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In this article, the problem of cracking in concrete gravity dams subjected to seismic loadings is examined
under a multiscale perspective. Preliminarily, the size-scale effects on the mechanical parameters enter-
ing the nonlinear constitutive models of the interface crack are discussed. From a wide review of existing
experimental results, it is shown that the material tensile strength, the fracture energy, the friction coef-
ficient and the concrete compressive strength are strongly size-scale dependent. This evidence pinpoints
the necessity of performing experimental testing on large scale specimens to assess the value of the
parameters to be used in nonlinear fracture mechanics simulations. Moreover, the size-scale dependency
of the interface constitutive properties implies the necessity of updating their values during crack prop-
agation simulations. To do so, interface properties are not given in input a priori, but they are selected at
each step of the simulation according to the specified scaling laws. The numerical simulations, based on
the finite element method and a generalized interface constitutive law for contact and decohesion imple-
mented in the node-to-segment contact strategy, show the high sensitivity of the phenomenon of crack
propagation by the parameters of the damage law used to degrade the cohesive zone properties in case of
repeated cycles.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Structural integrity assessment of concrete gravity dams has
long been investigated. The first attempts to apply the theories
and the methods of fracture mechanics to concrete structures are
dated back to the 1970s [1]. Pioneering analyses were mostly
based on linear elastic fracture mechanics (LEFM). Crack growth
takes place when an equivalent stress-intensity factor, accounting
for Mixed-Mode loading, reaches the critical stress-intensity factor,
which is a material property that defines the toughness of con-
crete. This approach is suitable when the size of the process zone
is small as compared to the structural size, a condition usually sat-
isfied in large scale structures like dams.

The first systematic application of fracture mechanics to dams
was proposed in the 15th International Congress on Large Dams,
ICOLD, held in Lausanne in 1985 (see, for instance, the guidelines
proposed by Linsbauer [2] for the application of LEFM to dams).
The problem of cracking in concrete dams was perceived as a prob-
lem of paramount importance, both for the existing structures, and
for the design of the new ones. Hence, it was ascertained that the
phenomenon of cracking cannot be totally avoided during the real-
ization stage and in the service conditions [3]. The main reasons
are the temperature excursions between the internal and the
external sides of the dam, dilatation of concrete when exposed to
environmental conditions, as well as foundation settlements. LEFM
theories were then applied to several case studies, including the
analysis of cracking in the Fontana dam in North Carolina (USA)
[4,5], in the Koyna dam in India [6–8], and in the Köhlbrein dam
in Austria [9–11]. Recently, LEFM has also been applied to the
interpretation of the reasons for collapse of the Malpasset dam in
France [12].

Experimental tests on scaled down models have been per-
formed in the past [13] to assess the reliability of LEFM predictions.
On the other hand, seismic fracture analyses are quite scarce due to
their high complexity [6,7,14]. Cracks encountered in dams require
special modeling when subjected to crack closure, as it happens
during repeated loadings [7]. When nonlinear fracture mechanics
(NLFM) models are used [14,15], a nonlinear dynamic problem
has to be solved [14], which is nowadays challenging due to the
large differences in the characteristic time scales of the problem.

In the present paper, the phenomenon of crack propagation at
the interface between the concrete dam and the rock foundation
is investigated. This source of damage is particularly important
from the structural integrity point of view. In fact, besides
Mixed-Mode crack growth in concrete, dam failure is often the re-
sult of crack propagation along the rock–concrete interface at the
dam foundation. In this case, there is a lack of predictive models
in the literature, especially for seismic analyses. A preliminary
study on the possibility to use nonlinear fracture mechanics cou-

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compstruc.2013.03.006&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2013.03.006
mailto:marco.paggi@polito.it
http://dx.doi.org/10.1016/j.compstruc.2013.03.006
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


M. Paggi et al. / Computers and Structures 122 (2013) 230–238 231
pled with damage mechanics and contact mechanics in dynamics
has been outlined in [16].

In the present work, the problem of size-scale effects on the
tensile strength, fracture energy and dissipated energy in compres-
sion is critically analyzed. It is found that huge structures like dams
are very sensible to size-scale effects and suitable parameters have
to be used in the NLFM models for the simulation of crack propa-
gation. From the numerical point of view, an adaptive approach
is used, where the material parameters are selected at each step
of the simulation according to the given scaling laws. Then, the
generalized interface constitutive law proposed in [17] is used to
model the phenomenon of crack closing and reopening at the
interface and its finite element implementation in the code FEAP
is discussed. In particular, following [16], a damage variable is
introduced in the cohesive zone formulation in order to predict
crack propagation under repeated loadings, in close similarity with
the phenomenon of fatigue crack growth. Finally, a case study is re-
ported in the paper showing the capabilities of the proposed ap-
proach and the sensitivity to the parameters of the damage law.
2. Size-scale effects on the mechanical parameters

The numerical simulation of the behavior of dams subjected to
cracking requires the knowledge of the mechanical properties of
concrete and cold interfaces, to be used as input of the constitutive
models. For concrete, the tensile and compressive strengths and
the fracture energy are the most important parameters. The use
of concrete with large sized aggregates leads to severe size effects
and the applicability of standard testing procedures at the labora-
tory scale to determine mechanical parameters is rather question-
able [18]. In this context, the wide experimental campaign carried
out by Carpinteri and Ferro [19,20] in the Laboratory of Structural
Mechanics of Politecnico di Torino on concrete specimens with dif-
ferent sizes has shown that the tensile strength of concrete, ru, is a
decreasing function of the structural size, b. In particular, an
approximate scaling law with negative exponent equal to �0.14
was found, see Fig. 1(a). An opposite trend was observed for the
fracture energy [21], as illustrated in Fig. 1(b), where the scaling
is well approximated by a power-law with positive exponent equal
to 0.38.

Size-scale effects on the compressive behavior of quasi-brittle
materials are also observed. For instance, size-scale effects on the
dissipated energy in compression have been reported in [22] by
considering a scale range 1:19 between the smallest and the big-
gest specimen. The tested cylinder specimens had a height–diam-
eter ratio, b/d, equal to 1. The stress–strain curves corresponding to
4 different specimens (C13 corresponds to b = 10 mm; C21 to
b = 23 mm; C33 to b = 46 mm; C44 to b = 100 mm) are shown in
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Fig. 1. Scaling laws for tensile strength an
Fig. 2(a). The area under such curves defines the energy density S
dissipated in compression. This quantity is a decreasing function
of the specimen size according to a power-law with negative expo-
nent, see Fig. 2(b).

For concrete–concrete and rock–concrete interfaces, on the
other hand, we need to know their peak stress rmax and their frac-
ture energy Gint for the characterization of the cohesive zone mod-
el. Moreover, the evolution of damage in case of repeated loading
should also be quantified in order to perform a full characteriza-
tion. In case of crack propagation, the frictional response has also
to be quantified. However, experimental studies are quite scarce
in the literature. Kishen and Rao [23] have pointed out that the
fracture energy of the interface decreases as the difference in the
compressive strengths of the materials sharing the interface in-
creases. This implies that the fracture energy of a patch-repaired
concrete should not be very much different from that of the parent
concrete in patch repair systems. The same should apply when the
compressive strength of rock is similar to that of concrete. More-
over, in case of interface specimens, the strength was found to be
a decreasing function of the specimen size, in analogy with that ob-
served in pure concrete.

Regarding the frictional response, size-scale effects are ex-
pected in case of rock–rock frictional contact due to roughness
[24]. Bandis et al. [25] observed that the peak shear stress before
sliding increases by reducing the size of the tested specimens. They
cast 360–400 mm long replicas of eleven natural joint surfaces
with a wide range of different roughnesses, using artificial rock
material. For each of the natural joint surfaces considered, several
specimens were prepared which, for practical purposes, could be
considered identical. For each natural joint, a full size replica was
subjected to direct shear testing under constant compressive
stress. Then, another replica of the same joint was sawn into four
parts with each part being subjected to shear testing under the
same nominal compressive stress. On the remaining samples, fur-
ther subdivisions were created and tested. Shear stress vs. shear
displacement results are shown in Fig. 3, in which the size-scale ef-
fect on the peak shear stress is clearly evidenced. Dividing the peak
shear stress in the curves in Fig. 3 by the applied nominal pressure,
size-scale effects on the friction coefficient can be put into evi-
dence, see Fig. 4.
3. Interface constitutive model

A general constitutive model is proposed in this section, as a re-
sult of the combination of a cohesive zone model (to depict frac-
ture), a contact model (to model contact in case of load reversal
and in case of unbonded interfaces) and a damage model (to cap-
ture finite life effects in case of repeated loading).
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Fig. 2. (a) Stress–strain curves of compressed specimens with different size (C13: b = 10 mm; C21: b = 23 mm; C33: b = 46 mm; C44: b = 100 mm). (b) Scaling of the
dissipated energy density, S, with the sample size, b. Data obtained from [22].

Fig. 3. Experimental results of shear tests on rock joints [25].
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Fig. 4. Size-scale effects on the friction coefficient (data from Fig. 3).
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3.1. Cohesive zone model

Interface fracture between concrete and rock is herein modeled
in the framework of NLFM, using the interface cohesive zone model
proposed by Geubelle and Baylor [26]. This model, originally ap-
plied to composite materials, represents a natural extension of
the classical bilinear cohesive zone models to Mixed-Mode inter-
face crack problems, where Mode Mixity is usually an important is-
sue that cannot be disregarded. Following this approach, a measure
of interface opening and sliding, k, is introduced:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gN

lNc

� �2

þ gT

lTc

� �2
s

; ð1Þ

where gN and gT denote, respectively, the normal and the tangential
separations. Parameters lNc and lTc are the critical values for the nor-
mal and the tangential gaps. They correspond to the separation for
which cohesive forces transmitted through the interface vanish, i.e.,
complete debonding takes place. Normal and tangential cohesive
tractions are given as functions of interface opening in the process
zone:

FN ¼
rmax
kmax

gN
lNc

0 < k 6 kmax;

rmax
k

1�k
1�kmax

gN
lNc

kmax < k < 1;

(
ð2Þ

FT ¼
smax
kmax

lNc
lTc

gT
lTc

0 < k 6 kmax;

smax
k

1�k
1�kmax

lNc
lTc

gT
lTc

kmax < k < 1:

8<
: ð3Þ

The effect of coupling between normal and tangential displace-
ments upon normal and tangential tractions is shown in Fig. 5 for
kmax = 0.2. For either pure normal separation (Mode I), i.e. for
gT = 0, or for pure tangential separation (Mode II), i.e. for gN = 0,
the classical bilinear cohesive laws are obtained as limit cases.

The limit situation of a pure Mode II deformation deserves par-
ticular attention. The shear response of rough interfaces, as in case
of cold joints, is very complex. Examining the shear test results in
Fig. 3, we note that the shear stress is a nonlinear increasing func-
tion of the sliding displacement up to a peak value. This is the re-
sult of the progressive stick–slip transition of multiple asperities in
contact subjected to a non-uniform normal pressure at the micro-
scale. After reaching a peak shear stress, a softening branch is ob-
served. In this second stage, the interface behavior is ruled by
interlocking between asperities and their progressive shearing. In
the present work, this complex nonlinear response in Mode II gov-
erned by contact mechanics at the microscale has been simplified
by adopting a bilinear cohesive zone model with softening (see
Fig. 5, lTc/lNc = 1). In this limit case of pure Mode II deformation,
the computation switches to a contact formulation with a constant
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(residual) friction coefficient when interface decohesion takes
place, see Section 3.2.

Crack propagation in quasi-brittle materials can be numerically
modeled by using either extrinsic or intrinsic cohesive zone mod-
els. For extrinsic models, cohesive elements are adaptively inserted
into the mesh. This usually requires complicated updating schemes
for the modified mesh by renumbering nodes and elements. More-
over, they assume that separation only occurs when the interfacial
traction reaches the tensile strength of the material and, once this
condition is achieved, the interfacial traction monotonically de-
creases as separation increases. In this scheme, there is no initial
compliance in the CZM, i.e., kmax = 0 in Eqs. (2) and (3). Intrinsic
models, on the other hand, require that all the interface/contact
elements are embedded in the discretized structure from the
beginning of simulation. For this reason, intrinsic CZMs assume
that, e.g. in pure Mode I, traction increases with increasing interfa-
cial gap up to a maximum and then decreases and finally vanishes
at a characteristic separation, where complete decohesion occurs.
In this case, kmax – 0 and an artificial compliance is introduced in
the FE model. If the crack grows along a pre-defined path, as in
the problem addressed herein, this approach is computationally
stable and efficient. The choice of kmax has a role on the mechanical
response and it is usually kept as small as possible in the numerical
simulations to avoid a physically not realistic high interface com-
pliance [27]. Physically, The choice of kmax = 0.2 implies that the
peak cohesive tractions are reached when the opening and sliding
relative displacements are equal to 1/5 of their critical values for
decohesion or the achievement of the residual shear resistance.
In Mode II, this is qualitatively supported by the linearized shear
responses in Fig. 3 (dashed lines).
Fig. 6. The role of penalty parameter in contact problems.
3.2. Contact model

Cohesive models can be used for studying the debonding stage,
until a complete interfacial separation occurs. However, due to re-
peated loadings, a proper modeling of crack closure is also required
in order to fully characterize the mechanical behavior of interfaces.
This is achieved using the generalized interface constitutive law
proposed in [17]. When interface closure takes place, the unilateral
contact constraints are imposed, i.e.: (i) penetration is not allowed,
i.e. gN P 0; (ii) a closed gap between the bodies leads to compres-
sive contact tractions, i.e., if gN = 0, then FN < 0. When the gap is
open, tractions are either equal to zero (debonded interface) or
are computed according to the cohesive zone model outlined in
the previous section.

Therefore, in analogy with the continuum, where it is required
the expression of the total potential energy of the mechanical sys-
tem to set up the finite element formulation, the contact problem
corresponds to finding the minimum of a functional under bound-
ary conditions expressed in terms of inequalities [28]. In addition
to the typical displacement unknowns of the finite element meth-
od, the non-compenetrability conditions give rise to another set of
unknowns, corresponding to the contact forces, FN, acting at each
finite element node along the interface. In this framework, the
numerical techniques for the solution of such problems can be
grouped into two main categories: those that satisfy the geometri-
cal non-compenetrability condition exactly, and those that satisfy
this condition only in an approximate way.

In this study, the penalty method is adopted, which belongs to
the second category. This technique presents the advantage that
the number of equations related to the continuum discretization
is not increased in the analysis. This permits to deal with a posi-
tively defined stiffness matrix with constant dimensions. Accord-
ing to this approach, for a given value of the normal gap, gN, the
corresponding normal force, FN, is computed as the product of a
penalty parameter, C, and the current value of the interpenetration.
Clearly, the unilateral constraint condition is recovered only for
values of the penalty parameter tending to infinity. In the standard
version of this technique, the penalty parameter C is just a constant
coefficient, selected high enough to approximate the unilateral
contact constraint. From the mechanical point of view, this method
corresponds of interposing a bed of linear springs between the con-
tact faces (see the linear curve (c) in Fig. 6). In the present study, a
nonlinear variant of this approach is adopted, motivated by rough-
ness of cracks [29]. A non-zero gap gN can be physically motivated
by considering a progressive flattening of the asperities whose
heights are randomly distributed with respect to an average mean
plane (see Fig. 7). This process leads to a contact stiffness nonlin-
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early dependent on the normal gap gN (see the curve (d) in Fig. 6).
For the numerical simulations, the micromechanical contact
parameters obtained in [29] for fractal surfaces with a fractal
dimension Df = 2.3 are selected.

As far as the response of the joint in the tangential direction is
concerned, two different situations have to be considered: in the
first one, no tangential relative displacement occurs in the contact
zone subjected to a tangential force, FT. This behavior is called stick.
The second situation is represented by a relative tangential dis-
placement, gT, along the contact interface, which is the so-called
slip. Stick is equivalent to the case where the relative tangential
velocity is zero. Hence, the stick condition can be obtained as [30]:

_gT ¼ 0: ð4Þ

This condition is formulated in the current configuration and thus,
in general, it imposes a nonlinear constraint equation on the motion
along the contact interface. Sliding takes place when the tangential
forces are above a certain limit, and the contacting surfaces move
relative to each other. In our model, sliding is described by the Cou-
lomb law:

FT ¼ �f jFNj
_gT

j _gTj
; if jFTj > f jFNj; ð5Þ

where the parameter f denotes the friction coefficient.

3.3. Damage model for repeated loadings

In addition to the above traction-separation relations describing
the behavior of interfaces under tension/compression, a descrip-
tion of the damage evolution has to be provided in order to capture
finite life effects in the case of repeated loading. To this aim, the
initial cohesive strengths, rmax and smax are replaced at each step
by the actual cohesive strengths, rt

max and st
max, which take into ac-

count the degradation of the cohesive law:

rt
max ¼ rmaxð1� DÞ; st

max ¼ smaxð1� DÞ; ð6Þ

where D is the damage variable.
To compute the current state of damage, a description of

the evolution of damage has to be provided. For cyclic loading, the
damage evolution equation has to characterize the failure of the
cohesive zone model due to cycling at subcritical loads. As a funda-
mental hypothesis, we assume that the increment of damage is re-
lated to the increment of deformation times a function of the stress
level, similarly to the model proposed by Roe and Siegmund [31]:

_D ¼ Dg
gmax

� �a F
rt

max
� Fth

rmax

� �b

0 6 _D 6 1; ð7Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

N þ g2
T

q
is the resultant separation at a given time step.

Hence, Dg = gt+Dt � gt represents the increment of deformation from
one time step to the next. The variable gmax denotes the maximum
cumulative separation length to achieve failure of the cohesive zone
under cyclic loading. Finally, F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

N þ F2
T

q
is the resultant traction
Fig. 7. The meaning of the normal gap gN in the framework of contact mechanics
between rough surfaces. The variable n0 denotes the mean plane separation at first
contact, whereas dm is the actual mean plane separation.
and Fth is a threshold value below which no damage occurs. The two
exponents a and b are related to the severity of damage.

The applicability of Eq. (7) to fatigue crack growth in concrete
has been proven in [32]. In case of a Mode I problem with subcrit-
ical repeated loadings, this approach based on damage mechanics
was able to accurately predict the plate deformation at the maxi-
mum stress level as a function of the number of loading cycles.
The agreement with experimental results was notably good.

The damage model used in the present work was motivated by
the former application by Roe and Siegmund [31] of CZMs in fati-
gue. In that work, a single scalar damage variable was used to de-
grade the cohesive properties as a whole, as in the present study.
This assumption implies that repeated sub-critical separations
globally affect the CZM response in the same way, regardless of
Mode Mixity. The use of two different damage functions could be
possible in the present CZM formulation, where the CZM has a
bilinear shape not obtained from a single potential function. In
other cases where a potential function is used to define the shape
of the CZM in Mode Mixity (see [31]), a single damage variable has
to be defined. At present, however, no experimental evidence to
support the use of two different damage variables has been pro-
vided and therefore one single damage variable is used.

It is important to notice that the cumulative separation gmax is
computed by adding only positive separation increments Dg, i.e.,
only during opening and not closing of the interface. In practice,
this implies that reloading contributes to damage accumulation,
whereas unloading does not. To complete the formulation, the cur-
rent damage is computed as:

D ¼
Z t

0

_D dt: ð8Þ
4. Finite element algorithms

In the finite element formulation, the contributions of the nodal
normal and tangential contact and cohesive forces are added to the
global virtual work equation [33]:

dW ¼ AhðFNdgN þ FTdgTÞ; ð9Þ

where the symbol A denotes an assembly operator for all the inter-
face nodes and h is the size of the finite element. A main difficulty
with the analysis, stemming from the contact constraints and the
imperfect bonding, is that the extension of the contact and debond-
ed zones are unknown a priori, and the corresponding boundary
value problem must be solved with an iterative method. The
Newton–Raphson solution procedures commonly used for solving
nonlinear problems require the determination of the tangent stiff-
ness matrix. Consistent linearization of the equation set (9) leads to:

DdW ¼ h
@FN

@gN
DgN þ

@FN

@gT
DgT

� �
dgN

þ h
@FT

@gN
DgN þ

@FT

@gT
DgT

� �
dgT þ hFNDdgN þ hFTDdgT ð10Þ

where the symbol d has been used for variations and the symbol D
denotes linearizations. Linearizations and variations of the normal
and the tangential gaps can be obtained as in [30], as well as the dis-
cretized version of these expressions for a direct implementation in
the finite element formulation based on the node-to-segment con-
tact strategy.

Regarding the problem of interface discretization, a major diffi-
culty stems from the large size of the dam as compared to the pro-
cess zone size. In fact, we have two distinct length scales: one is
related to the dam size, the so-called structural or macroscopic
size, and the other is a microscopic length scale related to the size
of the process zone in front of the crack tip. To correctly capture
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the progress of crack propagation, the size of the smallest finite
element should be comparable with the process zone size. To ob-
tain an accurate solution without refining the mesh for the contin-
uum, we adopt the virtual node technique originally proposed by
Zavarise et al. [34] and then applied to interface mechanical prob-
lems in [33]. The basic idea of this method consists in changing the
integration scheme usually adopted in node-to-segment contact
elements. The cohesive/contact contribution to the stiffness matrix
and the internal force vector are in fact integrated on the contact
element through a n-point Gauss integration scheme instead of a
simpler 2-point Newton–Cotes integration formula. In this way,
an arbitrary number of Gauss points can be specified inside each
contact element along the interface, regardless of the discretization
used for the continuum.

Moreover, another difficulty regards the use of cohesive zone
models in dynamics. This often leads to rate-dependent numerical
results, although the description of the material behavior does not
explicitly include rate-dependent parameters (see [35] for a wide
discussion on this topic). Numerical rate effects are due to the
interplay between characteristic scales (length and time) of cohe-
sive models and inertia. In particular, a very high loading rate
seems to increase the peak stresses rmax and smax and the fracture
energy of the cohesive zone model with respect to a quasi-static
analysis. This can be accounted for in the model by including a
loading rate-dependency in the cohesive zone model, as proposed
in [35]. However, this effect is not considered here for two reasons:
there is a lack of experimental information about the dynamic
behavior of real rock–concrete interfaces and the use of the same
cohesive parameters as for the quasi-static case is in favor of safety.
In any case, two characteristic time scales should be considered:

t1 ¼
qcLlNc

2rmax
; t2 ¼

a0

cL
; ð11Þ

where cL ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
is the dilatational wave speed of the material,

computed as the square root of the ratio between the Young’s mod-
ulus and the mass density, and a0 is the length of the interface in
front to the crack tip. Therefore, t1 is the intrinsic time of the cohe-
sive zone model operating in dynamics and therefore it is propor-
tional to the time requested by a dilatational wave to cross the
process zone. The other time, t2, comes from the fact we are analyz-
ing a structural problem with finite boundaries in dynamics and it
corresponds to the time necessary for a wave to travel along the
whole bonded interface and reach the boundary of the dam, where
it will be subjected to reflection.

To deal with this two very different time scales, time integra-
tion is performed by using the Newmark formulae, explicit in the
displacements and implicit in the velocities. The seismic action
has been modeled giving the dam the same stiffness of the soil of
foundation and with reference to P waves, neglecting S waves.
The P waves (primary waves) are longitudinal compressional
waves traveling along the interface faster than any other type of
wave generated during an earthquake. A typical speed in rocks is
5000 m/s. The S waves (secondary waves) are shear waves trans-
verse to the interface and induce displacements of the ground per-
pendicular to the direction of propagation. Obviously these
hypotheses are a simplification of a real earthquake [36], which
will be examined in a future paper.
Fig. 8. (a) Sketch of the Koyna dam with the position of the rock–concrete interface
and (b) FE mesh.
5. Numerical example

In this section, a numerical application of the proposed numer-
ical model is presented for the analysis of separation at the cold
interface between rock and concrete under the action of seismic
loading. In order to analyze the effects of a real earthquake, we fo-
cus our attention on the Koyna dam geometry, for which the
ground accelerations were recorded and are used as input for the
dynamic problem (see Fig. 8 for the geometry and the undeformed
mesh of the dam). The dam height is 103 m, the crest width is
14.8 m, and the foundation width is 70 m. The reservoir height
and width to assess the effect of fluid pressure are, respectively,
92 m and 300 m.

Plane strain triangular elements with linear shape functions are
used for the discretization of the continuum. Regarding the rock–
concrete interface at the foundation, the node-to-segment contact
strategy is adopted, which does not require matching of nodes for
the continuum elements sharing the interface. A very fine mesh is
necessary to resolve the process zone tractions at the crack tip, as
shown in Fig. 8(b). Regarding the material properties, a Young’s
modulus and a Poisson’s ratio E = 50 GPa and m = 0.2 for both con-
crete and rock are considered. The mass density q of concrete and
rock are chosen equal to 2500 kg/m3 and 2800 kg/m3, respectively.
The parameters of the cohesive zone model are the same as those



Fig. 9. Acceleration components in the horizontal (a) and vertical (b) directions
used in the FE analysis [14].
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used in Section 3. In particular, the peak stress of the CZM is set
equal to the tensile strength of concrete, rmax = ru, and the Mode
I interface fracture energy as the fracture energy of concrete,
Gint ¼ GF. Those values, used for the first step of the simulations,
are consistent with those of large specimens, i.e., Gint ¼ 250 N/m
and rmax = smax = 3 MPa (recent experimental results suggest that
rmax and smax are similar to each other [37]). For the friction coef-
ficient, which may range from 0.6 to 0.3 depending on the size of
the sample, we set f = 0.3 as a worst case scenario for a very large
fault. All these input parameters are updated at each step of the
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Fig. 11. Evolution of damage al
numerical simulations, according to the scaling laws presented in
Section 2. In this context, the size of the sample b is the length of
the interface already to fail. In absence of information regarding
the evolution of damage in case of repeated loading, the damage
parameter a is considered as a free variable and a parametric anal-
ysis is performed by selecting a = 1 and a = 2. On the other hand,
we set b = 0.

The duration of the simulated earthquake is nearly 9 s, with
acceleration peaks up to 0.4 g (see Fig. 9 and [14]). In addition to
the dynamic excitation, the hydrostatic pressure and the dead load
are considered in the simulation. Regarding the dynamic solution,
a Rayleigh damping model is considered as in [7], with the damp-
ing matrix linearly expressed in terms of the mass and stiffness
matrices. The Newmark parameters were also chosen as in [7]
and we adopt a time step of 2.0 ms.

Typical horizontal and vertical displacements at the crest of the
dam obtained during the simulations are shown in Fig. 10. These
global displacements do not significantly depend on the value of
a and are similar to those found in [7] according to LEFM. As ex-
pected, horizontal displacements are much higher in modulus than
the vertical ones, confirming that modeling Mode Mixity is an
important issue for these problems. Moreover, note that the verti-
cal displacements are often negative valued, implying a contact
condition at the interface.

The evolution of damage along the interface strongly depends
on a. The damage evolution along the rock–concrete interface in
the case of a = 2 is shown in Fig. 11(a) for different time steps (x
denotes the horizontal distance from the upstream of the dam,
where crack nucleates). The damage variable D is an increasing
function of time and reaches unity for t = 6.0 s. Afterwards, no trac-
tions are transmitted along the nucleated real crack, whose final
length reaches 1.1 m at t = 6.3 s. (see also the deformed mesh in
Fig. 12, along with the superimposed contour plot of the equivalent
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Fig. 12. Detail of the deformed mesh near the dam foundation (magnification
factor = 400) and contour plot of von Mises stresses (Pa).
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von Mises stresses). This detail represents the initial part of the
rock–concrete interface in Fig. 8(a) on the reservoir side. On the
other hand, when a = 1, damage is much lower, being always less
than 0.1 (see Fig. 11(b)).
6. Conclusion

Structural integrity assessment of concrete gravity dams has
long been the subject of research. So far, most of the proposed
numerical models based either on linear elastic (LEFM) or nonlin-
ear fracture mechanics (NLFM) concerned the simulation of
Mixed-Mode crack propagation under quasi-static loading, i.e.,
hydraulic and weight loads. Dam failure is often the result of crack
propagation along concrete–concrete cold joints and along the
rock–concrete interface at the dam foundation. Seismic fracture
analyses are quite scarce due to their complexity, given the very
different time scales and size scales to be dealt with. Moreover,
cracks in dams require special modeling when subjected to re-
peated loadings, as it happens during an earthquake. This requires
a proper modeling of fracture, using NLFM, of crack closure, satis-
fying the unilateral contact condition, and of damage evolution.

The selection of suitable interface fracture and contact parame-
ters is particularly relevant. The examination of the literature on
cold interfaces suggests that the results regarding the size-scale ef-
fects on tensile strength and fracture energy of concrete can also be
used to characterize the behavior of the interface, at least up to a
certain extent. Further experimental results are indeed required
to characterize the behavior of cold interfaces under repeated load-
ing, an issue that has not yet been investigated with required
accuracy.

In the present study, the unified interface constitutive law pro-
posed in [17] for modeling quasi-static fracture in fiber reinforced
composites has been applied to the analysis of interface dynamic
crack propagation in concrete gravity dams. The numerical simula-
tion in Section 5 has been proposed with the aim to show the capa-
bility of the proposed modeling strategy based on the integration
of the cohesive zone model, micromechanically-based contact for-
mulations and damage mechanics. For the sake of simplicity, the
case of an interface crack at the foundation has been analyzed,
since it is often considered very dangerous and difficult to be in-
spected. Numerically, the direction of crack propagation was
known a priori, simplifying the computations. Other locations of
crack propagation are also possible and cannot be excluded. In
the most general case, a crack could propagate under Mode Mixity
inside the concrete blocks. This scenario, however, requires the
determination of the direction of crack propagation, which is no
longer defined by the interface line, and a suitable meshing algo-
rithm to adaptively insert either interface or contact elements.
For this complexity, this investigation is left for further research,
where the interplay between different nonlinear cracks in dynam-
ics will be rigorously analyzed.
Although further investigations are certainly required to better
define the range of variability of the parameters entering the dam-
age model, the application to the Koyna dam shows that it is pos-
sible to simulate interface crack propagation and that the exponent
a has an important effect on the evolution of damage.
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