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a b s t r a c t

In this paper, the problem of output feedback stabilization is considered for a class of
switched delay systems under asynchronous switching. When the switching signal of
the switched controller involves delay, by constructing a novel Lyapunov functional which
is allowed to increase during the running time of active subsystems with the mismatched
controller, sufficient conditions for exponential stability are developed for a class of switch-
ing signals based on the average dwell time method. Moreover the stabilizing output feed-
back controllers are designed. Finally, an example is given to demonstrate the feasibility
and effectiveness of the proposed design techniques.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Switching systems, as a class of hybrid dynamical systems, consist of a set of time-varying subsystems and a switching
signal that orchestrates the switching between them. Such control systems appear in many applications, such as communi-
cation networks, flight and air traffic control and robot manipulators [6,15,3]. Therefore switched systems have drawn con-
siderable attention in recent years [1,7,8,19,21,27,31,32]. As is well known, time-delay phenomenon is very common in
practical engineering control and is frequently a source of instability and performance deterioration [4,5,16]. At present,
there has been increasing interest in switched delay systems [2,12,13,18,20].

On the other hand, in the ideal case, the switching of the controllers coincides exactly with that of corresponding subsys-
tems, that is to say, the controllers are switched synchronously with the subsystems. In actual operation, however, since it
takes time to identify the active subsystem and apply the matched controller, the switching time of controllers may lag be-
hind that of practical subsystems, which results in asynchronous switching between the controllers and system modes.
Therefore, it is significant to study the problem of asynchronous switching and some valuable results have been obtained
[17,23,24,26]. In [28], the asynchronously switched control problem for a class of switched linear systems with average
dwell time was investigated. [30] studied the problems of stability, L2-gain and asynchronous H1 control for a class of
discrete-time switched systems. The robust control problem for uncertain switched delay systems under asynchronous
. All rights reserved.
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switching was considered in [24]. However, the references mentioned above did not consider the dynamic output feedback
control. In practical applications, the system states may be not measured due to some reasons, therefore they cannot be used
for feedback control. Therefore it is very significant to design the dynamic output feedback control for this case. To the best of
our knowledge, no attention has been paid to the asynchronously switched control problem of switched delay systems via
dynamic output feedback controllers.

In this paper, we study the dynamic output feedback stabilization problem for a class of switched delay systems under
asynchronous switching. Through constructing a piecewise Lyapunov functional which can be allowed to increase during
the running time of the active subsystem with the mismatched controller, based on the average dwell time method, a solu-
tion for dynamic output feedback controllers are derived in terms of LMIs such that the resulting closed-loop system is expo-
nentially stable. The main contributions of the paper are as follows: First, the dynamic output feedback controllers are
designed while on existing work, the state feedback controller design problem was considered. Second, both the delayed
state and the delayed switching signal are considered. Since this two kind of delays lie in two different types of sets, how
to deal with the case, where the state delays and switching delays coexist is a challenging issue.

The paper is organized as follows. In section 2, preliminaries and problem formulation are introduced. Section 3 gives the
sufficient conditions of exponential stability and the controller design algorithm of the system. It is the main result of this
paper. In Section 4, an example is given to illustrate the effectiveness of the proposed approach. The conclusions are sum-
marized in Section 5.

Notations: Throughout this paper, Rn denotes the n-dimensional Euclidean space, P > 0 means that P is a positive definite,
kmax(P) and kmin(P) denote the maximum and minimum eigenvalues of P, I is the identity matrix with appropriate dimen-
sions, k�k denotes Euclidean vector norm, ⁄ denotes the symmetric block in one symmetric matrix, diag{. . .} stands for a
block-diagonal matrix.

2. Preliminaries and problem formulation

Consider a class of switched delay systems of the form
_xðtÞ ¼ ArðtÞxðtÞ þ BrðtÞuðtÞ þ ErðtÞxðt � hÞ;
xðhÞ ¼ wðhÞ; h 2 ½�h;0�;
yðtÞ ¼ CrðtÞxðtÞ;

ð1Þ
where x 2 Rn is the state, u 2 Rq is the control input, y 2 Rp is the measurement output, r(t):[0, +1) ? M = {1,2, . . . ,m} is the
switching signal. Specifically, denote r(t):{(t0,r (t0)), � � �, (tk,r(tk)),� � �, jk = 0,1,2, . . .}, where t0 is the initial switching instant,
and tk is the kth switching instant. Ai, Bi, Ci, Ei are constant matrices with appropriate dimensions, w(h) is a differentiable
vector-valued initial function on [�h,0], h > 0 denotes the state delay. If delay h is neglected, system (1) will reduce the mod-
el presented in [10].

When the controllers are switched synchronously with the subsystems, the dynamic output feedback controllers are
formed as
_nðtÞ ¼ GrðtÞnðtÞ þ LrðtÞyðtÞ;
uðtÞ ¼ KrðtÞnðtÞ:

ð2Þ
where n is the state of the controllers, Gi, Li, Ki are constant matrices.
However, in practical engineering, since it takes time to identify the active subsystem and apply the matched controller,

the switching time of controllers may lag behind that of practical subsystems, which results in asynchronous switching be-
tween the controllers and system modes. Thus, we need to take the switching delay into account.

Remark 1. Because we may not know the initial mode and the subsequent modes of the system in advance, the switchings
of the controllers may not coincide exactly with those of system modes. If a wrong controller is used over a specified amount
of time, the solution to the system might escape to infinity before a correct controller is switched into action [25].
We now consider the dynamic output feedback controllers of the following form:
_nðtÞ ¼ GrðtÞnðtÞ þ LrðtÞyðtÞ;
uðtÞ ¼ Krðt�sdÞnðtÞ;

ð3Þ
where sd is the delay of switched controllers to system modes.
The following definitions will be used in the sequel.

Definition 1 [13]. The equilibrium x⁄ = 0 of system (1) is said to be exponentially stable under r(t) if the solution x(t) of
system (1) satisfies
kxðtÞk 6 kkxðt0Þke�kðt�t0Þ; 8t P t0;
for constants k P 1 and k > 0.
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Definition 2 ([1,7]). For switching signal r and any t P t0 P 0, let Nr(t0, t) denote the number of switching of r over the time
interval (t0, t). If
Nrðt0; tÞ 6 N0 þ
t � t0

sa
: ð4Þ
holds for N0 P 0, sa > 0, then sa is called the ‘‘average dwell-time’’ and N0 is the chatter bound. As commonly used in the
literature, for convenience, we choose N0 = 0 in this paper.
3. Main results

In this section, we will give stability analysis, synthesis conditions and a design algorithm.

3.1. Stability analysis

Applying the dynamic output feedback controllers (3) to system (1),we have the closed-loop system
_�xðtÞ ¼ ArðtÞ�xðtÞ þ ErðtÞ�xðt � hÞ ð5Þ
where
�x ¼
x

n

� �
; ArðtÞ ¼

Ar BrKrðt�sdÞ

LrCr Gr

� �
; ErðtÞ ¼

ErðtÞ 0
0 0

� �
;

The following result presents a sufficient condition of exponentially stability for system (5).

Theorem 1. For given positive constants a and b, if there exist matrices Pi > 0, Qi > 0, "i 2M such that
Ri ¼
AT

i Pi þ PiAi þ Q i þ aPi PiEi

� �e�ahQi

" #
< 0; ð6Þ

�Pi ¼
AT

ijPi þ PiAij þ Q i � bPi PiEi

� �ebhQ i

" #
< 0; ð7Þ
then dynamic output feedback controllers (3) make system (5) exponentially stable under asynchronous switching for any switch-
ing signal satisfying average dwell time
sa P s�a ¼
ln lþ ðaþ bÞsd

a
; ð8Þ
where l P 1 satisfies
Pi 6 lPj; Q i 6 lQj; 8i; j 2 M: ð9Þ
Proof. Due to the switching delay, the jth subsystem has been switched to the ith subsystem, and the controller Kj is still
active for sd. Thus, we have
_�xðtÞ ¼
Aij�xðtÞ þ Ei�xðt � hÞ; 8t 2 ½ti; ti þ sdÞ;
Ai�xðtÞ þ Ei�xðt � hÞ; 8t 2 ½ti þ sd; tiþ1Þ:

(
ð10Þ
where
Aij ¼
Ai BiKj

LiCi Gi

� �
; Ai ¼

Ai BiKi

LiCi Gi

� �
:

When "t 2 [tk + sd, tk+1), the Lyapunov functional candidate
V1rðtÞ ¼ �xTðtÞPr�xðtÞ þ
Z t

t�h

�xTðsÞeaðs�tÞQr�xðsÞds; ð11Þ
where Pi, Qi are positive definite matrices satisfying (6), (7) and (9).
Along the trajectory of (10) we have
_V1i þ aV1i ¼ �xTðtÞ½PiAi þ AT
i Pi þ Q i þ aPi��xðtÞ þ 2�xTðtÞPiEi�xðt � hÞ � �xTðt � hÞe�ahQ i�xðt � hÞ ¼ fTðtÞRifðtÞ;
where fðtÞ ¼ �xTðtÞ �xTðt � hÞ
� �T .
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From (6), we can get
_V1i þ aV1i 6 0: ð12Þ
When "t 2 [tk, tk + sd), the Lyapunov functional candidate
V2rðtÞ ¼ �xTðtÞPr�xðtÞ þ
Z t

t�h

�xTðsÞebðt�sÞQr�xðsÞds; ð13Þ
where Pi, Qi are positive definite matrices satisfying (6), (7) and (9).
Along the trajectory of (10), we have
_V2i � bV2i ¼ �xTðtÞ½PiAij þ AT
ijPi þ Q i � bPi��xðtÞ þ 2�xTðtÞPiEi�xðt � hÞ � �xTðt � hÞebhQ i�xðt � hÞ 6 fTðtÞPifðtÞ:
From (7), we can get
_V2i � bV2i 6 0: ð14Þ
Obviously
Z t

t�h

�xTðsÞeaðs�tÞQ i�xðsÞds 6
Z t

t�h

�xTðsÞQ i�xðsÞds 6
Z t

t�h

�xTðsÞebðt�sÞQi�xðsÞds; ð15Þ
Thus, combining (11), (13) and (15), it holds that
V1iðtÞ 6 V2iðtÞ: ð16Þ
Considering the whole interval [t0, t), the Lyapunov functional candidate is the combination of (11) and (13)
VðtÞ ¼
V1rðtÞ; t 2 ½tk þ sd; tkþ1Þ; k ¼ 0;1;2; � � � ;
V2rðtÞ; t 2 ½tk; tk þ sdÞ; k ¼ 0;1;2; � � � :

�
ð17Þ
For t 2 [tk + sd, tk+1), integrating both sides of (12) from tk + sd to t, and combining (4), (9) and (16), we have
VðtÞ 6 e�aðt�ðtkþsdÞÞV1iððtk þ sdÞþÞ
6 e�aðt�ðtkþsdÞÞV2iððtk þ sdÞ�Þ
6 e�aðt�ðtkþsdÞÞebsd V2i tþk

� �
6 le�aðt�ðtkþsdÞÞebsd V2i tþk

� �
6 . . .

6 lkeðkþ1Þbsd e�a½t�t0�ðkþ1Þsd �Vðt0Þ

6 eðaþbÞsd e
ln lþðaþbÞsd

sa
�a

� �
ðt�t0ÞVðt0Þ:

ð18Þ
Similarly, for t 2 [tk, tk + sd), we obtain
VðtÞ 6 ebðt�tkÞV2i tþk
� �

6 lebðt�tkÞV1i t�k
� �

6 lebsd e�aðtk�tk�1�sdÞV1iððtk�1 þ sdÞ�Þ
6 . . .

6 lkeðkþ1Þbsd e�a½t�t0�ðkþ1Þsd �Vðt0Þ

6 eðaþbÞsd e
ln lþðaþbÞsd

sa
�a

� �
ðt�t0ÞVðt0Þ:

ð19Þ
Notice (11) and (13), it obviously holds that
ak�xðtÞk2
6 V1iðtÞ 6 bk�xðtÞk2

; t 2 ½tk þ sd; tkþ1Þ;
ak�xðtÞk2

6 V2iðtÞ 6 bk�xðtÞk2
; t 2 ½tk; tk þ sdÞ;

ð20Þ
where
a ¼min
8i2M
fkminðPiÞg; b ¼maxfb1; b2g;
where
b1 ¼max
8i2M
fkmaxðPiÞg þ hmax

8i2M
fkmaxðQiÞg;

b2 ¼max
8i2M
fkmaxðPiÞg þ hebhmax

8i2M
fkmaxðQ iÞg:
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Then, applying (18)–(20) yields
kxðtÞk 6
ffiffiffi
b
a

r
e
ðaþbÞsd

2 e½
ln lþðaþbÞsd

2sa
�a

2�ðt�t0Þkxðt0Þk; 8t 2 ½tk; tkþ1Þ: ð21Þ
From (8), system (5) is exponentially stable. h
Remark 2. Although the Lyapunov functional constructed in Theorem 1 is allowed to increase both at the switching instants
tk and during the running time of active subsystems with the mismatched controllers [tk, tk + sd), by restricting the lower
bound of the average dwell time, the Lyapunov functional is decreasing as a whole and hereby the system stability is
guaranteed.
Remark 3. Theorem 1 provides a sufficient condition for exponential stability of system (1) (or for system (5) under control
law (3)). However, inequalities (6) and (7) are not in the form of LMIs if the controller gains are to be determined. We will
give LMIs conditions for determining the controller gains in the next subsection.
3.2. Synthesis conditions

This section will give some LMIs conditions for the controller design.

Theorem 2. Given positive numbers a, b and c, if there exist symmetric matrices Xi, Yi, Ti, Zi and matricesbAi; bBi;
bCi;

bAij ð8i; j 2 MÞ such that the following matrix inequalities
Xi I

� Yi

� �
> 0; ð22Þ

Ni Ai þ bAT
i þ cXi þ aI Ei 0 Xi

� Xi þ aYi YiEi 0 0
� � �e�ahcI 0 0
� � � �e�ahTi 0
� � � � �c�1I

26666664

37777775 < 0; ð23Þ

Nij Ai þ ÂT
ij þ cXi � bI Ei 0 Xi

� Xi � bYi YiEi 0 0
� � �ebhcI 0 0
� � � �ebhTj 0
� � � � �c�1I

26666664

37777775 < 0; ð24Þ
hold, where
Ni ¼ AiXi þ XiA
T
i þ Bi

bCi þ bCT
i BT

i þ aXi þ Zi;

Xi ¼ YiAi þ bBiCi þ AT
i Yi þ CT

i
bBT

i þ cI;

Nij ¼ AiXi þ XiA
T
i þ Bi

bC j þ bC T
j BT

i � bXi þ Zj;
then dynamic output feedback controllers (3) make the resulting switched system exponentially stable under asynchronous switch-
ing corresponding to any switching signal with average dwell time sa satisfying (8) and the controller parameters are given by
Ki ¼ bCiðMT
i Þ
�1
;

Li ¼ N�1
i
bBi;

Gi ¼ N�1
i ðbAi � YiAiXi � NiLiCiXi � YiBiKiM

T
i ÞðM

T
i Þ
�1
;

ð25Þ
where Mi and Ni satisfy the constraint
MiN
T
i ¼ I � XiYi; ð26Þ
the constant l P 1 satisfies
R�1
i Si 6 lR�1

j Sj; Ti 6 lTj ð27Þ
with
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Ri ¼
Xi I

MT
i 0

� �
; Si ¼

I Yi

0 NT
i

� �
; 8i; j 2 M:
Proof. Motivated by the method in [22,9,11], we define matrices
Pi ¼
Yi Ni

NT
i Wi

� �
; ði ¼ 1;2Þ;
where Wi > 0. Then, P�1
i ¼

Xi Mi

MT
i Zi

� �
with Zi > 0. We can easily obtain Pi

Xi I
MT

i 0

� �
¼ I Yi

0 NT
i

� �
, that is PiRi = Si and thus

Pi ¼ R�1
i Si. Here define Qi = diag{cI,Ti}, where Ti > 0 and c is positive scalar to be chosen.

We first prove that matrix inequality (6) is equivalent to LMI (23).

Pre- and post-multiplying both sides of inequality (6) by diagfRT
i ; Ig and diag{Ri, I} yield the following matrix inequality
RT
i AT

i PiRi þ RT
i PiAiRi þ RT

i Q iRi þ aRT
i PiRi RT

i PiEi

� �e�ahQi

" #
< 0: ð28Þ
A straight forward computation gives the following equalities.
RT
i PiAiRi ¼

AiXi þ BiKiM
T
i Ai

YiAiXi þ NiLiCiXi þ YiBiKiM
T
i þ NiGiM

T
i YiAþ NiLiCi

" #
;

RT
i PiEi ¼

Ei 0
YiEi 0

� �
; RT

i PiRi ¼ ST
i Ri ¼

Xi I

YiXi þ NiM
T
i Yi

� �
¼

Xi I

I Yi

� �
;

RT
i Q iRi ¼

cXiXi þMiTiM
T
i cXi

cXi cI

" #
:

Define the following transformation of variables:
bAi ¼ YiAiXi þ NiLiCiXi þ YiBiKiM
T
i þ NiGiM

T
i ;bBi ¼ NiLi; bCi ¼ KiM

T
i ; Zi ¼ MiTiM

T
i :

ð29Þ
So, from (28) and (29), we have
Ni þ cXiXi
bAT

i þ Ai þ aI þ cXi Ei 0
� Xi Y iEi 0
� � �e�ahcI 0
� � � �e�ahTi

266664
377775 < 0: ð30Þ
According to Schur complement Lemma, matrix inequality (30) is equivalent to LMI (23). Therefore, (6) is equivalent to (23).
In the following, we will deduce (7) from matrix inequalities (24). Pre- and post-multiplying both sides of inequality (7)

by diagfRT
i ; Ig and diag{Ri, I} yield the following matrix inequality
RT
i AT

ijPiRi þ RT
i PiAijRi þ RT

i Q iRi � bRT
i PiRi RT

i PiEi

� �ebhQ i

" #
< 0: ð31Þ
From (31), we have
Nij þ cXiXi
bAT

ij þ Ai � bI þ cXi Ei 0
� Xi � bYi YiEi 0
� � �ebhcI 0
� � � �ebhTj

266664
377775 < 0; ð32Þ
where
 bAij ¼ YiAiXi þ NiLiCiXi þ YiBiKjM
T
j þ NiGiM

T
j ;bCj ¼ KjM

T
j ; Zj ¼ MjTjM

T
j :

ð33Þ
According to Schur complement Lemma, matrix inequality (32) is equivalent to LMI (24). Therefore, (7) is equivalent to (24).
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If LMIs (22)–(24) have feasible solutions bAi; bBi;
bCi; Xi; Yi; Zi, then we can get matrices Mi, Ni from (26) and (29).

Therefore, controller matrices (25) can be obtained.
From LMIs (22)–(24) and Theorem 1, we know that system (1) with dynamic output feedback controllers (3) is

exponentially stable under asynchronous switching for any switching signal satisfying (8) and (9). This completes the proof.
If switching delay sd = 0, that is to say, the controllers are switched synchronously with the subsystems, we can derive the

following result. h.
Corollary 1. Consider the switched delay system (1). Given positive numbers a and c, if there exist symmetric matrices Xi, Yi, Ti, Zi

and matrices bAi; bBi; bCi ð8i 2 MÞ such that (22), (23) hold, then dynamic output feedback controllers (2) make the resulting
switched system exponentially stable corresponding to any switching signal with average dwell time sa satisfying sa > s�a ¼

ln l
a ,

where the controller parameters are given by (25) and constant l P 1 satisfies (27).
If h = 0, switched delay system (1) degenerates into non-delay switched system, we have the following corollary.
Corollary 2. Consider the switched system (1) with h = 0. Given positive numbers a, b, if there exist symmetric matrices Xi, Yi and
matrices bAi; bBi; bCi; bAij ð8i; j 2 MÞ such that LMIs (22),
Ni Ai þ bAT
i þ aI

� Xi þ aYi

" #
< 0;

Nij Ai þ bAT
ij � bI

� Xi � bYi

" #
< 0;
hold, where
Ni ¼ AiXi þ XiA
T
i þ Bi

bCi þ bCT
i BT

i þ aXi;

Xi ¼ YiAi þ bBiCi þ AT
i Yi þ CT

i
bBT

i ;

Nij ¼ AiXi þ XiA
T
i þ Bi

bCj þ bCT
j BT

i � bXi;
then dynamic output feedback controllers (2) make the resulting switched system exponentially stable under asynchronous switch-
ing corresponding to any switching signal with average dwell time sa satisfying (8), where the controller parameters are given by
(25) and constant l P 1 satisfies R�1

i Si 6 lR�1
j Sj.
3.3. Algorithm

Based on Theorem 2, we present an algorithm for the design of dynamic output controllers.

Step I. Given a, b and c, solve LMIs (22)–(24) to obtain Xi; Yi; Ti; Zi; bAi ; bBi ; bCi .
Step II. Then obtain matrices Mi and Ni by (26) and (29).

Step III. calculate matrices Ki, Li and Gi according to (25).
Step IV. From Pi ¼ R�1

i Si;Qi ¼ diagfcI; Tig, calculate l by the following optimization approach
minimize l
s:t: Pi 6 lPj;Q i 6 lQj;8i; j 2 M:

ð34Þ
Step V. Calculate the average dwell time bound based on (8).

Then for any switching signal with average dwell time satisfying (8), the dynamic output controllers given by (3) make
system (1) exponentially stable under asynchronous switching.

4. An example

In this section, an example is presented to demonstrate the effectiveness of proposed design method.
Consider the switched system (1) consisting of two subsystems described by
A1 ¼
�9 0:2
0:3 �2

� �
; B1 ¼

�0:5 2
0:1 0:9

� �
; E1 ¼

0:1 0
0:1 0:3

� �
; C1 ¼

1 0
0 1

� �
;

A2 ¼
�1 0
0 �2

� �
; B2 ¼

4 0:1
0 0:2

� �
; E2 ¼

0:3 0
0 0:1

� �
; C2 ¼

1 0
1 3

� �
; h ¼ 0:4:



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

time (s)

sw
itc

hi
ng

 s
ig

na
l

Fig. 1. switching signals (solid line—switching signal of subsystems, dashed line—switching signal of controllers).
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Fig. 2. state trajectories of system (1) satisfying the switching condition.
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We assume the delay of asynchronous switching sd = 0.3.
Now, we design the output feedback controllers using the algorithm. Choosing a = 4,b = 2,c = 1.5, we can obtain positive-

definite matrices Xi; Yi; Ti; Zi; bAi ; bBi ; bCi ði ¼ 1;2Þ by solving LMIs (22)–(24). Following Step II, we get Mi and Ni from (26)
and (29). According to Step III, we can obtain controller gains
K1 ¼
�591:1 1308:3

67:6 �328:1

� �
; K2 ¼

�41:2284 20:5746
�0:7735 �821:4389

� �
;

L1 ¼
�0:2648 0:2835
0:0948 2:9816

� �
; L2 ¼

2:8610 0
0 0:8379

� �
;

G1 ¼
�309:6939 �4:2060

2:9895 �315:8485

� �
; G2 ¼

�310:3264 0:2892
�0:7896 �316:2327

� �
: ð35Þ
Applying (34) produces l = 2.9, and according to Step V, we have average dwell time sa P s�a ¼
ln lþðaþbÞsd

a ¼ 0:7162. Let
sa = 0.8. Fig. 1 describes the switching signals, where solid line and dashed line represent switching signals of subsystems
and controllers, respectively. Under this switching signals and dynamic output feedback controllers with parameters (35),
the steady-state responses of the closed-loop system with x0 ¼ �0:3 0:5½ �T are depicted in Fig. 2.

Moreover, according to (21), we get
kxðtÞk 6 51:8189e�0:2096ðt�t0Þkxðt0Þk: ð36Þ
Therefore, it can be seen from Fig. 2 and (36) that the proposed dynamic output feedback controllers can guarantee that
the closed-loop system is exponentially stable although there exists asynchronous switching.
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5. Conclusion

We have investigated the dynamic output feedback stabilization problem for a class of switched delay systems under
asynchronous switching. Time delays appear not only in the state, but also in the switching signal of the controller. Based
on a novel Lyapunov functional method combined with the average dwell time scheme, we have established sufficient con-
ditions for exponential stability in terms of LMIs. We have also designed output feedback controllers and identified a class of
switching signals satisfying a specific lower bound of the average dwell time. In the future studies on this topic, an extension
of these results to the case of nonlinear plant systems, networked control systems [29], or neural networks [14] would make
a major step forward.
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