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a b s t r a c t

Bathymetry is the science of measuring and charting the depths to determine the topography of the

seafloor and other bodies of water. It has several important practical and academic applications. For this

reason, having computational tools capable of analyzing bathymetric charts would be useful for domain

experts studying the various problems related to water depth. Data mining is a well known technique

for extracting information from large datasets, but cannot be directly applied to images. The

contribution of this work is an approach for using data mining in bathymetry images. We propose a

method for processing input images, in order to extract records and their features, which can be

processed by classic data mining algorithms. Additionally, we also propose techniques to visualize both

data mining results and map characteristics. For evaluation purposes, the proposed approach was

applied to a cold-water corals dataset, in order to predict where corals are likely to be found, under a

domain expert supervision.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Bathymetric maps have several important applications, like
exploration and exploitation of mineral resources, navigation
planning and study of deep water circulation and sediment
transport (Brown et al., 2007). Bathymetry maps can cover the
entire extent of the Earth globe, and they can show subtle
variations between nearby areas, as well as similar areas which
are distant from each other. Considering those points, it would be
interesting to have available computational tools which could aid
domain experts on the analysis of problems on various fields
related to bathymetry.

The expected operation for such a tool is that a domain expert
can manually label map areas, or alternatively, import labeled
areas from a known database. The available labels (classes) are
arbitrary, according to the specific problem being addressed.
Then, assuming that the knowledge is limited to certain specific
areas, the computational tool should, from the map character-
istics on labeled areas, autonomously label other areas, where the
class label was previously unknown. It might be the case that only
a few areas have known data, and the computational tool should
still infer the other area’s labels with an acceptable performance.
ll rights reserved.

ax: þ55 51 3320 3621.

alez),

crs.br,
1.1. Data mining

We propose the usage of data mining as the computational
tool previously referred. Data mining is a process for automatic
information discovery in large databases (Tan et al., 2005), and is
capable of performing descriptive and predictive tasks (Han et al.,
2005). Descriptive tasks characterize the general properties of the
data, while predictive tasks perform inference on the current data,
in order to make predictions.

1.2. Classification

The data mining task which fulfills the requirements described
above is classification, which is a predictive task that infers the
value of a nominal class attribute, given the other attributes on
the dataset. A learning algorithm is used to analyze the dataset
(called training set), inducting a classification model. That model
is then applied to a test dataset, inferring the value for the class
attribute on each record. There are several classification models,
each having multiple well known algorithms implementing them.
This work employs decision trees, as they are widely used and
well known, but most classification algorithms should be suitable
as well.

1.3. Decision trees

Decision trees are tree data structures where each intermediary
node contains nova tests over data set attributes, and leaf nodes
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contains the inferred class value. Fig. 1 shows an example of a
decision tree. Some of the classical decision trees algorithms are
CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993). There are
also algorithms which are called ensemble methods, aggregating
the predictions of multiple decision trees in order to increase the
prediction performance. A notable example of an ensemble
method is the Random Forests algorithm (Breiman, 2001).

1.4. Classification evaluation

Classification evaluation is normally done by splitting the
training set into training and test sets (Tan et al., 2005). That
way, the inferred model can be evaluated, as the class labels of the
training set are previously known. The plain splitting of the
training set is called holdout. When the holdout method is
repeated multiple times, averaging the precisions of each itera-
tion, that is called random subsampling. However, a more con-
trolled method for evaluation is the n-fold cross validation, where
n is the number of subsets the original data set is splitted into.
At each iteration, one of the subsets is used as test, and the others,
as training. The process is repeated n times, and the estimated
precision is the average of each iteration. The evaluation results
can be summarized as a precision, which is calculated by dividing
the number of correctly classified records by the total number of
records (and can be calculated for an individual class), or as the
confusion matrix, which presents all class labels in both rows and
columns. The cell ij contains the number of records which where
predicted to belong to class i, and were known to belong to class j.
Hence, the main diagonal (where i¼ j) contains the correctly
classified records, according to the dataset, while other cells
contains classification errors.

1.5. Image data mining

Classical data mining algorithms work with tabular data-
collections of records (rows) and their attributes (features/
columns). Therefore, in order to apply those algorithms over
other data types, as it is the case with bathymetric images, a
preprocessing must be performed, transforming the original data
into a tabular form. This is done by extracting both records and
attributes from the original images.

The first aspect which should be decided is the granularity of a
record. Generally, when the purpose of data mining is to label or
cluster an image database, each image is mapped to a single
record (Ding et al., 2009; Kitamoto, 2002). Otherwise, when
multiple data is expected to be processed on each image, it is
segmented into multiple records. A straightforward approach is to
split images into a fixed-size grid (Gueguen and Datcu, 2007).
Alternatively, computer vision techniques can be used to delimit
salient objects, being each object a distinct record (Fan et al.,
2008).
Fig. 1. Example of a decision tree with two classes.

Source: Tan et al. (2005).
For attribute extraction from image contents, image processing
techniques are used. Some of the well-known image processing
techniques are as follows:
�
 Pixel value statistics: Statistical variables, like mean, standard
deviation, variance or mode, over pixel values. Each variable is
used as a data mining attribute.

�
 Color histogram (Novak and Shafer, 1992): A histogram con-

sisting of n bins. Each bin corresponds to a discretization of the
pixel values, and is used as an attribute. The discretization can
be done in several ways. An example is to convert the image
color model into a limited palette, being each distinct color a
bin. Another example is to divide the pixel luminosity by the
number of bins, resulting in the destination bin for that pixel.

�
 Wavelet coefficients (Mallat, 1989): Wavelet coefficients can be

used to capture shapes, textures and locations. For images, the
Discrete Wavelet Transform (DWT) may be used. It takes as
input a square image having size of a power of 2, and
generates four components, each with half of the original
image size: approximation, horizontal details, vertical details
and diagonal details. The approximation is a downsampled
image, and the others contain coefficients which can be used
to reconstruct the original image. This is the level 1. The DWT
can then be applied again to the approximation component,
generating a smaller approximation, with the respective coef-
ficients, increasing the level. To generate data mining attri-
butes, the DWT can be used up to a given number of levels,
using all coefficients from all components as attributes.

Image processing tasks are usually highly dependent on the
problem domain. So, not only the parameters and variations for
those techniques can fit best distinct problem domains, but also
other techniques, more specific to the target domain can be used.
2. Proposed method

The method proposed in this work for employing data mining
to analyze bathymetry images consists in defining the expected
format for input images and how to extract records and attributes
from them. Additionally, we propose a method to visualize results
and map characteristics.

2.1. Expected image format

It would be extremely complex to handle any possible bathy-
metry image, due to distinct cartographic projections, scales,
angles, color models and any other element which can be present
on such images. So, in order to effectively extract data mining
records from images, a straightforward approach is to define an
expected image format.

In the proposed method, the input image is expected to be on
the geographic (or Platte Carrée, or equirectangular) projection, as
it allows processing the entire coordinates space. Also, it con-
siders meridians and parallels to be perpendicular in relation to
each other, making it a natural choice for square sub-images, as
described later in the text. One thing to note, however, is that the
geographic projection distorts the map near the poles. The
method does not take those distortions into account, but they
can impact on the data mining results. A possible way to mitigate
this problem is to discard records in extreme latitudes when
performing data mining tasks.

The image should be in the gray scale color model, as a single
data (the bathymetry at each pixel) needs to be read. In order to
differentiate land from water, it is assumed that pixels which
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represent land are pure black (RGB values are all 0). Other values
represent distinct depths, being lighter values shallow areas, and
darker values, deep areas.

A bathymetric image with the aforementioned characteristics
is available from NASA’s Visible Earth project, at http://visible
earth.nasa.gov/view_rec.php?id=8392, as shown in Fig. 2.

2.2. Records extraction

We propose to split the image in squared sub-images of
arbitrary size, each one dubbed tile. Each tile will be treated as
a separate record for data mining.

As this work is focused on bathymetry, and purely black pixels
represent dry land, tiles containing those should be ignored. This
is important because pixels with value zero represent a major gap
in relation to the shallower valid value, which is 255, hence,
interfering on calculations.

2.3. Attribute extraction

For attribute extraction, all the well-known techniques
described in Section 1.5 are used, and others are proposed.

The well-known techniques which were employed, as well as
their semantics for the bathymetry domain are:
�

Fig
pro
Pixel value statistics: Two attributes are used: mean and
standard deviation. Mean captures the average depth, while
standard deviation describes how much the depth varies along
the tile. For example, continental shelves tend to have high
means and low standard deviations; deep plateaus, to have
both mean and standard deviation with low values; while
continental slopes will have high standard deviations.

�
 Color histogram: A n-bin histogram, where the target bin for

each given pixel with value v (as the expected image format
is in gray scale, the only available measure is the value)
is calculated by round_floorð256=nÞ. Each bin value is used
as a data mining attribute. The histogram allows capturing
tiles where specific depth ranges are important for the
classification.

�
 Wavelet coefficients: Two input variables are expected: a tile

base size b and the number of DWT levels l. The original tile
size is arbitrary, but the DWT requires the image to be
squared, having each dimension as a power of 2. To extract
attributes, the tile is resized to b� b, then the DWT is applied l

times in the approximation component. Each of the resulting
coefficients is used as a data mining attribute. For example, for
b¼128 and l¼4, there will be 256 attributes. Wavelet coeffi-
cients capture low-level image features, like textures, sizes and
positions.
. 2. Bathymetry map used in this work, available from NASA’s Visible Earth

ject.
Besides the characteristics captured by those attributes, we

consider the approximate tile shape to be important for the
classification. Therefore, we propose two new attribute sets:
�
 Regions: Regions capture the approximate tile shape, disre-
garding the average depth. This technique consists in splitting
the tile in a sub-areas grid, where each sub-area is named
region. An input parameter r is used to determine the region
sizes, being the tile splitted in r � r regions. Each region
consists in a delta between the pixel value means of both
the region and the entire tile, and generates one attribute on
the resulting data set. Fig. 3 depicts the values for each region
in a tile. In the example, lighter (shallower) regions will have
higher values, and the darkest (deepest) regions will have
negative values.
As similar shapes may appear in arbitrary rotations, and
regions are square areas, only rotations multiple of 901 can
be captured. So, as an heuristic, the highest valued region
among the four corners is placed on the upper-left corner,
either by rotating (901, 1801 or 2701) or mirroring (horizontally
and/or vertically). However, intermediate angles might not be
recognized by regions.

�
 Vector: This attribute group consists of a vector capturing the

dominant tile direction and intensity. Vectors are calculated
over regions, which are means, and not over individual pixels.
This is done to prevent outliers from interfering too much on
the vector. Being min and max the lowest and highest-valued
regions, the vector has the following characteristics:

x¼ xmax�xmin

y¼ ymax�ymin

z¼ valuemax�valuemin

anglexy ¼ a tanðyxÞ

anglezy ¼ a tanðyzÞ

angle¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p

For the purpose of capturing the dominant tile direction and
intensity, the vector coordinates (x, y and z) are not needed.
Fig. 4 shows the vector on the coordinates system, and a vector
overlaid on the regions that generated it.

For both regions and vector, a threshold may be defined, for
tiles to be considered totally flat. If that threshold is not reached,
Fig. 3. Region attribute values overlaid in a tile.

http://visibleearth.nasa.gov/view_rec.php?id=8392
http://visibleearth.nasa.gov/view_rec.php?id=8392
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the tile is considered to be totally flat, which means that all
attributes in both regions and vector are passed to the data
mining algorithm with value zero.
Fig. 4. Vector on the coordinates system and positioned over regions.

Fig. 6. Vectors overlaid on tiles. The four distinct levels of zy angles, distinct

rotations on the xy angle and distinct modules are shown. Also highlighted are the

two areas without vectors, as those tiles were considered to be totally flat.
2.4. Results and map visualization

An important aspect to help the domain expert in terms of
understanding the data mining results, as well as the map
characteristics is visualization. A straightforward way to repre-
sent the distinct classes is by using distinct colors for them. It
is important, however, to differentiate the hard truth data and
the one which has been inferred by data mining. A possible
solution for that is to vary the color opacity in both cases,
which will lead to more saturated tiles when manually labeled,
and lighter tiles when inferred. Fig. 5 shows examples of tile
coloring for two classes, showing both initially labeled and
inferred label tiles.

Not only the classification results can be visually represented
on the map, but also the extracted attributes from each tile. From
the attributes presented in Section 2.3, one of the most useful to
help understanding map characteristics is the vector, as it
captures the tile dominant direction in a succinct way. Vectors
are also naturally represented as arrows, so, the corresponding
vector can be rendered over each tile. Both modulus and xy angle
are easily represented using two dimensions. The zy angle,
however, is represented according to the discretization of its
values to four different levels. Each level will vary both thickness
and arrow head size. Fig. 6 shows several possible cases for
vectors, including all four levels of zy angles, distinct rotations
and modules, and also two highlighted areas where no vectors
were drawn, because they were assumed to be flat (according to
the flat tile threshold described in Section 2.3).
Fig. 5. Example of map coloring using two classes, showing tiles which were

initially labeled (more saturated) and tiles with inferred labels (less saturated).

(For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)
3. Method evaluation

In order to evaluate the proposed approach of data mining in
bathymetric images, we decided to infer the global distribution of
deep-sea corals using a database of their well-known geographi-
cal distribution (i.e. based on sampling records). On one hand,
deep-sea corals were chosen because their distribution is closely
conditioned by geology, since it determines the type of substrate
and relief, which in turn influence ocean currents. Furthermore,
corals were chosen because they play an important role as habitat
providers for fisheries. In fact, the knowledge of the distribution
and structure of the deep-water coral related ecosystems has
become relevant after the decline of coastal fisheries. Addition-
ally, deep-sea corals constitute important high-resolution paleo-
ceanographic records (Sherwood and Risk, 2007) because they
incorporate into their skeletons different proportions of trace
elements and their isotopes that vary along their growth in
consonance with climatic and oceanographic changes.

Despite having been discovered in the XVIII century, only
recently the deep-water corals received considerable interest
and research upon them has significantly advanced. Given their
importance, it is fundamental to locate and map habitat areas to
complement existing information on their distribution, to under-
stand patterns of occurrence around the world, and to provide
location and extent information towards protection of reef areas
from damaging activities (Freiwald et al., 2004). Since the actual
survey of the whole sea floor is a virtually impossible task, data
mining could prove itself as a useful tool to address their study.

The distribution database used was UNEPs World Conserva-
tion Monitoring Centre, Cold-Water Corals, Version 2.0 (Rogers
and Hall-Spencer, 2005) downloaded from the Ocean Biogeo-
graphic Information System (http://www.iobis.org). The database
comprises 6553 records obtained from 1869 up to 2005, contain-
ing the geographic coordinates and corals species sampled. The
records are geographically scattered, reflecting both the patchy
distribution of corals and the bias of data due to the non-uniform
sampling effort (Fig. 7). That figure was generated on http://iobis.
org/mapper/, by choosing the ‘‘Cold Water Corals’’ data set and
selecting ‘‘Points’’ on the ‘‘Layer’’ menu.

The objective of data mining in this particular case is to find
areas which potentially contain corals, among those which had no
information on the original dataset. In this case, no information
could mean that either no corals exist or that the area was not
(correctly) sampled. Given that enclosed seas and lakes are
significantly different from open seas, these areas were excluded
from the analysis by painting them with absolute black color in
the bathymetry map. As a result, areas such as the Caspian and
Black seas were ignored in the image processing, just as if they
were solid land.

The original database records could not be used directly on the
proposed method, because classic classification algorithms handle

http://www.iobis.org
http://iobis.org/mapper/
http://iobis.org/mapper/
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a single class per record, and multiple coral species could be
mapped to the same tile. To overcome this, we have defined two
classes, ‘‘Yes’’ and ‘‘No’’, representing the presence and absence of
corals in a given tile. Only tiles on the latitude range present on
the database were considered, in order to avoid projection
distortions on unsampled areas near the poles, which could
interfere in results. Each record was mapped to a tile, according
to its coordinates. Tiles which contain at least one coral sample
were labeled as ‘‘Yes’’. We also need to label other tiles as ‘‘No’’,
despite that the original data set has no information about the
‘‘No’’ class.

Besides labeling tiles as ‘‘No’’, the tile size must also be
defined. In order to accomplish both, a random subset of yet
unlabeled tiles was labeled ‘‘No’’. The number of tiles chosen was
the same of ‘‘Yes’’ tiles, in order to achieve class balance on the
training set. That training set was then used on a 10-fold cross
validation, and the precision for class ‘‘Yes’’ was stored. This
process was repeated 10 times for each of the following tile sizes:
4�4, 8�8, 16�16, 32�32, 48�48 and 64�64. Each subset
was as disjunct as possible at each iteration (tiles were only
repeated after all others had been used). Table 1 presents the
average ‘‘Yes’’ precision for executions on each of the mentioned
Fig. 7. Distribution of deep-water coral records. Each dot represents one record on

the data set.

Table 1
Average precisions of 10 iterations consisting on 10-fold

cross validation for each tile size.

Tile size ‘‘Yes’’ precision (%)

4�4 90.5

8�8 88.1

16�16 84.3

32�32 79.5

48�48 74.8

64�64 72.1

Table 2
Number of tiles classified as ‘‘Yes’’ for each threshold.

Threshold ‘‘Yes’’ count

1 144,939

2 119,581

3 105,107

4 95,573

5 88,142

6 81,958

7 75,754

8 68,840

9 58,265

10 44,231
tile sizes, indicating that 4�4 is the tile size with greater
precision. The Random Forests algorithm was chosen, as it
generally provides better classification performance than other
single tree algorithms.

The final step is to label tiles without any corresponding
records on the original database. As it is composed solely of
positive records, the result is also focused on the ‘‘Yes’’ class. At
each data mining iteration, not only the 10-fold cross validation
was executed, but also the inferred model was used to classify the
unlabeled tiles. The set of tiles assigned to the ‘‘Yes’’ class was
stored at each iteration. For the final result, a threshold was then
used to consider as ‘‘Yes’’ tiles which were positively labeled by at
least that given number of intermediate models. This way, the
result will be robust in relation to noise originated from the
random subsets of tiles labeled as ‘‘No’’. Table 2 shows the
number of records labeled as ‘‘Yes’’ having the threshold varying
from 1 to 10.

Finally, we considered the threshold of 10, as it still provides a
considerable number of areas which potentially have corals, and
provides the higher possible confidence. The result is depicted in
Fig. 8.
4. Discussion

Deep-sea corals are more abundant in submarine mounds and
along the slopes of continents and islands (Roberts et al., 2006).
This pattern appears very well represented in the predicted
distribution (Fig. 8).

Comparing the proven distribution (i.e. the distribution known
from real sampling) and the expected distribution (i.e. based on
data mining) we see that the latter is consistent both in terms of
geographical location and relative to the seabed relief. However,
compared to the proven distribution, the predicted distribution
shows a more uniform pattern and suggests a more widespread
occurrence of deep-sea corals. On the one hand, the homogeneity
of the distribution of predicted occurrences (in comparison with
documented occurrences) is easily understandable because of the
heterogeneity of the oceanographic sampling effort. The North
Atlantic is by far the most well studied and densely sampled basin
in the world, and the concentration of the sampling effort in this
basin certainly biases the census data. In fact, despite being the
largest ecosystem of the world, covering around 60% of the solid
surface of the Earth, the deep-sea is still poorly known compared
to other marine ecosystems (Glover and Smith, 2003). Thus,
distribution data are usually strongly biased and the real biogeo-
graphy of deep-water species is still very limited.

At a first glimpse, the more widespread predicted occurrence
of deep-sea corals shown in this study may seem to overestimate
Fig. 8. Results from the experiment using a cell size of 4 pixels. Positive real

values are in red, and predicted positive values are in light green. (For interpreta-

tion of the references to color in this figure legend, the reader is referred to the

web version of this article.)



Fig. 9. Davies and Guinotte’s predicted presence map for scleractinian frame-

work-forming corals. White background indicates that these species are not likely

to be found, red indicates probable presence. See original paper for details (Davies

and Guinotte, 2011). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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the areas suitable for deep-sea coral distribution. However, the
fact of a grid cell being considered a likely candidate for the
presence of corals does not mean that we assume that corals
would be densely present on the seafloor in that grid cell. Even if
the environmental conditions are suitable, the distribution of
deep-sea corals is patchy.

Although geology and physiography may be considered the key
parameters determining deep-sea coral distribution, other physi-
cal, chemical and biological oceanography parameters may also
exert influence. Indeed, other studies (e.g. Davies et al., 2008;
Tittensor et al., 2009; Davies and Guinotte, 2011) have estimated
coral distribution using more comprehensive approaches including
not only bathymetry but also different physicochemical and
biological parameters such as primary productivity in surface
waters, which represents a food source for the deep-sea. Never-
theless, the results obtained in this study based solely in bathy-
metry are comparable to those obtained in these more
comprehensive studies. For example, Davies and Guinotte (2011)
predicted the presence of the five main species of framework-
forming scleractinian corals which together account for 50% of all
the occurrences in UNEP’s database (Rogers and Hall-Spencer,
2005). Since the geographical distribution of the other 50% of the
occurrences practically covers the same areas, we can confidently
compare our study to Davies and Guinotte’s. Although their results
are in higher spatial resolution, they show a similar pattern to the
results obtained in our study (Fig. 9). The main difference between
both studies is in high latitudes and at the northeastern Pacific,
along the western margin of North America where Davies and
Guinotte do not predict the occurrence of corals. However, at least
in the case of the northeastern Pacific, the results obtained in our
study appear to be consistent since the occurrence of deep-sea
corals has already been documented for that region. For high
latitudes, care must be taken since the results are very likely
affected by projection distortions as mentioned in Section 2.1.

The similar results obtained between our study and Davies and
Guinotte (2011) suggest that seabed relief is in fact the main
driver of deep-sea coral distribution and that – at least for the
study of deep-sea corals – a data mining approach using only this
environmental parameter should provide reliable results. We
believe that the method could be improved by combining other
databases in order to provide answers to other geoscience related
problems.

5. Conclusions

With the presented techniques, a data set compatible to data
mining algorithms can be obtained from a bathymetry image with
expected characteristics, by extracting records and attributes
from it. With that data set, it is possible to apply several data
mining tasks, like classification, regression, clustering and so on.
For the scope of this work, classification was explored, as the
motivation was that a domain expert could label specific areas on
the map and have the computational tool to autonomously label
the other areas.

The proposed method was tested with a cold-water corals data
set, but any other problem related to bathymetry, which could be
mapped to the expected format (one label per map tile) could be
processed by data mining as well. The results which were
obtained are consistent with the expected coral distribution (in
terms of geology), and are comparable with another study (Davies
and Guinotte, 2011), which used several other variables (than
bathymetry) to predict its results.

Therefore, one of the biggest contributions of the proposed
technique is to allow discovering information about partially
known data having solely high resolution bathymetry imagery
(freely available on the Internet) and the initially labeled data set.
The results obtained could then receive a more thorough analysis
using other, more specific approaches.
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