved many times using IGA and GA, and the optimal result
out of ten results was taken as the final result for each.
Fig. 5. Comparison of genetic algorithm (GA) and improved GA (IGA) load
allocation schemes under different loads: (a) load allocation results with a total
load of 12 million kW; (b) load allocation results with a total load of 14.5 million
kW; (c) load allocation results with a total load of 16.5 million kW.
3.3. Tests to compare performance of IGA and DP

3.3.1. Testing scheme
The power load changes over time along with the power load

distribution. The time-varying characteristics of the ELDP deter-
mine the importance of the calculation time required for power
load allocation. The need for decision timeliness requires that the
computational program be able to make the correct decisions in
a very short time; otherwise, the algorithm will not have value
in a practical application. In order to comprehensively evaluate
the possibility of applying the algorithm, this section presents
two scenarios that consider both computational precision and
computation time:

Scenario I: Comparison of calculation time under the condi-
tion of the same calculation accuracy. To ensure comparability,
the calculation accuracy of the IGA and DP algorithms must be
the same. In this scenario, the optimal DP solution is employed
as a benchmark. The DP algorithm is used to solve the ELDP. The
optimal solution is set as the threshold PSeps for completing the
IGA calculations. When PS P PSeps, IGA and DP are considered to
have the same accuracy, and then the calculation time is compared
between the two algorithms.

Scenario II: Comparison of calculation accuracy under the
condition of the same calculation time. The DP calculation time
TCDP is taken as a benchmark. When the IGA calculation time
TCIGA meets the requirement jTCIGA � TCDPj 6 Teps, the calculation
is terminated, and then the accuracies are compared. To ensure
that IGA has a higher accuracy than DP, the discrete step length
of IGA should be made smaller than that of DP.

3.3.2. Parameter settings
The IGA performance is affected by a variety of factors, includ-

ing the selection operator, crossover operator, variation operator,
initial population base, crossover rate, variation rate, and termina-
tion condition. To ensure an objective and fair comparison, the IGA
parameters and operators are optimized, and only the optimal per-
formance parameters are used. The parameters for the test scheme
are as follows:

(1) The water head of the 26 turbines installed in the Three
Gorges Hydropower Plant is set to 100 m.

(2) Thirteen turbine subsets (numbered 2, 4,. . .,26) are ran-
domly selected from the 26 turbines to perform the load dis-
patch experiment.

(3) Ten groups of load are randomly generated for each subset
of turbines to carry out ten independent tests to observe
the statistical performance of the algorithm.

(4) The DP discrete step length dN ¼ 14 MW and the IGA dis-
crete step length dN0 ¼ 14 MW are used in Scenario I, and
dN0 ¼ dN=10 ¼ 1:4 MW is used in Scenario II.

(5) The preferred IGA parameters are set as follows: crossover
rate of 1, variation rate of 0.1, Snum ¼ 5, Gen ¼ 100, e ¼ 2.
In Scenario I, the lower limit for convergence rate
PSeps ¼ 50%. In Scenario II, when n 6 16, the time difference
should be Teps ¼ 0:3 s, and when n > 16, Teps ¼ 1:5 s.
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(6) IGA will be terminated when either of the following require-
ments is met:
Table 2
Simulat

Load
(104

1200

1450

1650
� The number of algorithm generations reaches Gen.
� For Scenario I: The optimal solution is used to maintain

Snum at the same value, or the objective function value
corresponding to the optimal individual is equal to the
DP objective function value. For Scenario II:
jTCIGA � TCDPj 6 Teps.
(7) The computer parameters include a) CPU: Intel(R) Core(TM)
i7-4810MQ; b) frequency: 2.80 GHz; c) memory: 32 GB; d)
software: Microsoft Visual Studio 2010 under the Windows
7 operating system.

4. Results and discussion

4.1. Analysis of performance of GA and IGA

The optimal results obtained are compared in Fig. 5, where the
upper limit and lower limit represent the upper and lower limits of
the safe operation zone, respectively. If the load is higher than the
upper limit or lower than the lower limit, the turbines will enter
the cavitation/vibration zone. In the figure, GA represents the GA
in current use, and IGA represents the improved GA developed in
the study.

As shown in Fig. 5, the scheme obtained by IGA makes all the
turbines run in the stable operation zone. On the other hand, in
the GA-based scheme, some turbines run in the cavitation/vibra-
tion zone, causing significant damage to the turbine. The IGA is
conducive to the safe operation of turbines and can therefore
reduce the operating loss and maintenance costs. In addition, as
shown in Table 1, the solution can reduce the amount of generation
discharge and thereby reduce the operating costs of power plants.
This is because IGA reduces the search scope and improves the effi-
ciency of searching by avoiding the infeasible zone, which makes it
easier to find the optimal solution than with GA.

To fully compare theperformanceof the twoalgorithms, themin-
imum, maximum, and average flows are considered. These flows
respectively represent the best, worst, and average results among
the ten simulations for finding an optimal solution. The ten simula-
tion results for the two algorithms are summarized in Table 2.

Table 2 shows that the IGA is more effective than the GA. The GA
randomly generates the initial population, which is composed of
solvable and unsolvable parts. The unsolvable population can be
eliminated in the evolution by reducing the fitness through the pen-
alty in the fitness function. The variation operation also occurs in the
space of solvable andunsolvable populations, and the post-variation
unsolvable population is also eliminated by penalty. However, the
penalty-based treatment cannot guarantee non-negative fitness,
leading to prematurity in the operations selected by GA. Its ELDP
ion results for GA and IGA.

N/
kW)

Algorithm Minimum flow
(104 m3)

Maximum flow
(104 m3)

Average flow
(104 m3)

IGA 17,385 17,500 17,440.6
GA 17,569 18,392 17,931.4
Flow
savings

184 892 490.8

IGA 20,779 20,993 20,862
GA 20,946 21,597 21,313
Flow
savings

167 604 451

IGA 24,214 24,298 24,262
GA 24,396 24,647 24,499.5
Flow
savings

182 349 237.5
result makes turbines run in the cavitation/vibration zone. The
IGA, on the other hand, enables initial population generation and
perturbation variance in the feasible solution space, which ensures
Fig. 6. Comparison of DP and IGA performance against number of turbines: (a)
calculation time; (b) calculation accuracy; (c) IGA convergence rate.
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that all the turbines operate in the safe zone. Thus, the ELDP objec-
tive is better achievedusing the IGA.When the upstreamwater level
of the reservoir and the load required by the power grid are deter-
mined, the IGA can minimize the total volume of water discharge
through the rational allocation of the power load.
4.2. Comparative analysis of IGA and DP

The test results are shown in Fig. 6. Fig. 6 (a) shows the result of
the IGA and DP calculation time comparison under the condition of
the same calculation accuracy. When there are ten or fewer units,
the IGA calculation time is less than that of DP; when the number
of units exceeds ten, the IGA calculation time is greater than that of
DP. This means that the calculation time will significantly increase
with the involvement of more turbines, undermining the computa-
tional efficiency advantage of the IGA. Moreover, in terms of the
large-scale load dispatch problem, it implies that the GA-based
algorithms play a very limited role in avoiding the ‘‘curse of dimen-
sionality” of the DP algorithm and in improving the computational
efficiency.

Fig. 6 (b) shows the accuracy comparison result when the calcu-
lation times are equal. When there are fewer than four units, the
IGA displays higher calculation accuracy than the DP algorithm.
However, the GA calculation accuracy decreases as the number of
turbines increases, particularly when there are more than ten
units. Fig. 6 (c) shows the convergence rate of the IGA in Scenarios
I and II. With the increase in the number of turbines, the algorithm
convergence rate significantly decreases and finally stabilizes
between 25% and 55%. This result can be attributed to the expo-
nential expansion of the calculation dimension in the ELDP, the
algorithm prematurity problem, and the lack of local search
capability.

It is should be noted that 26 turbines in the Three Gorges
Hydropower Plant were considered for the study. Since 2012, six
other turbines have been put into operation; these are installed
underground. Now the Three Gorges Hydropower Plant has 32 tur-
bines with a stand-alone rated power of 700 MW, including 14 tur-
bines on the left bank, 12 on the right bank, and 6 in the
underground plant. Regardless of the isolated operation of the 6
turbines, the calculations for the 32 turbines performed by assum-
ing unified scheduling management of the Three Gorges Hydro-
power Plant arrived at similar conclusions.
5. Conclusions

The GA transforms the ELDP into an unconstrained optimization
problem through constructing nonlinear constraints as a penalty to
be added to the fitness function. However, this algorithm was
found to be infeasible for the committed turbines in the Three
Gorges Hydropower Plant, which have sharply different output
curves. For the ELDP case of 26 turbines in this plant, neither quan-
titative nor variable penalties can satisfy the non-negativity
requirement of the fitness function, leading to GA convergence pre-
maturity and reducing the search efficiency of the algorithm. More
seriously, the load dispatch result of the ELDP always makes the
turbines run in prohibited zones. In order to solve these problems,
this study proposed an IGA that addresses the problems of the GA
currently being used. The IGA constructs a feasible solution space,
to which the actions of the initial population generation and the
perturbation variance are restricted. Test results show that the
IGA ensures that all the turbines operate in the safe zone and thus
avoids the cavitation/vibration of the turbines.

This study further compared the performance of DP and the IGA
in addressing the ELDP through a case study of 26 turbines of the
Three Gorges Hydropower Plant. The results show the following:
1) Given the same accuracy, when there are fewer than ten tur-
bines, the IGA needs less calculation time than DP, but when the
number of turbines exceeds ten, the IGA calculation time is longer
than that of DP. This indicates that the IGA has a very limited role
in overcoming the ‘‘curse of dimensionality.” 2) Given the same
calculation time, the IGA is more accurate than DP when there
are fewer than four turbines; nonetheless, the IGA accuracy shows
a downward trend with an increase in the number of turbines, fall-
ing below that of DP when the number of turbines exceeds ten. 3)
IGA convergence rates decrease as the number of turbines
increases. This implies that it is difficult to guarantee IGA stability
in high-dimension space even though the population grows, on
account of the exponential expansion of the calculation dimension,
the algorithm’s tendency to converge prematurely, and the lack of
local search capability.

As demonstrated by the study’s results, the proposed improve-
ment method can significantly reduce the ineffectiveness of the
traditional GA and ensure the safety of turbines during the gener-
ating operation. Thus, the IGA provides a new approach to the GA-
based solution to nonlinear constrained optimization problems.
Furthermore, the evaluation method proposed in this study pro-
vides a novel approach for comparing optimization algorithms
for the ELDP of large-scale hydropower plants.
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