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Abstract: The electric power industry landscape is continually evolving. As emerging technologies such as wind and solar
generating systems become more cost effective, traditional power system operating strategies will need to be re-evaluated. The
presence of wind and solar generation (commonly referred to as variable generation or VG) can increase variability and
uncertainty in the net-load profile. One mechanism to mitigate this issue is to schedule and dispatch additional operating
reserves. These operating reserves aim to ensure that there is enough capacity online in the system to account for the
increased variability and uncertainty occurring at finer temporal resolutions. A new operating reserve strategy, referred to as
flexibility reserve, has been introduced in some regions. A similar implementation is explored in this study, and its implications
on power system operations are analysed. Results show that flexibility reserve products can improve economic metrics,
particularly in significantly reducing the number of scarcity pricing events, with minimal impacts on reliability metrics and
production costs. The production costs increased due to increased VG curtailment – i.e. including the flexible ramping product in
the commitment of excess thermal capacity that needed to remain online at the expense of VG output.

1 Introduction
As emerging technologies continue to become more significant
players in the power system, operating strategies will need to
evolve that allow system operators to mitigate adverse effects
while maximising system benefits. Wind and solar generators,
electric vehicles, and distributed generation located throughout the
distribution system have recently drawn significant attention.
These technologies may increase the variability and uncertainty in
the power system if not properly controlled and operated. Power
system operators may need new and improved methods to maintain
the real-time balance between electricity generation and
consumption. Traditionally, system operators have utilised a
combination of operating reserves [1]. These requirements are
typically based on simple heuristics developed independently by
each footprint, without any consensus on a universal methodology
to calculate how much reserves the system operator must acquire.
Although contingency reserves are typically designed with N − 1
reliability in mind, there is still much discussion about how
operating reserves are procured.

New operating reserve methodologies are explored to address
the additional variability and uncertainty from variable generation
(VG) resources. Methodologies to determine operating reserves in
recent wind integration studies and operating practice were
examined in [2], where simulation results were compared with
different methods or data. A statistical approach to assess the
impact of intra-hour wind power variability on the quantity of
primary reserve provided by wind generators was proposed in [3],
where three reserve allocation strategies were compared in case
studies. Market implications of dynamic reserve policies for
managing uncertainty from renewable resources and contingencies
were examined in [4], where different policies were compared and
a locational reserve pricing scheme was proposed. Ela et al. [5]
describes different assumptions and methods for calculating the
amount of different types of reserves and how these methods have
evolved over time. Ibanez et al. [6] describes the relationship
between operating reserve and wind generation and compared three

methodologies for calculating regulating and flexibility reserve in
systems with wind generation. A dynamic operating reserve
requirement that was updated on an hourly basis to account for the
variability of wind power was presented in [7], where the
requirement was driven by probabilistic forecast errors as well as
the short-term variability of wind power generation. Their analysis
showed that there are significant opportunities to modify a static
reserve requirement, and this modification could potentially reduce
the cost per MWh of wind power injected. Doherty and O'Malley
[8] proposed a dynamic reserve requirement methodology based on
the probability of load shedding. The requirement was determined
by considering the reliability requirements of the system
throughout the entire year with respect to the number of allowable
load-shedding incidents per year. Their analysis showed that
increasing wind power generation in the system increases the need
for operating reserves and that reserve requirements that consider
longer temporal horizons typically result in requirements larger
than those for shorter temporal horizons. A dynamic economic
dispatch problem was formulated to simultaneously schedule
energy and reserves utilising an interior point algorithm in [9],
where the model converged well with improved computational
speed. Matos and Bessa [10] proposed an hourly, dynamic reserve
requirement methodology based on risk indices, such as the loss of
load probability. This formulation allows the system operators to
examine the trade-off between acceptable risk levels and operating
cost and decide on a reserve requirement that best suits the current
operating needs of the system.

The industry is also interested in this new class of flexibility
reserves. In [11], a framework was presented to determine the
quantity of ramping reserves based on the standard deviation of
ramping imbalance, i.e. the difference between scheduled and
actual generation ramping rates. Navid and Rosenwald [12]
developed a flexibility reserve methodology to address ramping
concerns that can be integrated within the Midcontinent
Independent System Operator's day-ahead market model. This
method aims to prepare generation assets for variability and
uncertainty in the net load. One of the potential benefits of this
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ramping product is the potential reduction in real-time scarcity
events. The California Independent System Operator recently
developed a proposal to incorporate a flexible ramping ancillary
service [13]. This product was meant as a dynamic reserve
requirement implemented via a multi-segment reserve demand
curve to address potential net-load ramping concerns. This was
motivated by the fact that the commitment and dispatch of
generators does not always account for the variability and
uncertainty in the net load that occurs at finer temporal resolutions.
This product was developed with the intention of curbing the
system's reliance on regulating ancillary services and interchange
flows during times of insufficient or over-generation. Another
motivation is to reduce the volatility in the locational marginal
prices (LMPs) by reducing the number of scarcity pricing events
caused by insufficient ramping capacity. The basic idea is that
including the flexible ramping service will provide a ramping
margin on top of forecasted net-load ramps in multi-interval unit
commitment and economic dispatch.

The contribution of this paper lies in analysing the economic
and reliability implications of a dynamic operating reserve product
that does not enforce a singular reserve requirement but rather
offers the operator flexibility in reserve procurement on power
system operations at multiple timescales. The intent of this reserve
product is to prepare the system for real-time flexibility needs by
dynamically modifying the operating reserve requirement based on
real-time load, solar, and wind forecasts. The analysis is performed
over several weeks and operational impacts are studied. Economic
implications are measured via total system production costs and
LMP. Of particular interest is the impact on scarcity prices. If there
is not sufficient ramping capacity available in the system to meet
an incremental increase in demand, then that interval would exhibit
scarcity pricing. Reliability implications are measured based on the
area control error (ACE), i.e. the imbalance between generation
and consumption.

The rest of this paper is organised as follows. Section 2 details
the flexible ramping product methodology, Section 3 describes the
case study used in this analysis, Section 4 provides the results, and
Section 5 concludes the paper with final remarks.

2 Methodology and determination of reserve
requirements
The analysis performed in this study utilised the flexible energy
scheduling tool for integrating VG (FESTIV) developed by the
National Renewable Energy Laboratory (NREL). This is a steady-
state power system operations simulation tool. FESTIV captures
the entire scheduling process, from the day-ahead unit commitment
through the generator automatic generation control (AGC).
FESTIV simulates an integrated set of scheduling tools: security-
constrained day-ahead unit commitment (DASCUC), security-
constrained real-time commitment (RTSCUC), security-
constrained real-time economic dispatch (RTSCED), and AGC.
Each model is interconnected to subsequent models such that the
outputs of one model serve as the inputs into the next. FESTIV is
built in MATLAB and GAMS [14, 15]. More details about the
model can be found in [16].

The flexibility reserve requirements were implemented
following the description provided in [13]. The requirements are
calculated by examining the distribution of subhourly forecast
errors for net load (load minus wind and solar). As described in
[13], upper and lower bounds for these forecast errors are
calculated for each hour of the day, on a monthly basis. Although
the calculation and subsequent requirements change among the
different models in FESTIV (DASCUC, RTSCUC, RTSCED), the
demand curve has a similar behaviour.

Fig. 1 (left) shows a diagram with the basic shape of the flexible
reserve demand curve (FRDC). The demand is determined
dynamically for each step in the simulation. The minimum
flexibility reserve requirement (FRMIN) represents the expected
ramp need of the system. A penalty cost is associated with the
FRMIN. The demand curve is in place such that ramping capability
above the FRMIN can be purchased when cost effective. There are
a number of additional steps for increasing need with decreasing
penalty costs. The last step is extended to the maximum flexible
reserve value (FRMAX). 

The optimisation algorithm will select the reserve level on the
demand curve where the marginal cost of providing the service is
less than the penalty cost. The use of demand curves allows for the
implementation of decreasing penalty costs, which provide more
granularities to the optimisation. Both upward and downward
requirements are held in these simulations. In the event that
FRMIN is negative for a given requirement, i.e. the expected
change in the net-load profile is opposite that of ramping need
(Fig. 1, right) the supply curve is shifted, and FRMIN is set to zero.
For example, if the change in the net profile is in the downward
direction (negative), then the ramping need in the downward
direction is positive and the ramping need in the upward direction
is negative. In this case, rather than enforcing a negative
requirement, the upward requirement is set to zero instead.

Table 1 summarises the different parameters that, along with

FRMIN and FRMAX, determine the supply curves for each
solution step. The goal was to match the methodology as closely as
possible to that of [13] while making necessary changes due to
differing systems and data availability. 

 To calculate the price break points of the FRDC, a historic
analysis on ramp error distributions was performed. Based on [13],
the approximate probability of different groups of ramp errors is
shown in column 2 of Table 2. Column 3 shows the midpoint of
that group. Then, the expected cost of having a ramping violation
based on the previous analysis was calculated using (1). This
represents the cumulative cost of violation if only the minimum
requirement is met for each step in the demand curve

Cvio = δup ∑
k = n

5
ρk ⋅ Ravg need − Rprocured (1)

In (1), δup is the upward violation penalty price (1000 $/MW
taken from [13]), ρ is the probability of a violation, R is the
expected magnitude of the average violation ramp error not served
based on historical data, and k indexes the steps in the demand

Fig. 1  Example FRDC
 

Table 1 FRDC characteristics
DASCUC RTSCUC RTSCED

step width, MW 250 50 50
segment penalty costs/up direction,
$/MW

250/24, 15, 8, 2.5

segment penalty costs/down
direction, $/MW

250/3.6, 2.25, 1.2, 0.375

 

Table 2 Summary of demand curve break point
calculations
Ramp
group,
MW

Probability, ρ Average
need, MW

Expected
cost, $

Demand
price,
$/MW

0–100 0.010 50 4950 24
100–200 0.008 150 2550 15
200–300 0.006 250 1050 8
300–400 0.005 350 250 2.5
400+ 0.000 — 0 0
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curve. For example, the cost of a ramping violation in the second
block of the FRDC is calculated as

C2 = 1000 0.008 ⋅ (150 − 100) + 0.006 ⋅ (250 − 100)
+ 0.005 ⋅ (350 − 100) = $2550 (2)

The costs are shown in column 4 of Table 2. With these costs
defined, the price of each block in the demand curve is calculated
as incremental cost between blocks normalised by the magnitude of
the block (i.e. width of the block). For example, the price of the
first block is taken as (4950 − 2550)/100 = 24 $/MW. These costs
are summarised in column 5 in Table 2.

With the upward FRDC breakpoints defined, the downward
FRDC breakpoints are defined by scaling these prices. The
downward penalty price as taken from [13], δdown, is equal to 150 
$/MW. The downward FRDC prices are calculated using the
following equation:

Ddown = Dup ⋅
δdown
δup

(3)

In (3), D represents the demand curve price and δ is the penalty
price. The demand curves are decreasingly structured so that the
optimisations only procure additional capacity over the minimum
required if it is economically feasible to do so. The requirements
are sectioned off into blocks in order to assign marginally
increasing value to increasing excess capacity.

The description in [13] suggested a number of system factors
that contribute to the determination of flexibility reserve
requirements. In this paper, we consider the contribution of load
and VG toward that requirement. We do not consider the impact of
self-scheduling generators or interchange with other regions
because neither is considered in our modelling. In the absence of
many years of data to determine the requirements, as suggested in
[13], data for one year was utilised.

FRMIN is calculated differently for each simulation step:

• DASCUC: Day-ahead flexibility requirements are calculated
based on the hourly difference in net load (i.e. load minus VG
generation). FRMIN is calculated based on the difference in
day-ahead forecasts for each hour. FRMAX is calculated as the
97.5th and 2.5th percentiles for net-load hourly ramps for each
month and hour of the day for the upward and downward
directions, respectively. It is a 60 min product.

• RTSCUC: Intra-day unit commitment happens with a frequency
of 15 min in the simulations. FRMIN is calculated as the
difference between the forecast for each of the 5 min RTSCED
steps that correspond to each RTSCUC solution. FRMAX is
calculated as the 95% confidence interval for FRMIN for each
hour of the day within a month. Requirements are calculated for
the binding and advisory intervals. It is a 5 min product.

• RTSCED: Real-time economic dispatch flexibility reserve
requirements are based on the difference of each consecutive 5 
min forecasts for net load, both for the binding and advisory
intervals. FRMIN values are calculated as the expected 5 min
ramps in the net-load forecasts. Up and down FRMAX values
are calculated to cover 95% of those differences. It is a 5 min
product.

Fig. 2 shows plots of the maximum requirement for a single day for
the week simulated in October in both the upward (upward ramps)
and downward (downward ramps) directions. Although the actual
requirements will change with every interval, each month exhibits
similar trends, and the magnitude of the requirements at each
temporal resolution is also comparable among months. 

3 Study test bed
The system studied in this analysis is a modified version of the
IEEE 118-bus test system [17]. The system generation portfolio
and transmission capacities were updated to better reflect current,
available operation cost data. Namely, some coal generation was
converted to combined-cycle generation, and plant operating
characteristics such as ramp rates were updated to better capture
current generation plant flexibility.

Load, wind, and solar data were obtained based on available
data for northern California from the Western Wind and Solar
Integration Study Phase 2 report performed by NREL [18]. The
characteristics of this new system are reflected in Tables 3–5. 

In Table 5, the std() function represents the standard deviation
of the net-load profile. The net-load profile is defined as the load
profile minus all wind and solar generation profiles. The second
column shows the largest ramp in the aggregated wind and solar
generation profile in the upward direction. Similarly, the last
column shows the largest downward ramp of the aggregated wind
and solar generation profile.

The system was simulated for four weeks (one week each in
January, April, July, and October) to capture the seasonal trends in
load, wind, and solar profiles. To capture the effects of the ramp
product, each week was simulated twice, once without the product
to establish baseline results and once with it to measure its effects
on efficiency and reliability metrics. Base case simulations contain
traditional reserve capabilities such as contingency and regulation
reserves in both upward and downward directions. This

Fig. 2  FRDC maximum requirements in October
 

Table 3 Updated IEEE 118-bus test system characteristics
System characteristics
coal capacity, GW 2.30
combined-cycle capacity, GW 2.76
combustion turbine capacity, GW 2.52
annual solar energy penetration, % 17.45
annual wind energy penetration, % 16.98

 

Table 4 Load and net-load data characteristics
λ = Load data ζ = Net-load penetration

mean (λ), MW max (λ), MW mean (ζ), % max (ζ), %
January 3625 4452 22.5 71.5
April 3145 3713 37.5 92.3
July 4725 6552 22.2 57.6
October 3300 4019 33.2 93.5
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comparison is intended to extract the operational implications of
updating traditional operating procedures, i.e. base case (no explicit

flexibility ramping requirement), to a new procedure that does
include a flexibility requirement in the form of a flexibility reserve
demand curve.

4 Results
A summary of the simulation results is shown in Table 6. The
production costs increase with the inclusion of the flexible ramping
product, although only by a small per cent. This is most likely
attributable to increased curtailment in VG generation – i.e.
including the flexible ramping product resulted in the commitment
of excess thermal capacity that needed to remain online at the
expense of curtailing VG output. 

The inclusion of the flexible ramping product helped to
eliminate real-time scarcity events that were the result of
insufficient ramping flexibility rather than energy shortage, and in
some cases the number of scarcity events in the LMPs was reduced
by as much as 96%. The flexible ramping product also helped to
converge day-ahead and real-time prices. Fig. 3 shows the absolute
difference between the load-weighted mean of the day-ahead and
real-time LMPs. This helps shed some light on how well the day-
ahead and real-time prices agree. Note that among all weeks
simulated, the differences between the day-ahead and real-time
LMPs are reduced. 

The significant wind and solar curtailment occurring in the
system leads to more instances with an LMP of 0 $/MWh. This is
shown in the LMP duration curve in Fig. 4. The amount of VG
curtailment is shown in Table 7. Note that the amount of time with
scarcity prices is noticeably reduced and the amount of curtailment
as shown by zero prices increases. 

Table 8 shows the direction of accumulated ACE for each case.
Note that including the flexibility reserve product increases the
amount of ACE in the positive direction while reducing the amount
of ACE in the negative direction. This behaviour is expected. The
negative ACE is reduced because there is additional ramping
capacity available in the system that can be used to help meet the
demand that is otherwise unserved due to ramping constraints.
However, since the flexible ramping products typically results with
extra thermal generator commitments, this can have an adverse
effect when the wind and solar generation ramp up rapidly over a
short period of time. Thermal generators that are online cannot
back down fast enough or are already operating at minimum
generation levels. This results in periods of time where the total
generation exceeds the demand and extra positive ACE is
accumulated as shown in Table 8. 

Table 9 summarises the behaviour of the thermal generation
fleet for all scenarios. The utilisation factor is the average output of
the thermal generation fleet with respect to the total thermal
capacity. The next result is the average number of thermal
generators online per dispatch interval. The next result is the
average time a thermal generator remains online after it is turned
on, measured in hours. The final result is the average number of
thermal generator start-ups. In general, the flexible ramping
product results in higher utilisation of the thermal generation fleet.
Thermal units are turned on slightly more frequently, once turned
on, they remain online for longer periods of time, additional units
are committed, and they operate at slightly higher set points. 

Fig. 5 compares the LMPs among the cases to the flexible
ramping product and the cases without flexible ramping product for

Table 5 VG data characteristics
ρ = Net renewable generation data

Std (ρ),
MW

Max 4 s
upward

ramp, MW

Max 4 s
downward
ramp, MW

Average
energy

penetration, %
January 554.15 12.23 18.42 22.55
April 840.35 14.96 16.44 37.47
July 798.19 13.13 11.65 22.22
October 742.27 15.55 18.43 33.18

 

Table 6 Overall summary of simulation numerical results
Case Cost, million $ Δ Cost, % Number of price

spikes
Δ Number of price

spikes, %
AACEE, MWh Δ AACEE, % σACE ΔσACE, %

January – without FRDC 12.12 −0.06 162 −96.3 2357 −5.3 26.7 −8.2
January – with FRDC 12.11 6 2231 24.5
April – without FRDC 7.87 +4.4 103 −75.8 2851 +2.3 35.3 −0.01
April – with FRDC 8.22 25 2917 35.3
July – without FRDC 17.64 +0.12 241 −58.1 1447 −4.1 16.9 −5.3
July-with FRDC 17.66 101 1388 16.0
October – without FRDC 8.97 +3.8 73 −89.0 1960 +10.8 23.8 +12.4
October – with FRDC 9.31 8 2172 26.8
 

Fig. 3  Mean-absolute difference between day-ahead and real-time
electricity prices

 

Fig. 4  Electricity price duration curve for April
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all weeks simulated. If the inclusion of the flexible ramping
product had no impact on LMPs, then all of the data points (LMPs)
would fall on the diagonal (also plotted for reference). Any data
point that falls below the diagonal implies that the flexible ramping
product reduces the average LMP at that particular bus, and vice

versa for all data points that fall above the diagonal. In general, the
inclusion of the flexible ramping product increased the LMPs at
nearly all buses for all weeks considered. In October, the opposite
effect was observed. This could be due to the excess thermal
generation committed during the valley times of the net-load
profile. Even though VG output was curtailed, thermal generators
operating at their minimum output levels could not be turned off,
thus resulting in significant excess thermal capacity online and the
accumulation of positive ACE. 

Fig. 6 shows the difference in available 5 min ramping capacity
in the January simulation. A positive value means that there was
more ramping capacity available without the flexible ramping
product. Conversely, a negative value means that there was more
ramping capacity available with the flexible ramping product. It is
noted that over the course of the entire week, there is generally
more ramping capacity available when the flexible ramping
product is included. This is expected since the flexible ramping
product typically results in committing extra thermal generators
which translates directly to the extra ramping capacity. Similar
behaviour occurred throughout the week and among all other
weeks as well. 

Fig. 7 compares the amount of real-time market infeasibilities
across all weeks considered with and without the flexible ramping
product. 

The flexible ramping product is able to substantially reduce the
amount of real-time market infeasibilities across all cases. This is
because the flexible ramping products necessitate the commitment
of additional thermal generation. This excess capacity offers
greater ramping flexibility and thus the system is able to avoid
infeasible market solutions that are the result of inflexible
generation portfolios.

The amount of wind and solar generation in the system does
significantly impact operations. Fig. 8 shows the instantaneous
renewable energy penetration in the October simulation week. Also
shown in Fig. 8 is the absolute ACE in energy (AACEE) for this
week for both cases considered, with and without the flexible
ramping product. The AACEE is the integral of the absolute value
of the ACE throughout the week. This metric gives some insight
into how well the system is balanced throughout the simulation. 

Note that throughout the beginning of the simulation, the
flexible ramping product has minimal impact on the system
imbalance. However, starting around the third day, the wind and
solar generation profiles ramp up significantly for an instantaneous
penetration of more than 90%. Thermal generators are backed off
as much as possible in order to accommodate the spike in wind and
solar generation. However, these generators cannot be turned off
due to minimum generation time constraints and must remain
online. This results in slight over-generation occurring during this
time period and this effect is more exaggerated with the additional
online thermal generators due to the flexible ramping product. This
is seen in Fig. 8 where the two plots begin to deviate around hour
63. This helps corroborate the behaviour described in Table 8.

The commitment of additional thermal generators can also help
partially mitigate transmission congestion in the system. The bar
graph in Fig. 9 shows the number of congested intervals aggregated
over all transmission lines per 5 min interval with loading in excess
of 95% rated capacity. 

The utilisation of the flexible ramping product resulted in
committing more thermal generators that were more dispersed

Table 7 VG curtailment in GWh
Without FRDC With FRDC

January 13.19 15.02
April 28.18 32.38
July 11.19 11.35
October 20.85 25.43

 

Table 8 Breakdown of accumulated ACE in MWh
Case Positive ACE Negative ACE
January – without FRDC 1298 1060
January – with FRDC 1416 815
April – without FRDC 1972 879
April – with FRDC 2074 844
July – without FRDC 704 744
July – with FRDC 712 676
October – without FRDC 1200 761
October – with FRDC 1465 707

 

Table 9 Results summarising generator behaviour
Case Utilisation factor, Μ Δµ, % Online generators, γ Δγ, % Online time per

startup, τ
Δτ, % Thermal startups, σ Δσ, %

January – without FRDC 0.287 +2.0 13.59 +8.2 27.89 +24.4 6.48 −36.2
January – with FRDC 0.292 14.69 34.69 4.13
April – without FRDC 0.204 +2.0 9.63 +15.1 29.67 −6.1 3.94 +33.8
April – with FRDC 0.209 11.09 27.85 5.28
July – without FRDC 0.355 +3.26 17.78 +7.1 39.69 +4.5 2.96 +2.6
July – with FRDC 0.367 19.03 41.50 3.04
October – without FRDC 0.214 +7.20 10.40 +14.6 27.66 +11.9 4.00 +4.2
October – with FRDC 0.230 11.92 30.94 4.17

 

Fig. 5  Real-time electricity price comparison among all cases
 

IET Renew. Power Gener., 2017, Vol. 11 Iss. 7, pp. 959-965
© US Government 2017

963



throughout the network. This is what caused the reduction in
intervals exhibiting transmission congestion.

5 Conclusion
This paper presents the analysis of a flexibility reserve ancillary
service product and its impact on various efficiency and reliability
metrics. The flexible ramping product increases production costs
and ACE. This is most likely due to the flexible ramping product
necessitating the commitment of excess thermal generation, which
resulted in the curtailment of wind and solar resources. The
commitment of excess thermal generation to meet additional
flexibility requirements may result in the curtailment of wind and
solar generation, particularly during the valley times in the net-load
profile, if it resulted in additional thermal capacity commitments
during the same time frame. The loss of this zero-cost resource
resulted in an increase in the total system production cost while
forcing slower thermal units to be online, which resulted in the
accumulation of more ACE. This ACE was in the positive direction
due to the combination of wind and solar generation ramping up
quickly and thermal generators not being able to back off as fast
and having to remain online to satisfy minimum run-time
requirements and/or reliability requirements. The inclusion of the
ramping product helps the convergence of real-time LMPs. It also
helps eliminate scarcity pricing events that occur as a result of
insufficient ramping capacity. The flexible ramping product can
also help reduce transmission congestion if the commitment of
extra thermal generators helps the distribution of the generation
portfolio across a larger transmission footprint.

The purpose of this study was to begin understanding the
operational implications of high renewable futures and new reserve
requirement methodologies. What we have seen is that there are

some benefits and some drawbacks for these techniques and the
final decision is in the hand of the operator. However, these new
flexibility reserve techniques are valuable specifically for their
ability to reduce the number of scarcity pricing events. While these
events can help small market participants whose business plan
revolves around leveraging these large pricing discrepancies for
arbitrage, they are symptoms of an inefficient market and could
open the door for players to try to gain and exert market power.

Potential future work should revolve around assessing the
benefits of the purposed flexibility reserve demand curves in
energy futures containing high levels of wind and solar generation
capacity. Under greater variability and uncertainty, it becomes even
more critical to ensure reliable system performance and the
benefits from this type of operating strategy could be even more
profound.
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